Gene Summary

Gene:DUX4L1; double homeobox 4 like 1
Aliases: DUX4, DUX10
Summary:This gene is located within a D4Z4 repeat array in the subtelomeric region of chromosome 4q. The D4Z4 repeat is polymorphic in length and a similar D4Z4 repeat array has been identified on chromosome 10. Each D4Z4 repeat unit has an open reading frame (named DUX4) that encodes two homeoboxes; the repeat-array and ORF is conserved in other mammals. There is no evidence for transcription of the gene at this locus though RT-PCR and in vitro expression experiments indicate that a telomeric paralog of this gene is transcribed in some haplotypes. Contraction of the macrosatellite repeat causes autosomal dominant facioscapulohumeral muscular dystrophy (FSHD). [provided by RefSeq, Jun 2014]
Databases:HGNC, GeneCard, Gene
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DUX4L1 (cancer-related)

Liu YF, Wang BY, Zhang WN, et al.
Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia.
EBioMedicine. 2016; 8:173-83 [PubMed] Free Access to Full Article Related Publications
Genomic landscapes of 92 adult and 111 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) were investigated using next-generation sequencing and copy number alteration analysis. Recurrent gene mutations and fusions were tested in an additional 87 adult and 93 pediatric patients. Among the 29 newly identified in-frame gene fusions, those involving MEF2D and ZNF384 were clinically relevant and were demonstrated to perturb B-cell differentiation, with EP300-ZNF384 inducing leukemia in mice. Eight gene expression subgroups associated with characteristic genetic abnormalities were identified, including leukemia with MEF2D and ZNF384 fusions in two distinct clusters. In subgroup G4 which was characterized by ERG deletion, DUX4-IGH fusion was detected in most cases. This comprehensive dataset allowed us to compare the features of molecular pathogenesis between adult and pediatric B-ALL and to identify signatures possibly related to the inferior outcome of adults to that of children. We found that, besides the known discrepancies in frequencies of prognostic markers, adult patients had more cooperative mutations and greater enrichment for alterations of epigenetic modifiers and genes linked to B-cell development, suggesting difference in the target cells of transformation between adult and pediatric patients and may explain in part the disparity in their responses to treatment.

Ito M, Ishikawa M, Kitajima M, et al.
A case report of CIC-rearranged undifferentiated small round cell sarcoma in the cerebrum.
Diagn Cytopathol. 2016; 44(10):828-32 [PubMed] Related Publications
CIC-rearranged undifferentiated small round cell sarcoma (CIC-rearranged USRCS) is a recently established type of Ewing-like small round cell sarcomas, characterized by CIC gene rearrangement, most commonly CIC-DUX4 fusion. This report presents the second case of CIC-rearranged USRCS arising primarily in the cerebrum. A 64-year-old otherwise healthy woman presented with a 1 × 1 cm sized hemorrhagic subcortical tumor in the left temporo-parietal lobe. The tumor repeatedly recurred, and the patient underwent three surgeries, chemotherapy with doxorubicin and ifosfamide, and radiotherapy, as well as gamma knife surgery. Systemic examination revealed no other extracranial masses. Imprint cytology revealed small to moderate-sized round-to-ovoid tumor cells with mild pleomorphism and variations in size and shape. The nuclei contained finely granular chromatin, and some had easily-recognizable nucleoli. The tumor exhibited a mainly cytoplasmic pattern of CD99 immunostaining, rather than a diffuse membranous pattern. The tumor also exhibited diffuse positivity for calretinin and p16, as well as partial positivity for WT1 (nuclear and cytoplasmic staining pattern) and D2-40. FISH assessment showed CIC split signals. In conclusion, CIC-rearranged USRCSs can occur primarily in the cerebrum. It would be impossible to diagnose them through cytology alone, but cytology would be useful to rule out other small round cell brain tumors including gliomas, lymphomas, carcinomas, and germinoma. Immunohistochemical analysis including tests for CD99, calretinin, and WT1 would help to suggest CIC-rearranged USRCSs and distinguish them from Ewing sarcomas. Additionally, immunohistochemistry for p16 might be useful in the diagnosis. Diagn. Cytopathol. 2016;44:828-832. © 2016 Wiley Periodicals, Inc.

Machado I, Navarro L, Pellin A, et al.
Defining Ewing and Ewing-like small round cell tumors (SRCT): The need for molecular techniques in their categorization and differential diagnosis. A study of 200 cases.
Ann Diagn Pathol. 2016; 22:25-32 [PubMed] Related Publications
BACKGROUND: Differentiation of Ewing sarcoma family of tumors (ESFT) and Ewing-like tumors remains problematic. Certain ESFT with morphological and immunohistochemical (IHC) profiles lack the EWSR1-ETS transcript. To improve diagnostic accuracy we investigated the presence of several specific transcripts in 200 small round cell tumors (SRCT) displaying ESFT morphology and immunophenotype in which EWSR1 FISH analysis was non-informative or negative.
DESIGN: 200 tumors (formalin-fixed, paraffin-embedded) were analyzed by RT-PCR. All tumors were tested for EWSR1-ETS, EWSR1/WT1, PAX3/7-FOX01 or SYT/SSX transcripts, and the negative tumors were subsequently analyzed for CIC/DUX4, BCOR/CCNB3 and CIC/FOX04 transcripts.
RESULTS: 133 (66.5%) ESFT displayed one of the above EWSR1-ETS translocations. Three cases (1.5%) revealed the SYT-SSX transcript for Synovial sarcoma, and one (0.5%) a EWSR1-WT1 transcript for Desmoplastic Small Round Cell tumor. The CIC-DUX4 translocation was found in six Ewing-like tumors (3%) with CD99 positivity. The BCOR-CCNB3 gene fusion was observed in 5 tumors (2.5%) displaying round or spindle cells with strong CCNB3 IHC expression in 3 tumors. Moreover, RT-PCR failed to detect any gene fusion transcripts in 19 tumors (9.5%) and were considered "undifferentiated small round cell sarcoma" (SRCS). Molecular biology results were non-informative in 33 SRCTs (16.5%) due to RNA degradation through inadequate fixation and/or decalcification.
CONCLUSION: Our analysis of 200 SRCTs confirms the molecular heterogeneity of neoplasms with ESFT morphology and highlight that molecular studies with RT-PCR including new emerging gene fusion transcripts are mandatory for the diagnosis when EWSR1 FISH is negative or non-informative. The incidence of CIC-DUX4, BCOR-CCNB3 and CIC-FOX04 transcripts was relatively low. A small group of Ewing-like sarcomas or undifferentiated SRCS remains unclassified. Adopting appropriate tissue fixation and processing protocols is important to avoid degradation of fixed/embedded tissue when no frozen tumor is available.

Chebib I, Jo VY
Round cell sarcoma with CIC-DUX4 gene fusion: Discussion of the distinctive cytomorphologic, immunohistochemical, and molecular features in the differential diagnosis of round cell tumors.
Cancer Cytopathol. 2016; 124(5):350-61 [PubMed] Related Publications
BACKGROUND: Undifferentiated round cell sarcomas are a heterogeneous group, and include tumors that resemble the Ewing sarcoma family. Although a subset defined by recurrent CIC-DUX4 gene fusion has been recently characterized, data regarding the cytomorphologic features are currently limited. Two recent fine-needle aspiration (FNA) cases prompted review of the spectrum of round cell tumors in the differential diagnosis to determine distinctive diagnostic features.
METHODS: Two genetically confirmed FNA cases were identified. Cytomorphologic features were evaluated on FNA smears and hematoxylin and eosin-stained cell block and concurrent needle biopsy sections, and immunohistochemical studies performed on cell block and biopsy sections were reviewed.
RESULTS: The 2 patients were a 24-year-old man with a posterior mediastinal mass and a 69-year-old woman with a gluteal mass. FNA smears were cellular with tumor cells present in large groups and singly dispersed. Tumor cells had large, round-to-ovoid, hyperchromatic nuclei with irregular membranes, frequent large nucleoli, and a moderate amount of vacuolated cytoplasm. Both cases demonstrated necrosis, and one case had prominent myxoid stroma. Immunohistochemistry demonstrated focal-to-multifocal CD99 positivity and diffuse nuclear staining for WT1; staining for cytokeratin, desmin, S-100, CD34, CD45, and TdT were negative. Fluorescence in situ hybridization demonstrated CIC-DUX4 fusion in both cases.
CONCLUSIONS: CIC-DUX4 round cell sarcoma differs from Ewing sarcoma in that it has more atypical cytologic features and lacks the diffuse membranous CD99 staining pattern characteristic of Ewing sarcoma. The differential diagnosis is broad, and requires the judicious use of ancillary studies. Focal-to-multifocal CD99 immunoreactivity and diffuse nuclear WT1 positivity is characteristic of CIC-DUX4 sarcoma, and should prompt molecular testing. Cancer Cytopathol 2016;124:350-61. © 2016 American Cancer Society.

Specht K, Zhang L, Sung YS, et al.
Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas.
Am J Surg Pathol. 2016; 40(4):433-42 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose because of overlapping morphologic, immunohistochemical, and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4-related fusions, whereas another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44-year-old man, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by reverse transcription polymerase chain reaction and fluorescence in situ hybridization techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC, and BCOR-CCNB3 abnormalities for BCOR break-apart probes by fluorescence in situ hybridization to detect potential recurrent BCOR gene rearrangements outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, whereas no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3-positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared with classic Ewing's sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SBRCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion-positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs, which presented in young adults, with a variable anatomic distribution. Furthermore, BCOR-rearranged tumors often displayed spindle cell areas, either well defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly differentiated synovial sarcoma.

Tardío JC, Machado I, Navarro L, et al.
Ewing-like sarcoma with CIC-DUX4 gene fusion in a patient with neurofibromatosis type 1. A hitherto unreported association.
Pathol Res Pract. 2015; 211(11):877-82 [PubMed] Related Publications
Sarcoma with CIC-DUX4 gene fusion is emerging as the most prevalent subset of Ewing-like undifferentiated small round cell sarcomas with around 50 cases published. We report hereby the case of a 40-year-old male who presented a CIC-DUX4 sarcoma in deep soft tissues in his thigh. He had been diagnosed with neurofibromatosis type 1 at age 19 and over the years underwent resection of multiple neural neoplasms, including two malignant peripheral nerve sheath tumors with classical spindle-cell histopathology. The CIC-DUX4 sarcoma was treated with surgical resection, radiation and chemotherapy, but lung and brain metastases developed and the patient died from the disease 14 months after diagnosis. This is the first case of sarcoma with CIC-DUX4 gene fusion reported in a patient with NF1. Whether this association is coincidental or CIC-DUX4 sarcomas could be related to NF1 remains to be clarified. Study of alternative molecular alterations in EWSR1-negative undifferentiated small round cell sarcomas is clinically relevant, since CIC-DUX4 sarcomas seem to be a very aggressive subset with poor response to the presently used therapeutic regimens.

Karanian-Philippe M, Velasco V, Longy M, et al.
SMARCA4 (BRG1) loss of expression is a useful marker for the diagnosis of ovarian small cell carcinoma of the hypercalcemic type (ovarian rhabdoid tumor): a comprehensive analysis of 116 rare gynecologic tumors, 9 soft tissue tumors, and 9 melanomas.
Am J Surg Pathol. 2015; 39(9):1197-205 [PubMed] Related Publications
Ovarian small cell carcinoma of the hypercalcemic type (SCCOHT)/ovarian rhabdoid tumor is a rare and highly malignant tumor that typically occurs in young women. Up until now the diagnosis has been made on the basis of morphology without any specific immunohistochemical (IHC) markers. However, several authors have shown recently that SCCOHTs are characterized by inactivation of the SMARCA4 gene (encoding the BRG1 protein) resulting in a loss of BRG1 protein expression in IHC. We evaluated BRG1 and INI1 expression in 12 SCCOHTs and in a series of 122 tumors that could mimic SCCOHT morphologically: 9 juvenile granulosa cell tumors, 47 adult granulosa cell tumors, 33 high-grade ovarian serous carcinomas, 9 desmoplastic round cell tumors, 13 Ewing sarcomas (5 from the pelvis and 8 from soft tissues), 1 round cell sarcoma associated with CIC-DUX4 translocation from soft tissue (thigh), 1 case of high-grade endometrial stromal sarcoma of the ovary, and 9 melanomas. Forty-four adult granulosa cell tumors were interpretable by IHC. All 12 SCCOHTs were devoid of BRG1 expression and expressed INI1. All other interpretable 119 tumors showed BRG1 nuclear positivity, with variable staining proportions, ranging from 10% to 100% of positive cells (mean: 77%, median: 80%), variable intensities (weak: 5%, moderate: 37%, strong: 58%), and distributions: diffuse in 82 cases (70%) and heterogenous in 36 cases (30%). BRG1 positivity was heterogenous in desmoplastic round cell tumors and adult granulosa cell tumors. Overall, BRG1 is a useful diagnostic marker in SCCOHT, showing the absence of expression in SCCOHT. Nevertheless, the possible heterogeneity and the variable intensity of this staining warrant caution in the interpretation of BRG1 staining in biopsy specimens.

Righi A, Gambarotti M, Longo S, et al.
Small cell osteosarcoma: clinicopathologic, immunohistochemical, and molecular analysis of 36 cases.
Am J Surg Pathol. 2015; 39(5):691-9 [PubMed] Related Publications
Small round cell osteosarcoma is a very rare type of osteosarcoma, histologically mimicking other small round cell malignancies of bone, most notably Ewing sarcoma. To distinguish small cell osteosarcoma from other primary small cell malignancies of bone, we evaluated the immunohistochemical (IHC) expression of CD99 and SATB2, a marker of osteoblastic differentiation. Second, we analyzed EWSR1 and FUS gene aberrations using fluorescence in situ hybridization and/or reverse transcription-polymerase chain reaction (RT-PCR) techniques to assess whether small cell osteosarcoma and Ewing sarcoma share the same genetic alteration analysis. Thirty-six cases of primitive small cell osteosarcoma of bone were included in this study. All the cases of small cell osteosarcoma showed strong nuclear expression of SATB2 associated with negativity for CD99 antibody or weak, cytoplasmic staining in few neoplastic cells. Reverse transcription-polymerase chain reaction was negative for EWS-FLI1 type 1-2, EWS-ERG type 1, and CIC-DUX4 in the 10 available cases of small cell osteosarcoma analyzed. Fluorescence in situ hybridization analysis was feasible with a readable signal in 13 cases of small cell osteosarcoma, and none of these cases showed any EWSR1 and FUS gene rearrangements. In conclusion, it appears extremely useful to combine IHC analysis of SATB2 and CD99 with molecular analysis of Ewing sarcoma-associated genetic aberrations, to differentiate small cell osteosarcoma from other small round cell malignancies of bone. The strong IHC expression of SATB2 associated with CD99 immunonegativity and the absence of EWSR1 and FUS gene rearrangements in small cell osteosarcoma argues against the existence of a morphologic/genetic continuum with Ewing sarcoma.

Haidar A, Arekapudi S, DeMattia F, et al.
High-grade undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: emerging entities of soft tissue tumors with unique histopathologic features--a case report and literature review.
Am J Case Rep. 2015; 16:87-94 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: A subset of undifferentiated small round cell sarcomas (USRCSs) is currently being recognized as emerging entities with unique gene fusions: CIC-DUX4 (the area of focus in this article), BCOR-CCNB3, or CIC-FOXO4 gene fusions. CIC-DUX4 and CIC-FOXO4 fusions have been reported in soft tissue tumors, while BCOR-CCNB3 fusion with an X chromosomal inversion was described in both bone and soft tissue tumors. CIC-DUX4 fusion can either harbor t(4;19)(q35;q13.1) or t(10;19)(q26.3;q13), while t(4;19)(q35;q13.1) is reported more commonly.
CASE REPORT: The aim of this study is to share a new case report of a 36-year-old woman who had a rapidly growing mass in her right upper thigh, which was found to be an undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion was confirmed by cytogenetic testing. Combined modality treatment with surgery, radiation, and chemotherapy was used and achieved a good response. A review of the literature of the reported cases with CIC-DUX4 fusions including both t(4;19) and t(10;19) translocations revealed a total of 44 cases reported. Out of these 44 cases, 33 showed t(4;19)(q35;q13.1) translocation compared to 11 cases with t(10;19)(q26.3;q13).
CONCLUSIONS: Undifferentiated small round cell sarcomas are aggressive tumors. Their treatment includes surgery, chemotherapy, and radiation. Resistance to chemotherapy is common. Lung and brain are common sites of metastasis, with associated poor prognosis. Generally, median survival is less than 2 years. Newer techniques have been developed recently which helped identify a subset of previously unclassifiable sarcomas, with promising prognostic value.

Sugita S, Arai Y, Tonooka A, et al.
A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma.
Am J Surg Pathol. 2014; 38(11):1571-6 [PubMed] Related Publications
Differential diagnosis of small round cell sarcomas (SRCSs) grouped under the Ewing sarcoma family of tumors (ESFT) can be a challenging situation for pathologists. Recent studies have revealed that some groups of Ewing-like sarcoma show typical ESFT morphology but lack any EWSR1-ETS gene fusions. Here we identified a novel gene fusion, CIC-FOXO4, in a case of Ewing-like sarcoma with a t(X;19)(q13;q13.3) translocation. The patient was a 63-year-old man who had an asymptomatic, 30-mm, well-demarcated, intramuscular mass in his right posterior neck, and imaging findings suggested a diagnosis of high-grade sarcoma. He was treated with complete resection and subsequent radiotherapy and chemotherapy. He was alive without local recurrence or distant metastasis 6 months after the operation. Histologic examination revealed SRCS with abundant desmoplastic fibrous stroma suggesting a desmoplastic small round cell tumor. Immunohistochemical analysis showed weak to moderate and partial staining for MIC2 (CD99) and WT1, respectively. High-throughput transcriptome sequencing revealed a gene fusion, and the genomic rearrangement between the CIC and FOXO4 genes was identified by fluorescence in situ hybridization. Aside from the desmoplastic stroma, the CIC-FOXO4 fusion sarcoma showed morphologic and immunohistochemical similarity to ESFT and Ewing-like sarcomas, including the recently described CIC-DUX4 fusion sarcoma. Although clinicopathologic analysis with additional cases is necessary, we conclude that CIC-FOXO4 fusion sarcoma is a new type of Ewing-like sarcoma that has a specific genetic signature. These findings have important implications for the differential diagnosis of SRCS.

Panagopoulos I, Gorunova L, Bjerkehagen B, Heim S
The "grep" command but not FusionMap, FusionFinder or ChimeraScan captures the CIC-DUX4 fusion gene from whole transcriptome sequencing data on a small round cell tumor with t(4;19)(q35;q13).
PLoS One. 2014; 9(6):e99439 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the "grep" command-line utility. The "grep" command searches the text for specific expressions and displays, by default, the lines where matches occur. The "specific expression" was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with "grep". In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The "grep" command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene.

Smith SC, Buehler D, Choi EY, et al.
CIC-DUX sarcomas demonstrate frequent MYC amplification and ETS-family transcription factor expression.
Mod Pathol. 2015; 28(1):57-68 [PubMed] Related Publications
Recent molecular advances have identified a novel, clinically aggressive subgroup of undifferentiated round cell sarcomas defined molecularly by oncogenic fusion of the gene, CIC, and either DUX4 or its paralog, DUX4L, herein termed CIC-DUX sarcomas. Morphologically, CIC-DUX sarcomas are round cell sarcomas with high-grade nuclear features, including vesicular chromatin and nucleoli, patchy clear cell foci, myxoid change, and necrosis. Here, we studied a cohort of 10 cases, including 6 newly identified cases, 2 with paired metastases. Given our prior observation of trisomy 8 in these tumors, we assayed for amplification and expression of MYC (c-Myc) and representative downstream targets. Trisomy 8 was detected in 5/7 testable cases, with further amplification of MYC locus in 6/7 testable cases and immunohistochemical expression of MYC in 10/10. The canonical MYC transcriptional target, p21, but not MTDH, was differentially expressed compared with Ewing sarcomas. Given prior observation of induction of ETS-family transcription factors by the fusion oncoprotein, we assayed and identified highly prevalent positivity for ERG (9/10) and FLI1 (8/8). These findings are cautionary regarding use of these immunostains in prospective case workup, whereas the prevalent MYC amplification may represent a therapeutically targetable oncogenic pathway in CIC-DUX sarcomas.

Specht K, Sung YS, Zhang L, et al.
Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities.
Genes Chromosomes Cancer. 2014; 53(7):622-33 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Round cell sarcomas harboring CIC-DUX4 fusions have recently been described as highly aggressive soft tissue tumors of children and young adults. Due to partial morphologic and immunohistochemical overlap with Ewing sarcoma (ES), CIC-DUX4-positive tumors have generally been classified as ES-like and managed similarly; however, a systematic comparison at the molecular and immunohistochemical levels between these two groups has not yet been conducted. Based on an initial observation that CIC-DUX4-positive tumors show nuclear immunoreactivity for WT1 and ETS transcription factors, FLI1 and ERG, we performed a detailed immunohistochemical and molecular analysis including these markers, to further investigate the relationship between CIC-DUX4 tumors and ES. The study group included 21 CIC-DUX4-positive sarcomas and 20 EWSR1-rearranged ES. Immunohistochemically, CIC-DUX4 sarcomas showed membranous CD99 positivity in 18 (86%) cases, but only 5 (24%) with a diffuse pattern, while WT1 and FLI1 were strongly positive in all cases. ERG was positive in 18% of cases. All ES expressed CD99 and FLI1, while ERG positivity was only seen in EWSR1-ERG fusion positive ES. WT1 was negative in all ES. Expression profiling validated by q-PCR revealed a distinct gene signature associated with CIC-DUX4 fusion, with upregulation of ETS transcription factors (ETV4, ETV1, and ETV5) and WT1, among top overexpressed genes compared to ES, other sarcomas and normal tissue. In conclusion, the distinct gene signature and immunoprofile of CIC-DUX4 sarcomas suggest a distinct pathogenesis from ES. The consistent WT1 expression may provide a useful clue in the diagnosis in the context of round cell sarcomas negative for EWSR1 rearrangement. © 2014 Wiley Periodicals, Inc.

Antonescu C
Round cell sarcomas beyond Ewing: emerging entities.
Histopathology. 2014; 64(1):26-37 [PubMed] Related Publications
Primitive small blue round cell tumours (SBRCT) of childhood and young adults have been problematic to diagnose and classify. Diagnosis is also complicated in cases with atypical morphology, aberrant immunoprofiles and unusual clinical presentations. Even with the increased use of ancillary techniques in archival material, such as immunohistochemistry and molecular/genetic methods, a proportion of these tumours cannot be subclassified into specific histological types. A subset of tumours resembling microscopically the Ewing sarcoma family of tumours (EFT), being composed of primitive small round cells and occurring in paediatric or young adult age groups, remain unclassified, being negative for EWSR1, SS18(SYT), DDIT3(CHOP) and FOXO1(FKHR) gene rearrangements by FISH/RT-PCR. A small number of cases sharing the undifferentiated EFT appearance have been characterized recently carrying BCOR-CCNB3 or CIC-DUX4 fusions. However, based on the somewhat limited number of cases, it remains unclear if these newly defined genetic entities belong to any of the pre-existing clinicopathological disorders or represent altogether novel conditions. This review presents the latest molecular findings related to these SBRCTs, beyond the common EWSR1-ETS fusions. Specific attention has been paid to morphological features not associated typically with classic EFT, and the value of ancillary tests that can be applied when dealing with EWSR1-negative SBRCTs is discussed.

Machado I, Cruz J, Lavernia J, et al.
Superficial EWSR1-negative undifferentiated small round cell sarcoma with CIC/DUX4 gene fusion: a new variant of Ewing-like tumors with locoregional lymph node metastasis.
Virchows Arch. 2013; 463(6):837-42 [PubMed] Related Publications
The present study describes a new case of EWSR1-negative undifferentiated sarcoma with CIC/DUX4 gene fusion. This case is similar to tumors described as primitive undifferentiated round cell sarcomas that occur mainly in the trunk and display an aggressive behavior. To our knowledge, this is the first report of such a tumor presenting locoregional lymph node metastasis. In view of previous studies that prove the existence of a particular variant of undifferentiated sarcoma with Ewing-like morphology and CIC/DUX-4 gene fusion, a search for this gene fusion in all undifferentiated round cell sarcomas should be considered if a conclusive diagnosis cannot be reached following other conventional studies. Although additional cases with more extensive follow-up studies are needed, we believe that EWSR1-negative undifferentiated small round cell sarcoma with CIC/DUX4 gene fusion should be added to the list of new sarcoma variants with the possibility of lymph node metastasis.

Choi EY, Thomas DG, McHugh JB, et al.
Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology.
Am J Surg Pathol. 2013; 37(9):1379-86 [PubMed] Related Publications
A subset of small round cell sarcomas remains difficult to classify. Among these, a rare tumor harboring a t(4;19)(q35;q13.1) with CIC-DUX4 fusion has been described. The aim of this study is to better understand its clinicopathologic features. Four cases of CIC-DUX4 sarcoma, all arising in adults (3 women, 1 man, aged 20 to 43 y), were identified using conventional cytogenetic, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) methods. All 4 tumors demonstrated CIC-DUX4 fusion transcript by both RT-PCR and FISH and CIC rearrangement by FISH. Cytogenetic results from 2 tumors showed t(4;19)(q35;q13.1) occurring as part of a simple karyotype in 1 tumor and as part of a complex karyotype in the other, the latter from a postchemotherapy specimen. Both tumors harbored trisomy 8 and lacked any other known sarcoma-associated translocation. No EWS or SYT rearrangements were detected by RT-PCR or FISH. The tumors had small round cell morphology with a distinctive constellation of histologic features including extensive geographic necrosis, mild nuclear pleomorphism with coarse chromatin and prominent nucleoli, clear cell areas, and focal myxoid matrix. Only focal staining for CD99 was present in each tumor. Two had very focal cytokeratin staining. All tumors were negative for desmin, myogenin, TLE-1, and S100 protein, whereas nuclear INI-1 staining was retained. The tumors were highly aggressive, and all patients died of disseminated disease within 16.8 months. CIC-DUX4 sarcoma represents a novel translocation-associated sarcoma with distinctive histopathologic features and rapid disease progression.

Sharma V, Harafuji N, Belayew A, Chen YW
DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells.
PLoS One. 2013; 8(5):e64691 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Facioscapulohumeral muscular dystrophy (FSHD) is linked to the deletion of the D4Z4 arrays at chromosome 4q35. Recent studies suggested that aberrant expression of double homeobox 4 (DUX4) from the last D4Z4 repeat causes FSHD. The aim of this study is to determine transcriptomic responses to ectopically expressed DUX4 in human and mouse cells of muscle lineage. We expression profiled human rhabdomyosarcoma (RD) cells and mouse C2C12 cells transfected with expression vectors of DUX4 using the Affymetrix Human Genome U133 Plus 2.0 Arrays and Mouse Genome 430 2.0 Arrays, respectively. A total of 2267 and 150 transcripts were identified to be differentially expressed in the RD and C2C12 cells, respectively. Amongst the transcripts differentially expressed in the RD cells, MYOD and MYOG (2 fold, p<0.05), and six MYOD downstream targets were up-regulated in RD but not C2C12 cells. Furthermore, 13 transcripts involved in germline function were dramatically induced only in the RD cells expressing DUX4. The top 3 IPA canonical pathways affected by DUX4 were different between the RD (inflammation, BMP signaling and NRF-2 mediated oxidative stress) and the C2C12 cells (p53 signaling, cell cycle regulation and cellular energy metabolism). Amongst the 40 transcripts shared by the RD and C2C12 cells, UTS2 was significantly induced by 76 fold and 224 fold in the RD and C2C12 cells, respectively. The differential expression of MYOD, MYOG and UTS2 were validated using real-time quantitative RT-PCR. We further validated the differentially expressed genes in immortalized FSHD myoblasts and showed up-regulation of MYOD, MYOG, ZSCAN4 and UTS2. The results suggest that DUX4 regulates overlapped and distinct groups of genes and pathways in human and mouse cells as evident by the selective up-regulation of genes involved in myogenesis and gametogenesis in human RD and immortalized cells as well as the different molecular pathways identified in the cells.

Jo VY, Antonescu CR, Zhang L, et al.
Cutaneous syncytial myoepithelioma: clinicopathologic characterization in a series of 38 cases.
Am J Surg Pathol. 2013; 37(5):710-8 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Cutaneous myoepithelial tumors demonstrate heterogenous morphologic and immunophenotypic features. We previously described, in brief, 7 cases of cutaneous myoepithelioma showing solid syncytial growth of ovoid, spindled, or histiocytoid cells. We now present the clinicopathologic features in a series of 38 cases of this distinctive syncytial variant, which were diagnosed between 1997 and 2012 (mostly seen in consultation). There were 27 men and 11 women, with a median age of 39 years (range, 2 mo to 74 y). Primary anatomic sites were the upper extremity (11, including 2 on the hand), upper limb girdle (3), lower extremity (14; 3 on the foot), back (6), face (2), chest (1), and buttock (1); the typical presentation was as either a polypoid or papular lesion. Tumors were well circumscribed and centered in the dermis and ranged in size from 0.3 to 2.7 cm (median 0.8 cm). Microscopically all tumors showed a solid sheet-like growth of uniformly sized ovoid to spindled or histiocytoid cells with palely eosinophilic syncytial cytoplasm. Nuclei were vesicular with fine chromatin and small or inconspicuous nucleoli and exhibited minimal to no atypia. Mitoses ranged from 0 to 4 per 10 HPF; 28 tumors showed no mitoses. Necrosis and lymphovascular invasion were consistently absent. Adipocytic metaplasia, appearing as superficial fat entrapped within the tumor, was seen in 12 cases. Chondro-osseous differentiation was seen in 1 tumor. All tumors examined were diffusely positive for EMA, and the majority showed diffuse staining for S-100 protein (5 showing focal staining). Keratin staining was focal in 1 of 33 tumors and seen in rare cells in 3 other cases. There was also positivity for GFAP (14/33), SMA (9/13), and p63 (6/11). Most lesions were treated by local excision. The majority of tumors tested (14/17; 82%) were positive by fluorescence in situ hybridization for EWSR1 gene rearrangement; testing for potential fusion partners (PBX1, ZNF444, POU5F1, DUX4, ATF1, CREB1, NR4A3, DDIT3, and NFATc2) was negative in all EWSR1-rearranged tumors. No FUS gene rearrangement was detected in 2 tumors lacking EWSR1 rearrangement. Follow-up information is available for 21 patients (mean follow-up 15 mo). One patient with a positive deep margin developed a local recurrence 51 months after initial biopsy. All other patients with available follow-up information, including 11 who had positive deep margins, are alive with no evidence of disease and no reported metastases. In summary, cutaneous syncytial myoepithelioma is a morphologically distinct variant that more frequently affects men, occurs over a wide age range, and usually presents on the extremities. Tumors are positive for S-100 protein and EMA, and, unlike most myoepithelial neoplasms, keratin staining is infrequent. EWSR1 gene rearrangement is present in nearly all tumors tested and likely involves a novel fusion partner. Prior reports describe some risk of recurrence and metastasis for cutaneous myoepithelial tumors; however, the syncytial variant appears to behave in a benign manner and only rarely recurs locally.

Italiano A, Sung YS, Zhang L, et al.
High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas.
Genes Chromosomes Cancer. 2012; 51(3):207-18 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Primitive round cell sarcomas of childhood and young adults have been problematic to diagnose and classify. Our goal was to investigate the pathologic and molecular characteristics of small blue round cell tumors (SBRCT) that remained unclassified after exhaustive immunohistochemistry and molecular screening to exclude known sarcoma-related translocations. As rare examples of EWSR1-negative SBRCT have been shown to carry rearrangements for FUS and CIC genes, we undertook a systematic screening for these two genes. CIC rearrangements by FISH were detected in 15/22 (68%), while none showed FUS abnormalities. RACE, RT-PCR, and/or long-range DNA PCR performed in two cases with frozen material showed that CIC was fused to copies of the DUX4 gene on either 4q35 or 10q26.3. Subsequent FISH analysis confirmed fused signals of CIC with either 4q35 or 10q26.3 region in six cases each. Tumors positive for CIC-DUX4 fusion occurred mainly in male young adult patients (median age: 29 years), with the extremities being the most frequent location. Microscopically, tumors displayed a primitive, round to oval cell morphology with prominent nucleoli, high mitotic count, and areas of necrosis. O13 expression was variable, being either diffuse or patchy and tumors mostly lacked other markers of differentiation. Although CIC-DUX4 resulting in a t(4;19) translocation has been previously described in primitive sarcomas, this is the first report implicating the related DUX4 on 10q26 in oncogenesis. These results suggest the possibility of a newly defined subgroup of primitive round cell sarcomas characterized by CIC rearrangements, distinct from Ewing sarcoma family of tumors.

Sirvent N, Trassard M, Ebran N, et al.
Fusion of EWSR1 with the DUX4 facioscapulohumeral muscular dystrophy region resulting from t(4;22)(q35;q12) in a case of embryonal rhabdomyosarcoma.
Cancer Genet Cytogenet. 2009; 195(1):12-8 [PubMed] Related Publications
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and rarely occurs in adults. There are six main subtypes, each histologically, clinically, and cytogenetically distinct. Embryonal RMS is characterized by chromosomal gains, usually not associated with any consistent structural anomaly. We describe here a case of embryonal RMS in a 19-year-old female patient. The conventional cytogenetic analysis showed a t(4;22)(q35;q12) translocation as the sole cytogenetic change. Complementary fluorescence in situ hybridization analysis showed that the translocation breakpoints were located in the EWSR1 gene at 22q12 and the region of the DUX4 and FSHMD1A at 4q35. This constitutes a novel example of the high frequency of EWSR1 rearrangements in various types of sarcomas as well as of its ability to fuse with a large variety of partner genes. Because DUX4 is involved in myogenic differentiation and cell-cycle control, the striated muscle differentiation observed in the present case might be a direct consequence of the alteration of the DUX4 region generated by the t(4;22). The involvement of the DUX4 region might represent the genetic hallmark of a novel subclass of small round cell tumors.

Yoshimoto M, Graham C, Chilton-MacNeill S, et al.
Detailed cytogenetic and array analysis of pediatric primitive sarcomas reveals a recurrent CIC-DUX4 fusion gene event.
Cancer Genet Cytogenet. 2009; 195(1):1-11 [PubMed] Related Publications
Pediatric undifferentiated soft tissue sarcomas (USTS) are a diagnostically challenging group of neoplasms. Recently, a subcategory of USTS with primitive round cell morphology and a t(4;19)(q35;q13) rearrangement has been defined. The present study applied high-throughput array comparative genomic hybridization together with spectral karyotyping, four-color fluorescence in situ hybridization (FISH), and reverse transcriptase-polymerase chain reaction (RT-PCR) to a series of three pediatric USTS. Two of these had primitive round cell morphology with CD99 positivity; the third had a spindled and myxoid appearance. By genomic analyses, both primitive round cell sarcomas had t(4;19)(q35;q13) [corrected] rearrangements in addition to several imbalances throughout the genome. Four-color FISH and in silico analyses of the breakpoint region at 19q13 identified the potential involvement of the candidate oncogene CIC. By RT-PCR, fusion transcripts involving CIC (19q13) and DUX4 (4q35) were confirmed to be present in both primitive round cell sarcomas, further defining the breakpoints seen by genomic analysis. Described here are two tumors belonging to the rare category of CIC-DUX4-positive primitive sarcomas, with detailed cytogenetic and genomic information regarding this novel subclass of pediatric malignancy. Molecular and cytogenetic techniques for the detection of the CIC-DUX4 fusion gene are described, to aid in recognition and diagnosis.

Kowaljow V, Marcowycz A, Ansseau E, et al.
The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein.
Neuromuscul Disord. 2007; 17(8):611-23 [PubMed] Related Publications
Facioscapulohumeral muscular dystrophy (FSHD) patients carry contractions of the D4Z4-tandem repeat array on chromosome 4q35. Decrease in D4Z4 copy number is thought to alter a chromatin structure and activate expression of neighboring genes. D4Z4 contains a putative double-homeobox gene called DUX4. We identified DUX4 mRNAs in cells transfected with genomic fragments containing the DUX4 gene. Using RT-PCR we also recognized expressed DUX4 mRNAs in primary FSHD myoblasts. Polyclonal antibodies raised against specific DUX4 peptides detected the DUX4 protein in cells transfected with D4Z4 elements. DUX4 localizes in the nucleus of cells transfected with CMV-DUX4 expression vectors. A DUX4-related protein is endogenously expressed in nuclei of adult and fetal human rhabdomyosarcoma cell lines. Overexpression of DUX4 induces cell death, induces caspase 3/7 activity and alters emerin distribution at the nuclear envelope. We propose that DUX4-mediated cell death contributes to the pathogenic pathway in FSHD.

Kawamura-Saito M, Yamazaki Y, Kaneko K, et al.
Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation.
Hum Mol Genet. 2006; 15(13):2125-37 [PubMed] Related Publications
Ewing's family tumors (EFTs) are highly malignant tumors arising from bone and soft tissues that exhibit EWS-FLI1 or variant EWS-ETS gene fusions in more than 85% of the cases. Here we show that CIC, a human homolog of Drosophila capicua which encodes a high mobility group box transcription factor, is fused to a double homeodomain gene DUX4 as a result of a recurrent chromosomal translocation t(4;19)(q35;q13). This translocation was seen in two cases of soft tissue sarcoma diagnosed as Ewing-like sarcoma. CIC-DUX4 exhibits a transforming potential for NIH 3T3 fibroblasts, and as a consequence of fusion with a C-terminal fragment of DUX4, CIC acquires an enhanced transcriptional activity, suggesting that expression of its downstream targets might be deregulated. Gene expression analysis identified the ETS family genes, ERM/ETV5 and ETV1, as potential targets for the gene product of CIC-DUX4. Indeed, CIC-DUX4 directly binds the ERM promoter by recognizing a novel target sequence and significantly up-regulates its expression. This study clarifies the function of CIC and its role in tumorigenesis, as well as the importance of the PEA3 subclass of ETS family proteins in the development of EFTs arising through mechanisms different from those involving EWS-ETS chimeras. Moreover, the study identifies the role of DUX4 that is closely linked to facioscapulohumeral muscular dystrophy in transcriptional regulation.

Xian ZH, Cong WM, Zhang SH, Wu MC
Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment.
World J Gastroenterol. 2005; 11(26):4102-7 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments.
METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data.
RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene.
CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcinogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DUX4, Cancer Genetics Web: http://www.cancer-genetics.org/DUX4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999