Gene Summary

Gene:GAST; gastrin
Aliases: GAS
Summary:Gastrin is a hormone whose main function is to stimulate secretion of hydrochloric acid by the gastric mucosa, which results in gastrin formation inhibition. This hormone also acts as a mitogenic factor for gastrointestinal epithelial cells. Gastrin has two biologically active peptide forms, G34 and G17. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • ets-Domain Protein Elk-4
  • BRAF
  • Immunohistochemistry
  • Acute Lymphocytic Leukaemia
  • Gene Expression
  • Sweden
  • siRNA
  • Molecular Sequence Data
  • Signal Transduction
  • Pedigree
  • Follow-Up Studies
  • Genotype
  • Melanoma
  • Genetic Predisposition
  • Base Sequence
  • Promoter Regions
  • Odds Ratio
  • Cell Line
  • Ovarian Cancer
  • Cancer DNA
  • Case-Control Studies
  • Alleles
  • Mutation
  • Cell Proliferation
  • Cell Movement
  • Germany
  • DNA-Binding Proteins
  • Childhood Cancer
  • Gastrins
  • Protein Structure, Tertiary
  • DNA Sequence Analysis
  • Chromosome 17
  • Haplotypes
  • Adolescents
  • Cancer Gene Expression Regulation
  • Skin Cancer
  • Single Nucleotide Polymorphism
  • Loss of Heterozygosity
  • Zinc
  • Neural Cell Adhesion Molecule L1
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GAST (cancer-related)

Carlson JA, Caldeira Xavier JC, Tarasen A, et al.
Next-Generation Sequencing Reveals Pathway Activations and New Routes to Targeted Therapies in Cutaneous Metastatic Melanoma.
Am J Dermatopathol. 2017; 39(1):1-13 [PubMed] Related Publications
BACKGROUND: Comprehensive genomic profiling of clinical samples by next-generation sequencing (NGS) can identify one or more therapy targets for the treatment of metastatic melanoma (MM) with a single diagnostic test.
METHODS: NGS was performed on hybridization-captured, adaptor ligation-based libraries using DNA extracted from 4 formalin-fixed paraffin-embedded sections cut at 10 microns from 30 MM cases. The exons of 182 cancer-related genes were fully sequenced using the Illumina HiSeq 2000 at an average sequencing depth of 1098X and evaluated for genomic alterations (GAs) including point mutations, insertions, deletions, copy number alterations, and select gene fusions/rearrangements. Clinically relevant GAs (CRGAs) were defined as those identifying commercially available targeted therapeutics or therapies in registered clinical trials.
RESULTS: The 30 American Joint Committee on Cancer Stage IV MM included 17 (57%) male and 13 (43%) female patients with a mean age of 59.5 years (range 41-83 years). All MM samples had at least 1 GA, and an average of 2.7 GA/sample (range 1-7) was identified. The mean number of GA did not differ based on age or sex; however, on average, significantly more GAs were identified in amelanotic and poorly differentiated MM. GAs were most commonly identified in BRAF (12 cases, 40%), CDKN2A (6 cases, 20%), NF1 (8 cases, 26.7%), and NRAS (6 cases, 20%). CRGAs were identified in all patients, and represented 77% of the GA (64/83) detected. The median and mean CRGAs per tumor were 2 and 2.1, respectively (range 1-7).
CONCLUSION: Comprehensive genomic profiling of MM, using a single diagnostic test, uncovers an unexpectedly high number of CRGA that would not be identified by standard of care testing. Moreover, NGS has the potential to influence therapy selection and can direct patients to enter relevant clinical trials evaluating promising targeted therapies.

Xu L, Cao Y
Native musk and synthetic musk ketone strongly induced the growth repression and the apoptosis of cancer cells.
BMC Complement Altern Med. 2016; 16(1):511 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Musk is widely used in clinical practice for its anti-cancer properties. Here, we treated various types of cancer using musk to determine which cancers are sensitive to musk treatment. We also compared effects of native musk and synthetic musk ketone in cancer cells. Furthermore, we investigated mechanisms underlying effects of musk.
METHODS: Twenty two cancer cell lines were treated with musk. Cell proliferation and apoptosis analyses were carried out. Native musk and synthetic musk ketone were analyzed by gas chromatograph-mass spectrometer (GC-MS) assay. Differentially expressed genes were determined by microarray and quantitative real-time polymerase chain reaction.
RESULTS: Native musk strongly induced the growth repression and the apoptosis in the majority of cancer cell lines in a dose-dependent manner, but distinct types of cancer showed significantly different reactions. Cancer cells which originated from epithelial cells showed higher sensitivity for musk treatment. By contrast, leukaemia and lymphoma cells were not sensitive. GC-MS analysis demonstrated that native musk contains more than 30 contents in which musk ketone is a major component; synthetic musk ketone was consistent with natural musk ketone, and the used sample of synthetic musk ketone contained only sole component. Similar to native musk, synthetic musk ketone induced the growth repression and the apoptosis of cancer cells. Additionally, numerous genes were differentially expressed in lung cancer cells after native musk treatment. These differentially expressed genes were involved in many signalling pathways. Among these pathways, apoptosis-related pathways included interleukin family, tumor necrosis factor family, and MAPK signalling pathway. Native musk and synthetic musk ketone can up-regulate IL-24 (interleukin family) and DDIT3 (MAPK signalling pathway) in lung cancer cells.
CONCLUSIONS: This research provided strong evidence that native musk and synthetic musk ketone can induce the growth repression and the apoptosis of cancer cells. However, the selection of sensitive cancer patient for individualized treatment is a key step in clinical application. Synthetic musk ketone can substitute for native musk to treat cancer patients. Musk might induce the growth repression and the apoptosis of lung cancer cells through up-regulating IL-24 and DDIT3 expressions.

Ruwan Kumara MH, Piao MJ, Kang KA, et al.
Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells.
Oncol Rep. 2016; 36(4):2268-74 [PubMed] Related Publications
Colorectal cancer is a common type of tumor among both men and women worldwide. Conventional remedies such as chemotherapies pose the risk of side‑effects, and in many cases cancer cells develop chemoresistance to these treatments. Non‑thermal gas plasma (NTGP) was recently identified as a potential tool for cancer treatment. In this study, we investigated the potential use of NTGP to control SNUC5 human colon carcinoma cells. We hypothesized that NTGP would generate reactive oxygen species (ROS) in these cells, resulting in induction of endoplasmic reticulum (ER) stress. ROS generation, expression of ER stress‑related proteins and mitochondrial calcium levels were analyzed. Our results confirmed that plasma‑generated ROS induce apoptosis in SNUC5 cells. Furthermore, we found that plasma exposure resulted in mitochondrial calcium accumulation and expression of unfolded protein response (UPR) proteins such as glucose‑related protein 78 (GRP78), protein kinase R (PKR)‑like ER kinase (PERK), and inositol‑requiring enzyme 1 (IRE1). Elevated expression of spliced X‑box binding protein 1 (XBP1) and CCAAT/enhancer‑binding protein homologous protein (CHOP) further confirmed that ROS generated by NTGP induces apoptosis through the ER stress signaling pathway.

Ding L, El Zaatari M, Merchant JL
Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer.
Adv Exp Med Biol. 2016; 908:441-78 [PubMed] Related Publications
This review focuses on the various experimental models to study gastric cancer pathogenesis, with the role of genetically engineered mouse models (GEMMs) used as the major examples. We review differences in human stomach anatomy compared to the stomachs of the experimental models, including the mouse and invertebrate models such as Drosophila and C. elegans. The contribution of major signaling pathways, e.g., Notch, Hedgehog, AKT/PI3K is discussed in the context of their potential contribution to foregut tumorigenesis. We critically examine the rationale behind specific GEMMs, chemical carcinogens, dietary promoters, Helicobacter infection, and direct mutagenesis of relevant oncogenes and tumor suppressor that have been developed to study gastric cancer pathogenesis. Despite species differences, more efficient and effective models to test specific genes and pathways disrupted in human gastric carcinogenesis have yet to emerge. As we better understand these species differences, "humanized" versions of mouse models will more closely approximate human gastric cancer pathogenesis. Towards that end, epigenetic marks on chromatin, the gut microbiota, and ways of manipulating the immune system will likely move center stage, permitting greater overlap between rodent and human cancer phenotypes thus providing a unified progression model.

Zhou J, Zhang D, Zhou L, et al.
Association of the recurrence and canceration rate of vocal leukoplakia with interleukin-10 promoter variants over a 2-year period.
Acta Otolaryngol. 2016; 136(11):1147-1153 [PubMed] Related Publications
Conclusion This study indicates that IL-10 promoter polymorphism variants, smoking, and alcohol consumption increase the risk of recurrence and canceration in vocal leukoplakia. Objective This prospective, clinical trial was performed to evaluate the association of interleukin (IL)-10 promoter polymorphism variants and canceration and recurrence rates in vocal leukoplakia (a pre-cancerous laryngeal carcinoma lesion) over a 2-year period. Participants and method Sixty-one post-operative patients with vocal leukoplakia were enrolled in this prospective, observational study and genotyped for the IL-10 promoter gene (IL-10-1082 A/G, -819 T/C and -592 A/C) using pyrosequencing, and responded to a 2-year follow-up survey. Recurrence and canceration rates were used to evaluate the association between the genotype variants and the clinical outcome. Results There was an increased canceration rate in the variant genotype group compared to that in the normal genotype group in the 2-year follow-up period (18.4% vs 0%, p-value = 0.038). Compared with the non-smoker group, the smoker group had a higher recurrence rate of vocal leukoplakia (29.3% vs 5%, p-value =0.044). Likewise, the recurrence rate in the alcohol consumption group was also higher (30.6% vs 8%, p-value =0.034). The percentage of cancerization in the alcohol consumption group was significantly higher than that in the non-alcohol consumption group (19.4% vs 0%, p-value =0.035).

Chen Z, Zhang H, Yang L, et al.
Construction of a metabolomics profile of arsenic trioxide effect in gastric carcinoma cell line SGC7901.
Acta Biochim Biophys Sin (Shanghai). 2016; 48(5):474-81 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Arsenic trioxide (ATO) is highly effective for treating acute promyelocytic leukemia. It also holds the promise for treating solid tumors, including gastric carcinoma. However, the molecular mechanism of the effectiveness of ATO to solid tumor is still poorly understood. In this study, we chosed gastric carcinoma as an example and tried to reveal the antitumor mechanism through metabolomics. Gastric carcinoma cell line SGC7901 was treated with ATO for 6, 12, and 24 h. The global metabolite profiles were monitored by metabolomics analysis using gas chromatography (GC)/mass spectrometry (MS) and liquid chromatography/MS/MS. A total of 281 certified metabolites were reliably detected. Bioinformatics analysis showed that glycerophospholipid synthesis, one-carbon synthesis, and glutathione synthesis were affected dramatically. Other cellular functions/pathways that had been affected included inflammatory response, nicotinamide adenine dinucleotide (NAD(+)), and polyamine biosynthesis pathway. The metabolomics data from this study, in combination with previous transcriptomics and proteomics data, could serve as valuable resources for the understanding of the specific antitumor mechanism of ATO treatment.

Vicente JB, Malagrinò F, Arese M, et al.
Bioenergetic relevance of hydrogen sulfide and the interplay between gasotransmitters at human cystathionine β-synthase.
Biochim Biophys Acta. 2016; 1857(8):1127-38 [PubMed] Related Publications
Merely considered as a toxic gas in the past, hydrogen sulfide (H2S) is currently viewed as the third 'gasotransmitter' in addition to nitric oxide (NO) and carbon monoxide (CO), playing a key signalling role in human (patho)physiology. H2S can either act as a substrate or, similarly to CO and NO, an inhibitor of mitochondrial respiration, in the latter case by targeting cytochrome c oxidase (CcOX). The impact of H(2)S on mitochondrial energy metabolism crucially depends on the bioavailability of this gaseous molecule and its interplay with the other two gasotransmitters. The H(2)S-producing human enzyme cystathionine β-synthase (CBS), sustaining cellular bioenergetics in colorectal cancer cells, plays a role in the interplay between gasotransmitters. The enzyme was indeed recently shown to be negatively modulated by physiological concentrations of CO and NO, particularly in the presence of its allosteric activator S-adenosyl-l-methionine (AdoMet). These newly discovered regulatory mechanisms are herein reviewed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

Panneerselvam J, Xie G, Che R, et al.
Distinct Metabolic Signature of Human Bladder Cancer Cells Carrying an Impaired Fanconi Anemia Tumor-Suppressor Signaling Pathway.
J Proteome Res. 2016; 15(4):1333-41 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Metabolic profiling has great potential to help the diagnosis and prognosis of cancer patients. Fanconi Anemia (FA) tumor-suppressor signaling has been instrumental in understanding human tumorigenesis. However, this instrumental understanding has never been demonstrated at the metabolic level. Here, we show that impaired FA signaling can lead cells to exhibit metabolic signatures of tumorigenesis. This is consistent with our original studies of the roles of FA signaling in suppressing non-FA tumorigenesis at functional and genetic levels. Using ultraperformance liquid chromatography-mass spectroscopy and gas chromatography-mass spectrometry, we characterized metabolic alterations in bladder cancer cells carrying an intact or impaired FA pathway. The latter was obtained by ectopically expressing FAVL (FAVL-high), which we previously found to be capable of inactivating FA signaling. A total of 18 metabolites, end products of cell proliferation or apoptosis, were significantly different between FAVL-high and -low cells. Methionine, phenylalanine, and threonine, resulting from a tumorigenic process, were substantially increased in FAVL-high cells. With this study, we achieved genomic, functional, and metabolomic characterization of the roles of FA signaling in the development of human cancer. Furthermore, this study provides novel insights into how to translate FA basic research into strategies for producing effective biomarkers in human cancer diagnosis and prognosis.

Zhu W, Lee SJ, Castro NJ, et al.
Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.
Sci Rep. 2016; 6:21974 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.

Matrat M, Guida F, Mattei F, et al.
Welding, a risk factor of lung cancer: the ICARE study.
Occup Environ Med. 2016; 73(4):254-61 [PubMed] Related Publications
OBJECTIVES: We investigated the relationship between lung cancer and occupational exposure to welding activity in ICARE, a population-based case-control study.
METHODS: Analyses were restricted to men (2276 cases, 2780 controls). Welding exposure was assessed through detailed questionnaires, including lifelong occupational history. ORs were computed using unconditional logistic regression, adjusted for lifelong cigarette smoking and occupational exposure to asbestos.
RESULTS: Among the regular welders, welding was associated with a risk of lung cancer (OR=1.7, 95% CI 1.1 to 2.5), which increased with the duration (OR=2.0, 95% CI 1.0 to 3.9 when duration >10 years), and was maximum 10-20 years since last welding. The risk was more pronounced in case of gas welding (OR=2.0, 95% CI 1.2 to 3.3), when the workpiece was covered by paint, grease, or other substances (OR=2.0, 95% CI 1.2 to 3.4) and when it was cleaned with chemical substances before welding. No statistically significant increase in lung cancer risk was observed among occasional welders.
CONCLUSIONS: Although these results should be confirmed, we showed that type of welding and mode of workpiece preparation are important determinants of the lung cancer risk in regular welders.

Galani BR, Sahuc ME, Sass G, et al.
Khaya grandifoliola C.DC: a potential source of active ingredients against hepatitis C virus in vitro.
Arch Virol. 2016; 161(5):1169-81 [PubMed] Related Publications
In this study, we examined the antiviral properties of Khaya grandifoliola C.DC (Meliaceae) on the hepatitis C virus (HCV) life cycle in vitro and identified some of the chemical constituents contained in the fraction with the most antiviral activity. Dried bark powder was extracted by maceration in a methylene chloride/methanol (MCM) system (50:50; v/v) and separated on silica gel by flash chromatography. Infection and replication rates in Huh-7 cells were investigated by luciferase reporter assay and indirect immunofluorescence assay using subgenomic replicons, HCV pseudotyped particles, and cell-culture-derived HCV (HCVcc), respectively. Cell viability was assessed by MTT assay, and cellular gene expression was analysed by qRT-PCR. The chemical composition of the fraction with the most antiviral activity was analysed by coupled gas chromatography and mass spectrometry (GC-MS). Five fractions of different polarities (F0-F100) were obtained from the MCM extract. One fraction (KgF25) showed the strongest antiviral effect on LucUbiNeoET replicons at nontoxic concentrations. Tested at 100 µg/mL, KgF25 had a high inhibitory effect on HCV replication, comparable to that of 0.01 µM daclatasvir or 1 µM telaprevir. This fraction also inhibited HCVcc infection by mostly targeting the entry step. KgF25 inhibited HCV entry in a pan-genotypic manner by directly inactivating free viral particles. Its antiviral effects were mediated by the transcriptional upregulation of the haem oxygenase-1 gene and interferon antiviral response. Three constituents, namely, benzene, 1,1'-(oxydiethylidene)bis (1), carbamic acid, (4-methylphenyl)-, 1-phenyl (2), and 6-phenyl, 4-(1'-oxyethylphenyl) hexene (3), were identified from the active fraction KgF25 by GC-MS. Khaya grandifoliola contains ingredients capable of acting on different steps of the HCV life cycle.

Cacabelos D, Ramírez-Núñez O, Granado-Serrano AB, et al.
Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS.
Acta Neuropathol Commun. 2016; 4:3 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A.
RESULTS AND CONCLUSIONS: Our results show that overexpression of hSOD1-G93A in transgenic mice decreased efficiency of mitochondrial oxidative phosphorylation, located at complex I, revealing a temporal delay in females with respect to males associated with a parallel increase in selected markers of protein oxidative damage. Further, females exhibit a fatty acid profile with higher levels of docosahexaenoic acid at 30 days. Mechanistic studies showed that hSOD1-G93A overexpression in N2A cells reduced complex I function, a defect prevented by 17β-estradiol pretreatment. In conclusion, ALS-associated SOD1 mutation leads to delayed mitochondrial dysfunction in female mice in comparison with males, in part attributable to the higher oestrogen levels of the former. This study is important in the effort to further understanding of whether different degrees of spinal cord mitochondrial dysfunction could be disease modifiers in ALS.

Ali SM, Pal SK, Wang K, et al.
Comprehensive Genomic Profiling of Advanced Penile Carcinoma Suggests a High Frequency of Clinically Relevant Genomic Alterations.
Oncologist. 2016; 21(1):33-9 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Advanced penile squamous cell carcinoma (PSCC) is associated with poor survival due to the aggressiveness of the disease and lack of effective systemic therapies. Comprehensive genomic profiling (CGP) was performed to identify clinically relevant genomic alterations (CRGAs).
MATERIALS AND METHODS: DNA was extracted from 40 μm of formalin-fixed, paraffin-embedded sections in patients with advanced PSCC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 692× for 3,769 exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. CRGAs were defined as genomic alterations (GAs) linked to targeted therapies on the market or under evaluation in mechanism-driven clinical trials.
RESULTS: Twenty male patients with a median age of 60 years (range, 46-87 years) were assessed. Seventeen (85%) cases were stage IV and three cases (15%) were stage III. CGP revealed 109 GAs (5.45 per tumor), 44 of which were CRGAs (2.2 per tumor). At least one CRGA was detected in 19 (95%) cases, and the most common CRGAs were CDKN2A point mutations and homozygous deletion (40%), NOTCH1 point mutations and rearrangements (25%), PIK3CA point mutations and amplification (25%), EGFR amplification (20%), CCND1 amplification (20%), BRCA2 insertions/deletions (10%), RICTOR amplifications (10%), and FBXW7 point mutations (10%).
CONCLUSION: CGP identified CRGAs in patients with advanced PSCC, including EGFR amplification and PIK3CA alterations, which can lead to the rational administration of targeted therapy and subsequent benefit for these patients.
IMPLICATIONS FOR PRACTICE: Few treatment options exist for patients with advanced penile squamous cell carcinoma (PSCC). Outcomes are dismal with platinum-based chemotherapy, with median survival estimated at 1 year or less across multiple series. Biological studies of patients with PSCC to date have principally focused on human papillomavirus status, but few studies have elucidated molecular drivers of the disease. To this end, comprehensive genomic profiling was performed in a cohort of 20 patients with advanced PSCC. Findings of frequent mutations in CDKN2A, NOTCH1, PIK3CA, and EGFR (all in excess of 20%) point to potential therapeutic avenues. Trials of targeted therapies directed toward these mutations should be explored.

Ross JS, Wang K, Khaira D, et al.
Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations.
Cancer. 2016; 122(5):702-11 [PubMed] Related Publications
BACKGROUND: In the current study, the authors present a comprehensive genomic profile (CGP)-based study of advanced urothelial carcinoma (UC) designed to detect clinically relevant genomic alterations (CRGAs).
METHODS: DNA was extracted from 40 µm of formalin-fixed, paraffin-embedded sections from 295 consecutive cases of recurrent/metastatic UC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 688X for all coding exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer, using process-matched normal control samples as a reference. CRGAs were defined as GAs linked to drugs on the market or currently under evaluation in mechanism-driven clinical trials.
RESULTS: All 295 patients assessed were classified with high-grade (International Society of Urological Pathology classification) and advanced stage (stage III/IV American Joint Committee on Cancer) disease, and 294 of 295 patients (99.7%) had at least 1 GA on CGP with a mean of 6.4 GAs per UC (61% substitutions/insertions/deletions, 37% copy number alterations, and 2% fusions). Furthermore, 275 patients (93%) had at least 1 CRGA involving 75 individual genes with a mean of 2.6 CRGAs per UC. The most common CRGAs involved cyclin-dependent kinase inhibitor 2A (CDKN2A) (34%), fibroblast growth factor receptor 3 (FGFR3) (21%), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) (20%), and ERBB2 (17%). FGFR3 GAs were diverse types and included 10% fusions. ERBB2 GAs were equally divided between amplifications and substitutions. ERBB2 substitutions were predominantly within the extracellular domain and were highly enriched in patients with micropapillary UC (38% of 32 cases vs 5% of 263 nonmicropapillary UC cases; P<.0001).
CONCLUSIONS: Using a CGP assay capable of detecting all classes of GA simultaneously, an extraordinarily high frequency of CRGA was identified in a large series of patients with advanced UC. Cancer 2016;122:702-711. © 2015 American Cancer Society.

Kang DY, Darvin P, Yoo YB, et al.
Methylsulfonylmethane inhibits HER2 expression through STAT5b in breast cancer cells.
Int J Oncol. 2016; 48(2):836-42 [PubMed] Related Publications
Breast cancer is the most common cancer in women globally. The factors that increase risk include: late age at first birth, alcohol, radiation exposure, family history of breast cancer, and postmenopausal hormone therapy. Numerous drugs are being developed to treat breast cancer. Among them, Herceptin is used for the treatment of human epidermal growth factor receptor 2 (HER2)-positive cases and targets HER2 effectively and efficiently, but it is very expensive. Methylsulfonylmethane (MSM) is an organic sulfur-containing natural compound having no reported toxicity. We examined MSM in breast cancer cell lines and found it inhibited the proliferation of estrogen receptor-positive and HER2-positive breast cancer cells in a dose-dependent manner. It also suppressed the activation of STAT5b and expression of HER2 in breast cancer cells. We determined the STAT5b binding site (GAS element) in the HER2 gene. Detailed analysis showed that MSM decreased the ability of STAT5b to bind the promoter of the HER2 gene and a luciferase assay demonstrated reduced activity. We confirmed that MSM can effectively regulate STAT5b, and thereby decrease HER2 expression. Therefore, we recommend the use of MSM as an inhibitor for the management of HER2-positive breast cancers.

Meller S, Meyer HA, Bethan B, et al.
Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer.
Oncotarget. 2016; 7(2):1421-38 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Integrated analysis of metabolomics, transcriptomics and immunohistochemistry can contribute to a deeper understanding of biological processes altered in cancer and possibly enable improved diagnostic or prognostic tests. In this study, a set of 254 metabolites was determined by gas-chromatography/liquid chromatography-mass spectrometry in matched malignant and non-malignant prostatectomy samples of 106 prostate cancer (PCa) patients. Transcription analysis of matched samples was performed on a set of 15 PCa patients using Affymetrix U133 Plus 2.0 arrays. Expression of several proteins was immunohistochemically determined in 41 matched patient samples and the association with clinico-pathological parameters was analyzed by an integrated data analysis. These results further outline the highly deregulated metabolism of fatty acids, sphingolipids and polyamines in PCa. For the first time, the impact of the ERG translocation on the metabolome was demonstrated, highlighting an altered fatty acid oxidation in TMPRSS2-ERG translocation positive PCa specimens. Furthermore, alterations in cholesterol metabolism were found preferentially in high grade tumors, enabling the cells to create energy storage. With this integrated analysis we could not only confirm several findings from previous metabolomic studies, but also contradict others and finally expand our concepts of deregulated biological pathways in PCa.

Sironi S, Wagner M, Kuett A, et al.
Microenvironmental hypoxia regulates FLT3 expression and biology in AML.
Sci Rep. 2015; 5:17550 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase constitutively expressed by acute myeloid leukaemia (AML) blasts. In addition, 25% of AML patients harbour a FLT3-ITD mutation, associated with inferior outcome due to increased relapse rate. Relapse might be propagated by interactions between AML blasts and the bone marrow microenvironment. Besides cellular elements of the microenvironment (e.g. mesenchymal stromal cells), bone marrow hypoxia has emerged as an additional crucial component. Hence, effects of hypoxia on FLT3 expression and biology could provide novel insight into AML biology. Here we show that 25% of AML patients down-regulate FLT3 expression on blasts in response to in vitro hypoxia (1% O2), which was independent of its mutational state. While virtually no AML cell lines regulate FLT3 in response to hypoxia, the down-regulation could be observed in Ba/F3 cells stably transfected with different FLT3 mutants. Hypoxia-mediated down-regulation was specific for FLT3, reversible and proteasome-dependent; with FLT3 half-life being significantly shorter at hypoxia. Also, PI-3K inhibition could partially abrogate down-regulation of FLT3. Hypoxia-mediated down-regulation of FLT3 conferred resistance against cytarabine in vitro. In conclusion, FLT3 expression in AML is dependent on the oxygen partial pressure, but response to hypoxia differs.

Hilton DA, Shivane A, Kirk L, et al.
Activation of multiple growth factor signalling pathways is frequent in meningiomas.
Neuropathology. 2016; 36(3):250-61 [PubMed] Related Publications
A minority of meningiomas are difficult to treat with surgery or radiotherapy, and chemotherapeutic alternatives are limited. This study aims to better understand pathways that are active in meningiomas, in order to direct future treatment strategies. We investigated the expression and activation of multiple growth factor receptors, their ligands and downstream signalling pathways in 30 meningiomas using immunohistochemistry. Expression was correlated with chromosome 22q loss. Membrane expression of VEGF receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR)β was seen in 83% of tumors, Axl in 70%, EGFR in 50% and insulin-like growth factor receptor in 47%. Expression was similar in low- and high-grade tumors, but membrane EGFR expression was not seen in tumors showing chromosome 22q loss (P < 0.05). Expression of ligands (IGF, NRG, VEGF, Gas 6), and signalling proteins (Mek, Erk, Jnk, Akt) and pS6RP, was widespread. Western blot confirmed widespread Axl expression and supported selective expression of EGFR in NF2-intact meningiomas. The majority of meningiomas express and show activation of multiple growth factor receptors and their signalling pathways, irrespective of tumor grade. In addition to previously reported receptors, Axl offers a new therapeutic target. The findings also suggest that anti-EGFR based therapies may be less effective in meningiomas with 22q loss.

Kawai-Kitahata F, Asahina Y, Tanaka S, et al.
Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features.
J Gastroenterol. 2016; 51(5):473-86 [PubMed] Related Publications
BACKGROUND AND AIMS: Genetic alterations in specific genes are critical events in carcinogenesis and hepatocellular carcinoma (HCC) progression. However, the genetic alterations responsible for HCC development, progression, and survival are unclear.
METHODS: We investigated the essential difference in genetic alterations between HCC and adjacent non-HCC tissues using next-generation sequencing technology.
RESULTS: We found recurrent mutations in several genes such as telomerase reverse transcriptase (TERT; 65% of the total 104 HCCs), TP53 (38%), CTNNB1 (30%), AXIN1 (2%), PTEN (2%), and CDKN2A (2%). TERT promoter mutations were associated with older age (p = 0.005), presence of hepatitis C virus (HCV) infection (p = 0.003), and absence of hepatitis B virus (HBV) infection (p < 0.0001). In hepatitis B surface antigen (HBs Ag)-positive HCC without TERT promoter mutations, HBV integration into TERT locus was found in 47% patients and was mutually exclusive to TERT promoter mutations. Most (89%) HBV integrants were in the HBx region. TP53 mutations were associated with HBV infection (p = 0.0001) and absence of HCV infection (p = 0.002). CTNNB1 mutations were associated with absence of HBV infection (p = 0.010). Moreover, TERT promoter mutation was significantly associated with shorter disease-free survival (p = 0.005) and poor overall survival (p = 0.024).
CONCLUSIONS: Gene alterations in TERT promoter, TP53, CTNNB1, and HBV integration were closely associated with HCC development, and mutations in TERT promoter are related to poor prognosis. These results are useful for understanding the underlying mechanism of hepatocarcinogenesis, diagnosis, and predicting outcomes of patients with HCC.

Cao Q, Wang N, Qi J, et al.
Long non‑coding RNA‑GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C‑C motif) ligand 1 expression.
Mol Med Rep. 2016; 13(1):27-34 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Long non‑coding RNAs (lncRNAs) have important roles in diverse biological processes, including transcriptional regulation, cell growth and tumorigenesis. The present study aimed to investigate whether lncRNA‑growth arrest‑specific (GAS)5 regulated bladder cancer progression via regulation of chemokine (C‑C) ligand (CCL)1 expression. The viability of BLX bladder cancer cells was detected using a Cell Counting kit‑8 assay, and cell apoptosis was assessed by annexin V‑propidium iodide double‑staining. The expression levels of specific genes and proteins were analyzed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In addition, cells were transfected with small interfering (si)RNAs or recombinant GAS5 in order to silence or overexpress GAS5, respectively. The results of the present study demonstrated that knockdown of GAS5 expression promoted bladder cancer cell proliferation, whereas overexpression of GAS5 suppressed cell proliferation. Furthermore, knockdown of GAS5 resulted in an increased percentage of cells in S and G2 phase, and a decreased percentage of cells in G1 phase. In addition, the present study performed a hierarchical cluster analysis of differentially expressed lncRNAs in bladder cancer cells and detected that CCL1 overexpression resulted in an upregulation of GAS5, which may improve the ability of cells to regulate a stress response in vitro. Furthermore, knockdown of GAS5 expression increased the mRNA and protein expression of CCL1 in bladder cancer cells. Gain‑of‑function and loss‑of‑function studies demonstrated that GAS5 was able to inhibit bladder cancer cell proliferation, at least in part, by suppressing the expression of CCL1. The results of the present study demonstrated that GAS5 was able to suppress bladder cancer cell proliferation, at least partially, by suppressing the expression of CCL1. The results of the present study may provide a basis for developing novel effective treatment strategies against bladder cancer.

Lussey-Lepoutre C, Bellucci A, Morin A, et al.
In Vivo Detection of Succinate by Magnetic Resonance Spectroscopy as a Hallmark of SDHx Mutations in Paraganglioma.
Clin Cancer Res. 2016; 22(5):1120-9 [PubMed] Related Publications
PURPOSE: Germline mutations in genes encoding mitochondrial succinate dehydrogenase (SDH) are found in patients with paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and renal cancers. SDH inactivation leads to a massive accumulation of succinate, acting as an oncometabolite and which levels, assessed on surgically resected tissue are a highly specific biomarker of SDHx-mutated tumors. The aim of this study was to address the feasibility of detecting succinate in vivo by magnetic resonance spectroscopy.
EXPERIMENTAL DESIGN: A pulsed proton magnetic resonance spectroscopy ((1)H-MRS) sequence was developed, optimized, and applied to image nude mice grafted with Sdhb(-/-) or wild-type chromaffin cells. The method was then applied to patients with paraganglioma carrying (n = 5) or not (n = 4) an SDHx gene mutation. Following surgery, succinate was measured using gas chromatography/mass spectrometry, and SDH protein expression was assessed by immunohistochemistry in resected tumors.
RESULTS: A succinate peak was observed at 2.44 ppm by (1)H-MRS in all Sdhb(-/-)-derived tumors in mice and in all paragangliomas of patients carrying an SDHx gene mutation, but neither in wild-type mouse tumors nor in patients exempt of SDHx mutation. In one patient, (1)H-MRS results led to the identification of an unsuspected SDHA gene mutation. In another case, it helped define the pathogenicity of a variant of unknown significance in the SDHB gene.
CONCLUSIONS: Detection of succinate by (1)H-MRS is a highly specific and sensitive hallmark of SDHx mutations. This noninvasive approach is a simple and robust method allowing in vivo detection of the major biomarker of SDHx-mutated tumors.

Al-Rohil RN, Tarasen AJ, Carlson JA, et al.
Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies.
Cancer. 2016; 122(2):249-57 [PubMed] Related Publications
BACKGROUND: The authors hypothesized that comprehensive genomic profiling of advanced-stage cutaneous squamous cell carcinoma (cSCC) could identify genomic-derived drug targets of therapy for patients with conventional therapy-resistant disease.
METHODS: Comprehensive genomic profiling of 315 cancer genes was applied to 50 ng of DNA from 122 cSCC cases for the evaluation of all classes of genomic alterations (GAs). Clinically relevant genomic alterations (CRGAs) were defined as those identifying anticancer drugs on the market or in registered clinical trials.
RESULTS: There were 21 women (17%) and 101 men (83%) with a median age of 64.9 years (range, 21-87 years). Eleven cSCC cases (9%) were histologic AJCC grade 1, 69 (57%) were grade 2, and 42 (34%) were grade 3. The primary cSCC was used for sequencing in 77 cases (63%). Metastatic lesions were sequenced in 37% of cases. There were 1120 total GAs identified (average of 9.2 GAs per tumor), with 100% of cases harboring at least 1 alteration. Of the 122 cSCCs, 107 (88%) harbored at least 1 CRGA (2.5 CRGAs per cSCC) includingNOTCH1 (43%); patched 1 (PTCH1) (11%); BRCA2 (10%); HRAS (8%); ataxia telangiectasia mutated (ATM) (7%); erb-B2 receptor tyrosine kinase 4 (ERBB4) (7%); neurofibromatosis type 1 (NF1) (7%); erb-B2 receptor tyrosine kinase 2 (ERBB2) (6%); phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) (6%); cyclin D1 (CCND1) (6%); epidermal growth factor receptor (EGFR) (5%); and F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase (FBXW7) (5%).
CONCLUSIONS: In the current study, approximately 88% of patients with cSCC were found to harbor clinically relevant GAs that have the potential to guide the treatment of patients with advanced-stage tumors with targeted therapeutic agents. Cancer 2016;122:249-257. © 2015 American Cancer Society.

Chen M, Shen M, Li Y, et al.
GC-MS-based metabolomic analysis of human papillary thyroid carcinoma tissue.
Int J Mol Med. 2015; 36(6):1607-14 [PubMed] Related Publications
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Elucidating the molecular network that is altered in PTC may lead to the identification of the critical insight into the pathogenesis of PTC. Thus far, little is known regarding the global metabolomic alterations of PTC. Gas chromatography coupled with mass spectrometry-based metabolomics was used to analyze metabolomic alterations in matched PTC and normal thyroid tissues obtained from the patients. Multivariate statistical analyses were employed to determine the significant metabolomic differences. The mRNA levels of the associated metabolic enzyme genes were further assayed with reverse transcription-quantitative polymerase chain reaction analysis. Principal component analysis, partial least-squares discriminant analysis (PLS-DA) and orthogonal PLS-DA models were established, which could clearly separate human normal thyroid and PTC samples, and identified that metabolites in carbohydrate metabolism, including glucose, fructose, galactose, mannose, 2-keto-D-gluconic acid and rhamnose, consistently decreased, while metabolites in nucleotide metabolism, including malonic acid and inosine, and lipid metabolism, including cholesterol and arachidonic acid, significantly altered in PTC. Furthermore, the mRNA levels of metabolic enzyme genes, including glucose-6-phosphate dehydrogenase, phosphoglycerate kinase 1, lactate dehydrogenase A, phosphoglycerate dehydrogenase and prostaglandin-endoperoxide synthase 2, significantly increased in PTC. Based on the metabolomic and mRNA data, various metabolites may be used for increased synthesis of nucleotides and oncogenic lipids in PTC, which may contribute to the pathogenesis of PTC. The present study provides a new understanding of the dysregulated metabolism in PTC and identifies potential avenues for the therapeutic intervention for this disease.

Kim SY, Kim HJ, Kang SU, et al.
Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer.
Oncotarget. 2015; 6(32):33382-96 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin-proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy.

Wojakowska A, Chekan M, Marczak Ł, et al.
Detection of metabolites discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the GC/MS approach.
Mol Cell Endocrinol. 2015; 417:149-57 [PubMed] Related Publications
One of the critical issues in thyroid cancer diagnostic is differentiation between follicular adenoma, follicular carcinoma and the follicular variant of papillary carcinoma, which in some cases is not possible based on histopathological features only. In this paper we performed molecular profiling of thyroid tissue aiming to identify metabolites characteristic for different types of thyroid cancer. FFPE tissue specimens were analysed from 5 different types of thyroid malignancies (follicular, papillary/classical variant, papillary/follicular variant, medullary and anaplastic cancers), benign follicular adenoma and normal thyroid. Extracted metabolites were identified and semi-quantified using the GC/MS approach. There were 28 metabolites identified, whose abundances were significantly different among different types of thyroid tumours, including lipids, carboxylic acids, and saccharides. We concluded, that multi-component metabolome signature could be used for classification of different subtypes of follicular thyroid lesions. Moreover, potential applicability of the GC/MS-based analysis of FFPE tissue samples in diagnostics of thyroid cancer has been proved.

Marshall KM, Laval M, Estacio O, et al.
Activation by zinc of the human gastrin gene promoter in colon cancer cells in vitro and in vivo.
Metallomics. 2015; 7(10):1390-8 [PubMed] Related Publications
Over-expression of growth factors can contribute to the development and progression of cancer, and gastrins in particular have been implicated in accelerating the development of gastrointestinal cancers. Previously our group showed that hypoxia, cobalt chloride (a hypoxia mimetic) and zinc chloride could activate the expression of the gastrin gene in vitro. To characterise activation of the gastrin promoter by zinc ions further in vivo, TALEN technology was used to engineer a luciferase reporter construct into the endogenous human gastrin gene promoter in SW480 colon cancer cells. Gastrin promoter activity in the resultant Gast(luc) SW480 colon cancer cells was then measured by bioluminescence in cell culture and in tumour xenografts in SCID mice. Activation of intracellular signalling pathways was assessed by Western blotting. Activation of the gastrin promoter by zinc ions was concentration dependent in vitro and in vivo. Zinc ions significantly stimulated phosphorylation of ERK1/2 (MAPK pathway) but not of Akt (PI3K pathway). We conclude that the endogenous gastrin promoter is responsive to zinc ions, likely via activation of the MAPK pathway.

Leng S, Thomas CL, Snider AM, et al.
Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners.
Environ Health Perspect. 2016; 124(4):445-51 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development.
OBJECTIVES: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas.
METHODS: Genetic associations were assessed in a case-control study of former uranium miners (242 cases and 336 controls). A replication study was performed using data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches.
RESULTS: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments.
CONCLUSIONS: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. The associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion.
CITATION: Leng S, Thomas CL, Snider AM, Picchi MA, Chen W, Willis DG, Carr TG, Krzeminski J, Desai D, Shantu A, Lin Y, Jacobson MR, Belinsky SA. 2016. Radon exposure, IL-6 promoter variants, and lung squamous cell carcinoma in former uranium miners. Environ Health Perspect 124:445-451;

Wang K, Johnson A, Ali SM, et al.
Comprehensive Genomic Profiling of Advanced Esophageal Squamous Cell Carcinomas and Esophageal Adenocarcinomas Reveals Similarities and Differences.
Oncologist. 2015; 20(10):1132-9 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Esophageal squamous cell carcinomas (ESCCs) and esophageal adenocarcinomas (EACs) account for >95% of esophageal malignancies and represent a major global health burden. ESCC is the dominant histology globally but represents a minority of U.S. cases, with EAC accounting for the majority of U.S.
CASES: The patient outcomes for advanced ESCC and EAC are poor, and new therapeutic options are needed. Using a sensitive sequencing assay, we compared the genomic profiles of ESCC and EAC with attention to identification of therapeutically relevant genomic alterations.
METHODS: Next-generation sequencing-based comprehensive genomic profiling was performed on hybridization-captured, adaptor ligation-based libraries to a median coverage depth of >650× for all coding exons of 315 cancer-related genes plus selected introns from 28 genes frequently rearranged in cancer. Results from a single sample were evaluated for all classes of genomic alterations (GAs) including point mutations, short insertions and deletions, gene amplifications, homozygous deletions, and fusions/rearrangements. Clinically relevant genomic alterations (CRGAs) were defined as alterations linked to approved drugs and those under evaluation in mechanism-driven clinical trials.
RESULTS: There were no significant differences by sex for either tumor type, and the median age for all patients was 63 years. All ESCCs and EACs were at an advanced stage at the time of sequencing. All 71 ESCCs and 231 EACs featured GAs on profiling, with 522 GAs in ESCC (7.4 per sample) and 1,303 GAs in EAC (5.6 per sample). The frequency of clinically relevant GAs in ESCC was 94% (2.6 per sample) and 93% in EAC (2.7 per sample). CRGAs occurring more frequently in EAC included KRAS (23% EAC vs. 6% ESCC) and ERBB2 (23% EAC vs. 3% ESCC). ESCC samples were enriched for CRGA in PIK3CA (24% ESCC vs. 10% EAC), PTEN (11% ESCC vs. 4% EAC), and NOTCH1 (17% ESCC vs. 3% EAC). Other GAs that differed significantly between histologic tumor types included SMAD4 (14% EAC vs. 1% ESCC), RB1 (14% ESCC vs. 2% EAC), SOX2 (18% ESCC vs. 1% EAC), and NFE2L2 (24% ESCC vs. 1% EAC).
CONCLUSION: ESCC and EAC share similarly high frequencies of overall and clinically relevant genomic alterations; however, the profiles of genomic alterations in the two diseases differ widely, with KRAS and ERBB2 far more frequently altered in EAC compared with ESCC and with mammalian target of rapamycin (MTOR) pathway genes (PIK3CA and PTEN) and NOTCH1 more frequently altered in ESCC compared with EAC. Comprehensive genomic profiling highlights the promise of identifying clinically relevant genomic alterations in both ESCC and EAC and suggests new avenues for molecularly directed therapies in esophageal cancer.

Sbiera S, Leich E, Liebisch G, et al.
Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells.
Endocrinology. 2015; 156(11):3895-908 [PubMed] Related Publications
Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer.

Jia L, Liu W, Guan L, et al.
Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.
PLoS One. 2015; 10(8):e0136584 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GAST, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999