LOXL2

Gene Summary

Gene:LOXL2; lysyl oxidase like 2
Aliases: LOR, LOR2, WS9-14
Location:8p21.3
Summary:This gene encodes a member of the lysyl oxidase gene family. The prototypic member of the family is essential to the biogenesis of connective tissue, encoding an extracellular copper-dependent amine oxidase that catalyses the first step in the formation of crosslinks in collagens and elastin. A highly conserved amino acid sequence at the C-terminus end appears to be sufficient for amine oxidase activity, suggesting that each family member may retain this function. The N-terminus is poorly conserved and may impart additional roles in developmental regulation, senescence, tumor suppression, cell growth control, and chemotaxis to each member of the family. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:lysyl oxidase homolog 2
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (28)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LOXL2 (cancer-related)

Ezzoukhry Z, Henriet E, Piquet L, et al.
TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking.
Eur J Cell Biol. 2016; 95(11):503-512 [PubMed] Related Publications
Transforming growth factor-β1 (TGF-β1) is an important player in chronic liver diseases inducing fibrogenesis and hepatocellular carcinoma (HCC) development. TGF-β1 promotes pleiotropic modifications at the cellular and matrix microenvironment levels. TGF-β1 was described to enhance production of type I collagen and its associated cross-linking enzyme, the lysyl oxidase-like2 (LOXL2). In addition, TGF-β1 and type I collagen are potent inducers of invadosomes. Indeed, type I collagen fibers induce the formation of active linear invadosomes through the discoidin domain receptor 1 (DDR1). The goal of our study was to address the role of TGF-β1 in collagen cross-linking and its impact on the formation of linear invadosomes in liver cancer cells. We first report a significant correlation between expressions of TGF-β1, and type I collagen, LOXL2, DDR1 and MT1-MMP in human HCCs. We demonstrate that TGF-β1 promotes a Smad4-dependent up-regulation of DDR1, together with LOXL2, in cultured HCC cells. Moreover, we show that LOXL2-induced collagen cross-linking enhances linear invadosome formation. Altogether, our data demonstrate that TGF-β1 favors linear invadosome formation through the expressions of both the inducers, such as collagen and LOXL2, and the components such as DDR1 and MT1-MMP of linear invadosomes in cancer cells. Meanwhile, our data uncover a new TGF-β1-dependent regulation of DDR1 expression.

Kurozumi A, Kato M, Goto Y, et al.
Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma.
Int J Oncol. 2016; 48(5):1837-46 [PubMed] Free Access to Full Article Related Publications
Our recent studies of microRNA (miRNA) expression signatures in human cancers revealed that microRNA-26a (miRNA-26a) and microRNA-26b (miRNA-26b) were significantly reduced in cancer tissues. To date, few reports have provided functional analyses of miR-26a or miR-26b in renal cell carcinoma (RCC). The aim of the present study was to investigate the functional significance of miR-26a and miR-26b in RCC and to identify novel miR-26a/b-mediated cancer pathways and target genes involved in RCC oncogenesis and metastasis. Downregulation of miR-26a or miR-26b was confirmed in RCC clinical specimens. Restoration of miR-26a or miR-26b in RCC cell lines (786-O and A498) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. Our in silico analysis and luciferase reporter assays showed that lysyl oxidase-like 2 (LOXL2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were directly regulated by these miRNAs. Moreover, downregulating the PLOD2 gene significantly inhibited cell migration and invasion in RCC cells. Thus, our data showed that two genes promoting metastasis, LOXL2 and PLOD2, were epigenetically regulated by tumor-suppressive microRNAs, miR-26a and miR-26b, providing important insights into the molecular mechanisms of RCC metastasis.

Mizuno K, Seki N, Mataki H, et al.
Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma.
Int J Oncol. 2016; 48(2):450-60 [PubMed] Free Access to Full Article Related Publications
Lung cancer remains the most frequent cause of cancer-related death in developed countries. A recent molecular-targeted strategy has contributed to improvement of the remarkable effect of adenocarcinoma of the lung. However, such treatment has not been developed for squamous cell carcinoma (SCC) of the disease. Our recent studies of microRNA (miRNA) expression signatures of human cancers showed that the microRNA-29 family (miR‑29a, miR‑29b and miR‑29c) significantly reduced cancer tissues compared to normal tissues. These findings suggest that miR‑29s act as tumor-suppressors by targeting several oncogenic genes. The aim of the study was to investigate the functional significance of miR‑29s in lung SCC and to identify miR‑29s modulating molecular targets in lung SCC cells. Restoration of all mature members of the miR‑29s inhibited cancer cell migration and invasion. Gene expression data combined in silico analysis and luciferase reporter assays demonstrated that the lysyl oxidase-like 2 (LOXL2) gene was a direct regulator of tumor‑suppressive miR‑29s. Moreover, overexpressed LOXL2 was confirmed in lung SCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in lung SCC cell lines. Our present data suggested that loss of tumor-suppressive miR‑29s enhanced cancer cell invasion in lung SCC through direct regulation of oncogenic LOXL2. Elucidation of the novel lung SCC molecular pathways and targets regulated by tumor-suppressive miR‑29s will provide new insights into the potential mechanisms of oncogenesis and metastasis of the disease.

Weinhold N, Heuck CJ, Rosenthal A, et al.
Clinical value of molecular subtyping multiple myeloma using gene expression profiling.
Leukemia. 2016; 30(2):423-30 [PubMed] Free Access to Full Article Related Publications
Using a data set of 1217 patients with multiple myeloma enrolled in Total Therapies, we have examined the impact of novel therapies on molecular and risk subgroups and the clinical value of molecular classification. Bortezomib significantly improved the progression-free survival (PFS) and overall survival (OS) of the MMSET (MS) subgroup. Thalidomide and bortezomib positively impacted the PFS of low-risk (LoR) cases defined by the GEP70 signature, whereas high-risk (HiR) cases showed no significant changes in outcome. We show that molecular classification is important if response rates are to be used to predict outcomes. The t(11;14)-containing CD-1 and CD-2 subgroups showed clear differences in time to response and cumulative response rates but similar PFS and OS. Furthermore, complete remission was not significantly associated with the outcome of the MAF/MAFB (MF) subgroup or HiR cases. HiR cases were enriched in the MF, MS and proliferation subgroups, but the poor outcome of these groups was not linked to subgroup-specific characteristics such as MAF overexpression per se. It is especially important to define risk status if HiR cases are to be managed appropriately because of their aggressive clinical course, high rates of early relapse and the need to maintain therapeutic pressure on the clone.

Fukumoto I, Kikkawa N, Matsushita R, et al.
Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma.
J Hum Genet. 2016; 61(2):109-18 [PubMed] Related Publications
In spite of considerable advances in multimodality therapy, including surgery, radiotherapy and chemotherapy, the overall survival rate for patients with head and neck squamous cell carcinoma (HNSCC) is very poor (only 15-45%). Understanding the molecular mechanisms of metastatic pathways underlying HNSCC using currently available genomic approaches might improve therapies for and prevention of the disease. Our previous studies showed that three tumor-suppressive microRNAs (miRNAs), miR-26a/b, miR-29a/b/c and miR-218, significantly inhibited cancer cell migration and invasion. Therefore, we hypothesized that these miRNAs-regulated target genes deeply contributed to cancer metastasis. These tumor-suppressive miRNAs directly regulate LOXL2 expression in HNSCC cells by using in silico analysis and luciferase reporter assays. Overexpressed LOXL2 was confirmed in HNSCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in HNSCC cell lines. Our present data showed that tumor-suppressive miRNAs regulation of LOXL2 will provide new insights into the novel molecular mechanisms of HNSCC metastasis.

Torres S, Garcia-Palmero I, Herrera M, et al.
LOXL2 Is Highly Expressed in Cancer-Associated Fibroblasts and Associates to Poor Colon Cancer Survival.
Clin Cancer Res. 2015; 21(21):4892-902 [PubMed] Related Publications
PURPOSE: Cancer-associated fibroblasts (CAF) are major mediators in tumor microenvironment. We investigated the changes in protein expression in colon cancer-associated fibroblasts compared with normal fibroblasts (NF) in the context of searching for prognostic biomarkers, particularly for stage II patients.
EXPERIMENTAL DESIGN: CAFs and NFs isolated from colon cancer patients were used to identify differentially expressed proteins using quantitative proteomics. Stromal expression of deregulated proteins was analyzed by IHC. Prognostic impact was studied using external gene-expression datasets for training, then quantitative PCR and IHC for validation in different cohorts of patients. Combined datasets were used for prediction of risk assessment at stages II and III.
RESULTS: A desmoplastic signature composed of 32 proteins, highly specific for stromal components in colon cancer, was identified. These proteins were enriched for extracellular matrix organization components, TGFβ signaling pathway, fibrosis, and wound-healing proteins. The expression in CAFs of 11 upregulated proteins and four downregulated proteins, selected for biomarker validation, was verified by orthogonal techniques. LOXL2 displayed a high prognostic impact by using external independent datasets and further validation in two different cohorts of patients. High expression of LOXL2 was associated with higher recurrence P = 0.001 HR, 5.38 [95% confidence interval (CI), 1.70-17.01] and overall survival P = 0.001 HR, 8.52 (95% CI, 1.90-38.29). IHC analysis revealed a prognostic value for LOXL2 in stage II patients.
CONCLUSIONS: We identified LOXL2 to be associated with the outcome of colon cancer patients. Furthermore, it can be used to stratify patients at stages II and III for further therapeutic decisions.

Nishikawa R, Chiyomaru T, Enokida H, et al.
Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma.
FEBS Lett. 2015; 589(16):2136-45 [PubMed] Related Publications
Here, we found that members of the microRNA-29 family (miR-29a/b/c; "miR-29s") were significantly reduced in clear cell renal cell carcinoma (ccRCC) tissues, suggesting that they functioned as tumour suppressors. Restoration of all mature members of the miR-29 family inhibited cancer cell proliferation, migration and invasion. LOXL2 was a direct target gene of miR-29s, as shown by genome-wide gene expression analysis and luciferase reporter assay. Overexpressed LOXL2 was confirmed in ccRCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in ccRCC cell lines. Our data demonstrated that the miR-29s-LOXL2 axis contributed to cancer cell migration and invasion in ccRCC.

Martin A, Salvador F, Moreno-Bueno G, et al.
Lysyl oxidase-like 2 represses Notch1 expression in the skin to promote squamous cell carcinoma progression.
EMBO J. 2015; 34(8):1090-109 [PubMed] Free Access to Full Article Related Publications
Lysyl oxidase-like 2 (LOXL2) is involved in a wide range of physiological and pathological processes, including fibrosis and tumor progression, implicating intracellular and extracellular functions. To explore the specific in vivo role of LOXL2 in physiological and tumor contexts, we generated conditional gain- and loss-of-function mouse models. Germ-line deletion of Loxl2 promotes lethality in half of newborn mice mainly associated to congenital heart defects, while Loxl2 overexpression triggers male sterility due to epididymal dysfunction caused by epithelial disorganization, fibrosis and acute inflammation. Remarkably, when challenged to chemical skin carcinogenesis, Loxl2-overexpressing mice increased tumor burden and malignant progression, while Loxl2-deficient mice exhibit the opposite phenotypes. Loxl2 levels in premalignant tumors negatively correlate with expression of epidermal differentiation markers and components of the Notch1 pathway. We show that LOXL2 is a direct repressor of NOTCH1. Additionally, we identify an exclusive expression pattern between LOXL2 and members of the canonical NOTCH1 pathway in human HNSCC. Our data identify for the first time novel LOXL2 roles in tissue homeostasis and support it as a target for SCC therapy.

Wang X, Jiang L
Effects of ornithine decarboxylase antizyme 1 on the proliferation and differentiation of human oral cancer cells.
Int J Mol Med. 2014; 34(6):1606-12 [PubMed] Related Publications
Ornithine decarboxylase antizyme 1 (OAZ1) is an antizyme targeting ornithine decarboxylase for degradation, subsequently inhibiting polyamine production to prevent cell proliferation. OAZ1 is also involved in other major cellular events, including differentiation and apoptosis. Recent studies have shown that OAZ1 has tumor suppressor activities and its effects on cell proliferation and differentiation have been reported in several cancer cell lines. To explore the role of OAZ1 in human oral cancer, the effects of OAZ1 were studied on the proliferation and differentiation of human malignant oral cancer cell line, SCC15. MTT assay and flow cytometry analysis showed that stable OAZ1 expression in SCC15 significantly inhibited cell proliferation (P<0.001) and induced G0/G1 arrest with the G1‑phase cells increased from 55.83 to 65.26%. Morphological observation revealed the increased formation of epithelial islands. Further results from quantitative reverse transcription‑polymerase chain reaction and western blot analysis proved the upregulation of several terminal differentiation marker genes (K10, FLG and LOR) in OAZ1‑expressed SCC15 cells. To elucidate the possible mechanism of LOR upregulation by OAZ1, further experiments were performed and it was found that the OAZ1 expression inhibited Smad nuclear interacting protein 1 (SNIP1) at the protein level and RNA interference of SNIP1 in SCC15 cells, which increased the expression of LOR. These results show that OAZ1 simultaneously inhibits the proliferation and induces the differentiation of oral cancer cells in humans. The effects on cellular differentiation depend partly on the degradation of SNIP1.

Lv GQ, Zou HY, Liao LD, et al.
Identification of a novel lysyl oxidase-like 2 alternative splicing isoform, LOXL2 Δe13, in esophageal squamous cell carcinoma.
Biochem Cell Biol. 2014; 92(5):379-89 [PubMed] Related Publications
Lysyl oxidase-like 2 (LOXL2) participates in every stage of cancer progression and promotes invasion and metastasis. In this study, we identified a novel alternative splicing isoform of LOXL2, namely LOXL2 Δe13, which lacked exon 13. Deletion of exon 13 caused an open reading frame shift and produced a truncated protein. LOXL2 Δe13 was expressed ubiquitously in cell lines and tissues and was mainly localized to the cytoplasm. Although it showed impaired deamination enzymatic activity compared with full-length LOXL2, LOXL2 Δe13 promoted the cell mobility and invasion of esophageal squamous cell carcinoma (ESCC) cells to greater degrees. In further research on the mechanisms, gene expression profiling and signaling pathway analysis revealed that LOXL2 Δe13 induced the expression of MAPK8 without affecting the FAK, AKT, and ERK signaling pathways. RNAi-mediated knockdown of MAPK8 could block the cell migration promoted by LOXL2De13, but it had little effect on that of full-length LOXL2. Our data suggest that LOXL2 Δe13 modulates the effects of cancer cell migration and invasion through a different mechanism from that of full-length LOXL2 and that it may play a very important role in tumor carcinogenesis and progression.

Wu BL, Lv GQ, Zou HY, et al.
Exploration of potential roles of a new LOXL2 splicing variant using network knowledge in esophageal squamous cell carcinoma.
ScientificWorldJournal. 2014; 2014:431792 [PubMed] Free Access to Full Article Related Publications
LOXL2 (lysyl oxidase-like 2), an enzyme that catalyzes oxidative deamination of lysine residue, is upregulated in esophageal squamous cell carcinoma (ESCC). A LOXL2 splice variant LOXL2-e13 and its wild type were overexpressed in ESCC cells followed by microarray analyses. In this study, we explored the potential role and molecular mechanism of LOXL2-e13 based on known protein-protein interactions (PPIs), following microarray analysis of KYSE150 ESCC cells overexpressing a LOXL2 splice variant, denoted by LOXL2-e13, or its wild-type counterpart. The differentially expressed genes (DEGs) of LOXL2-WT and LOXL2-e13 were applied to generate individual PPI subnetworks in which hundreds of DEGs interacted with thousands of other proteins. These two DEG groups were annotated by Functional Annotation Chart analysis in the DAVID bioinformatics database and compared. These results found many specific annotations indicating the potential specific role or mechanism for LOXL2-e13. The DEGs of LOXL2-e13, comparing to its wild type, were prioritized by the Random Walk with Restart algorithm. Several tumor-related genes such as ERO1L, ITGA3, and MAPK8 were found closest to LOXL2-e13. These results provide helpful information for subsequent experimental identification of the specific biological roles and molecular mechanisms of LOXL2-e13. Our study also provides a work flow to identify potential roles of splice variants with large scale data.

Hase H, Jingushi K, Ueda Y, et al.
LOXL2 status correlates with tumor stage and regulates integrin levels to promote tumor progression in ccRCC.
Mol Cancer Res. 2014; 12(12):1807-17 [PubMed] Related Publications
UNLABELLED: Clear cell renal cell carcinoma (ccRCC) is the most common histologically defined subtype of renal cell carcinoma (RCC). To define the molecular mechanism in the progression of ccRCC, we focused on LOX-like protein 2 (LOXL2), which is critical for the first step in collagen and elastin cross-linking. Using exon array analysis and quantitative validation, LOXL2 was shown to be significantly upregulated in clinical specimens of human ccRCC tumor tissues, compared with adjacent noncancerous renal tissues, and this elevated expression correlated with the pathologic stages of ccRCC. RNAi-mediated knockdown of LOXL2 resulted in marked suppression of stress-fiber and focal adhesion formation in ccRCC cells. Moreover, LOXL2 siRNA knockdown significantly inhibited cell growth, migration, and invasion. Mechanistically, LOXL2 regulated the degradation of both integrins α5 (ITGAV5) and β1 (ITGB1) via protease- and proteasome-dependent systems. In clinical ccRCC specimens, the expression levels of LOXL2 and integrin α5 correlated with the pathologic tumor grades. In conclusion, LOXL2 is a potent regulator of integrin α5 and integrin β1 protein levels and functions in a tumor-promoting capacity in ccRCC.
IMPLICATIONS: This is the first report demonstrating that LOXL2 is highly expressed and involved in ccRCC progression by regulating the levels of integrins α5 and β1.

Yang Z, Yu B, Zhu J, et al.
A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia.
Nanoscale. 2014; 6(16):9742-51 [PubMed] Free Access to Full Article Related Publications
The siRNA LOR-1284 targets the R2 subunit of ribonucleotide reductase (RRM2) and has shown promise in cancer therapy. In this study, transferrin (Tf) conjugated lipid nanoparticles (Tf-NP-LOR-1284) were synthesized by microfluidic hydrodynamic focusing (MHF) and evaluated for the targeted delivery of LOR-1284 siRNA into acute myeloid leukemia (AML) cells. The in vitro study showed that Tf-NP-LOR-1284 can protect LOR-1284 from serum nuclease degradation. Selective uptake of Tf-NP-LOR-1284 was observed in MV4-11 cells. In addition, qRT-PCR and Western blot results revealed that Tf-NP-LOR-1284 was more effective than the free LOR-1284 in reducing the R2 mRNA and protein levels. The Tf-NP-LOR-1284 showed prolonged circulation time and increased AUC after i.v. administration relative to the free LOR-1284. Furthermore, Tf-NP-LOR-1284 facilitated increased accumulation at the tumor site along with the decreased R2 mRNA and protein expression in a murine xenograft model. These results suggest that Tf-conjugated NPs prepared by MHF provide a suitable platform for efficient and specific therapeutic delivery of LOR-1284 into AML cells.

Relógio A, Thomas P, Medina-Pérez P, et al.
Ras-mediated deregulation of the circadian clock in cancer.
PLoS Genet. 2014; 10(5):e1004338 [PubMed] Free Access to Full Article Related Publications
Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

Xu J, Li D, Li X, et al.
67 laminin receptor promotes the malignant potential of tumour cells up-regulating lysyl oxidase-like 2 expression in cholangiocarcinoma.
Dig Liver Dis. 2014; 46(8):750-7 [PubMed] Related Publications
BACKGROUND: 67 laminin receptor (67LR) plays an important role in the invasion and metastasis of cholangiocarcinoma, but its mechanism remains unclear.
AIMS: We investigated the clinical significance of 67LR and its relation to lysyl oxidase-like 2 (LOXL2) in 67LR-mediated invasion and metastasis in cholangiocarcinoma.
METHODS: The clinical significance of 67LR and LOXL2 expression and the prognosis of patients were investigated in 73 cancerous and 32 paracancerous tissues by immunohistochemistry. The impact of LOXL2 on invasion, metastasis and 67LR expression was evaluated in cholangiocarcinoma cells by shRNA or expressed-plasmid transfection.
RESULTS: Expression of 67LR was recognized in 35.62% cholangiocarcinoma tissue, and none in paracancerous tissues. LOXL2 was positively correlated with expression of 67LR. Expression of 67LR or LOXL2 in cholangiocarcinomas was significantly associated with lymph node metastasis, differentiation and poor overall survival. Cox analysis showed that 67LR can act as an independent prognostic biomarker of prognosis in cholangiocarcinoma patients. Expression of LOXL2 decreased by knockdown of 67LR and increased by overexpression of 67LR in cholangiocarcinoma cells. Knockdown of LOXL2 reduced invasion and metastasis in vitro and in vivo.
CONCLUSION: 67LR may regulate the expression of LOXL2 to promote invasion and metastasis in cholangiocarcinoma cells. It could be used as an independent prognostic marker in cholangiocarcinoma patients.

Wu BL, Zou HY, Lv GQ, et al.
Protein-protein interaction network analyses for elucidating the roles of LOXL2-delta72 in esophageal squamous cell carcinoma.
Asian Pac J Cancer Prev. 2014; 15(5):2345-51 [PubMed] Related Publications
Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

Canesin G, Cuevas EP, Santos V, et al.
Lysyl oxidase-like 2 (LOXL2) and E47 EMT factor: novel partners in E-cadherin repression and early metastasis colonization.
Oncogene. 2015; 34(8):951-64 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) has been associated with increased aggressiveness and acquisition of migratory properties providing tumor cells with the ability to invade into adjacent tissues. Downregulation of E-cadherin, a hallmark of EMT, is mediated by several transcription factors (EMT-TFs) that act also as EMT inducers, among them, Snail1 and the bHLH transcription factor E47. We previously described lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase family, as a Snail1 regulator and EMT inducer. Here we show that LOXL2 is also an E47-interacting partner and functionally collaborates in the repression of E-cadherin promoter. Loss and gain of function analyses combined with in vivo studies in syngeneic breast cancer models demonstrate the participation of LOXL2 and E47 in tumor growth and their requirement for lung metastasis. Furthermore, LOXL2 and E47 contribute to early steps of metastatic colonization by cell and noncell autonomous functions regulating the recruitment of bone marrow progenitor cells to the lungs and by direct transcriptional regulation of fibronectin and cytokines TNFα, ANG-1 and GM-CSF. Moreover, fibronectin and GM-CSF proved to be necessary for LOXL2/E47-mediated modulation of tumor growth and lung metastasis.

Díaz-Martín J, Díaz-López A, Moreno-Bueno G, et al.
A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition.
J Pathol. 2014; 232(3):319-29 [PubMed] Related Publications
Although it is becoming clear that certain miRNAs fulfil a fundamental role in the regulation of the epithelial-to-mesenchymal transition (EMT), a comprehensive study of the miRNAs associated with this process has yet to be performed. Here, we profiled the signature of miRNA expression in an in vitro model of EMT, ectopically expressing in MDCK cells one of seven EMT transcription factors (SNAI1, SNAI2, ZEB1, ZEB2, TWIST1, TWIST2 or E47) or the EMT inducer LOXL2. In this way, we identified a core subset of deregulated miRNAs that were further validated in vivo, studying endometrial carcinosarcoma (ECS), a tumour entity that represents an extreme example of phenotypic plasticity. Moreover, epigenetic silencing through DNA methylation of miRNA genes of the miR-200 family and miR-205 that are down-regulated during EMT was evident in both the in vitro (MDCK transfectants) and in vivo (ECS) models of EMT. The strong correlation between expression and DNA methylation suggests a major role for this epigenetic mark in the regulation of the miR-141-200c locus.

Moon HJ, Finney J, Xu L, et al.
MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro.
J Biol Chem. 2013; 288(42):30000-8 [PubMed] Free Access to Full Article Related Publications
LOXL2 is a copper- and lysine tyrosylquinone-dependent amine oxidase that has been proposed to function both extracellularly and intracellularly to activate oncogenic signaling pathways leading to EMT and invasion of breast cancer cells. In this study, we selected MCF-7 cells that stably express forms of recombinant LOXL2 differing in their subcellular localizations and catalytic competencies. This enabled us to dissect the molecular functions of intracellular and extracellular LOXL2s and examine their contributions to breast cancer metastasis/invasion. We discovered that secreted LOXL2 (~100-kDa) is N-glycosylated at Asn-455 and Asn-644, whereas intracellular LOXL2 (~75-kDa) is nonglycosylated and N-terminally processed, and is primarily associated with the nucleus. Both forms of LOXL2 can oxidize lysine in solution. However, we found that expression of intracellular LOXL2 is more strongly associated with EMT and invasiveness than secreted LOXL2 in vitro. The results indicate that nuclear associated LOXL2 contributes to the stabilization of Snail1 transcription factor at the protein level to induce EMT and promote invasion in vitro, through repression of E-cadherin, occludin, and estrogen receptor-α, and up-regulation of vimentin, fibronectin, and MT1-MMP.

Chang J, Nicolau MM, Cox TR, et al.
LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling.
Breast Cancer Res. 2013; 15(4):R67 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expression in normal mammary epithelial cells to gain insight into how LOXL2 mediates cancer progression.
METHODS: LOXL2 was expressed in MCF10A normal human mammary epithelial cells. The 3D acinar morphogenesis of these cells was assessed, as well as the ability of the cells to form branching structures on extracellular matrix (ECM)-coated surfaces. Transwell-invasion assays were used to assess the invasive properties of the cells. Clinically relevant inhibitors of ErbB2, lapatinib and Herceptin (traztuzumab), were used to investigate the role of ErbB2 signaling in this model. A retrospective study on a previously published breast cancer patient dataset was carried out by using Disease Specific Genomic Analysis (DSGA) to investigate the correlation of LOXL2 mRNA expression level with metastasis and survival of ErbB2-positive breast cancer patients.
RESULTS: Fluorescence staining of the acini revealed increased proliferation, decreased apoptosis, and disrupted polarity, leading to abnormal lumen formation in response to LOXL2 expression in MCF10A cells. When plated onto ECM, the LOXL2-expressing cells formed branching structures and displayed increased invasion. We noted that LOXL2 induced ErbB2 activation through reactive oxygen species (ROS) production, and ErbB2 inhibition by using Herceptin or lapatinib abrogated the effects of LOXL2 on MCF10A cells. Finally, we found LOXL2 expression to be correlated with decreased overall survival and metastasis-free survival in breast cancer patients with ErbB2-positive tumors.
CONCLUSIONS: These findings suggest that LOXL2 expression in normal epithelial cells can induce abnormal changes that resemble oncogenic transformation and cancer progression, and that these effects are driven by LOXL2-mediated activation of ErbB2. LOXL2 may also be a beneficial marker for breast cancer patients that could benefit most from anti-ErbB2 therapy.

Ahn SG, Dong SM, Oshima A, et al.
LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients.
Breast Cancer Res Treat. 2013; 141(1):89-99 [PubMed] Related Publications
Lysyl oxidase-like 2 (LOXL2) is associated with invasiveness and metastasis in breast cancer. We analyzed the prognostic impact of LOXL2 for breast cancer patients and investigated the role of LOXL2 in breast cancer cell lines. Immunohistochemical study of LOXL2 expression was done in samples from 309 patients. Survival analysis was performed using log-rank test and Cox regression hazard model. After identification of LOXL2 expression in breast cancer cell lines, we performed matrigel invasion and wound-healing assays with LOXL2-silenced cell lines. In the human study, LOXL2 was expressed in 16.2 % of patients. Comparing the LOXL2-positive versus negative groups, there was a significantly higher proportion of estrogen receptor-negative patients (54.0 vs. 37.0 %, respectively; p = 0.029) and triple-negative patients (34.0 vs. 18.0 %; p = 0.022) in the positive group. In multivariate analysis for overall survival and metastasis-free survival, positive LOXL2 was demonstrated as a poor prognostic factor (HR 2.27 and 2.10, respectively). In vitro study indicated that LOXL2 silencing induces a mesenchymal-epithelial transition-like process in basal cell lines (MDA-MB-231 and BT549) associated with decreased invasive and migratory properties. These clinical and preclinical data confirm that higher LOXL2 expression is associated with invasiveness of basal-like breast cancer cells and lower survival of breast cancer patients. Our results suggest the clinical value of LOXL2 as a therapeutic target in breast cancer.

Yang J, Du X
Genomic and molecular aberrations in malignant peripheral nerve sheath tumor and their roles in personalized target therapy.
Surg Oncol. 2013; 22(3):e53-7 [PubMed] Related Publications
Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors with a high rate of local recurrence and a significant tendency to metastasize. Its dismal outcome points to the urgent need to establish better therapeutic strategies for patients harboring MPNSTs. The investigations of genomic and molecular aberrations in MPNSTs which detect many chromosomal aberrations, pathway abnormalities, and specific molecular aberrant events would supply multiple potential therapy targets and contribute to achievement of personalized medicine. The involved genes in the significant gains aberrations include BIRC5, CCNE2, DAB2, DDX15, EGFR, DAB2, MSH2, CDK6, HGF, ITGB4, KCNK12, LAMA3, LOXL2, MET, and PDGFRA. The involved genes in the significant deletion aberrations include CDH1, GLTSCR2, EGR1, CTSB, GATA3, SULT2A1, GLTSCR2, HMMR/RHAMM, LICAM2, MMP13, p16/INK4a, RASSF2, NM-23H1, and TP53. These genetic aberrations involve in several important signaling pathways such as TFF, EGFR, ARF, IGF1R signaling pathways. The genomic and molecular aberrations of EGFR, IGF1R, SOX9, EYA4, TOP2A, ETV4, and BIRC5 exhibit great promise as personalized therapeutic targets for MPNST patients.

Lin ZY, Chuang WL
Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts.
Kaohsiung J Med Sci. 2013; 29(6):312-8 [PubMed] Related Publications
Cancer-associated fibroblast (CAF) is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 26 (CCL26), interleukin 6 (IL6), and lysyl oxidase-like 2 (LOXL2) genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC) cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH) and two human CAF cell lines (F26/KMUH, F28/KMUH) were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005) and migration (all p < 0.0001) of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001). Eleven up-regulated cancer-promoting genes, including apelin (APLN), CCL2, CCL26, fibroblast growth factor 1 (FGF1), fibroblast growth factor 2 (FGF2), IL6, mucin 1 (MUC1), LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA), phosphoglycerate kinase 1 (PGK1), and vascular endothelial growth factor A (VEGFA) detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene was consistently down-regulated caused by both HCC cell lines in F26/KMUH CAFs. Besides PGK1 gene, HCC38/KMUH cancer cells only up-regulated APLN, LOXL2, and VEGFA genes and HCC24/KMUH cancer cells only up-regulated FGF2 gene in F26/KMUH CAFs. In conclusion, HCC cells can promote proliferation and migration of CAFs. However, the impact of HCC cells on differential expressions of cancer-promoting genes in CAFs is influenced by the characteristics of CAFs. This implies that blocking single or several particular cancer-promoting genes in CAFs is unable to become a common stratagem for the treatment of HCC.

Tadmor T, Bejar J, Attias D, et al.
The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms.
Am J Hematol. 2013; 88(5):355-8 [PubMed] Related Publications
Myeloproliferative neoplasms (MPNs) are malignant disorders originating from clonal expansion of a single neoplastic stem cell and characteristically show an increase in bone marrow reticulin fibers. Lysyl oxidases (LOXs) are copper-dependent amine oxidases that play a critical role in the biogenesis of connective tissue by crosslinking extracellular matrix proteins, collagen and elastin. Expression of LOX gene family members is increased in disorders associated with increased fibrosis. To evaluate involvement of LOX gene family in various MPNs. In-situ hybridization was used to detect Lysyl-Oxidase family members in bone marrow biopsies from patients with different MPNs. We compared normal bone marrows and those from patients with polycythemia vera, essential thrombocythemia, chronic myeloid leukemia, and primary myelofibrosis (PMF). Serum levels of lysyl-oxidase from patients with PMF and healthy controls were also examined. LOX gene family was not detected in normal bone marrows. All members of the LOX gene family were over expressed in PMF. In other MPNs a differential pattern of expression was observed. Differences in gene expression were statistically significant (P < 0.010). The medianserum LOX levels in normal controls was 28.4 ± 2.5 ng\ml and 44.6 ± 9.44 ng\ml in PMF (P = 0.02). The varying pattern of expression of LOX genes may reflect differences in the pathophysiology of bone marrow fibrosis in these MPNs. These observations could be used as the basis for future targeted therapy directed against bone marrow fibrosis.

Maliszewska A, Leandro-Garcia LJ, Castelblanco E, et al.
Differential gene expression of medullary thyroid carcinoma reveals specific markers associated with genetic conditions.
Am J Pathol. 2013; 182(2):350-62 [PubMed] Related Publications
Medullary thyroid carcinoma accounts for 2% to 5% of thyroid malignancies, of which 75% are sporadic and the remaining 25% are hereditary and related to multiple endocrine neoplasia type 2 syndrome. Despite a genotype-phenotype correlation with specific germline RET mutations, knowledge of pathways specifically associated with each mutation and with non-RET-mutated sporadic MTC remains lacking. Gene expression patterns have provided a tool for identifying molecular events related to specific tumor types and to different clinical features that could help identify novel therapeutic targets. Using transcriptional profiling of 49 frozen MTC specimens classified as RET mutation, we identified PROM1, LOXL2, GFRA1, and DKK4 as related to RET(M918T) and GAL as related to RET(634) mutation. An independent series of 19 frozen and 23 formalin-fixed, paraffin-embedded (FFPE) MTCs was used for validation by RT-qPCR. Two tissue microarrays containing 69 MTCs were available for IHC assays. According to pathway enrichment analysis and gene ontology biological processes, genes associated with the MTC(M918T) group were involved mainly in proliferative, cell adhesion, and general malignant metastatic effects and with Wnt, Notch, NFκB, JAK/Stat, and MAPK signaling pathways. Assays based on silencing of PROM1 by siRNAs performed in the MZ-CRC-1 cell line, harboring RET(M918T), caused an increase in apoptotic nuclei, suggesting that PROM1 is necessary for survival of these cells. This is the first report of PROM1 overexpression among primary tumors.

Luo W, Chang R, Zhong J, et al.
Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression.
Proc Natl Acad Sci U S A. 2012; 109(49):E3367-76 [PubMed] Free Access to Full Article Related Publications
Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that play key roles in breast cancer biology. We hypothesized that interaction of HIF-1 with epigenetic regulators may increase HIF-1 transcriptional activity, and thereby promote breast cancer progression. We report that the histone demethylase jumonji domain containing protein 2C (JMJD2C) selectively interacts with HIF-1α, but not HIF-2α, and that HIF-1α mediates recruitment of JMJD2C to the hypoxia response elements of HIF-1 target genes. JMJD2C decreases trimethylation of histone H3 at lysine 9, and enhances HIF-1 binding to hypoxia response elements, thereby activating transcription of BNIP3, LDHA, PDK1, and SLC2A1, which encode proteins that are required for metabolic reprogramming, as well as LOXL2 and L1CAM, which encode proteins that are required for lung metastasis. JMJD2C expression is significantly associated with expression of GLUT1, LDHA, PDK1, LOX, LOXL2, and L1CAM mRNA in human breast cancer biopsies. JMJD2C knockdown inhibits breast tumor growth and spontaneous metastasis to the lungs of mice following mammary fat pad injection. Taken together, these findings establish an important epigenetic mechanism that stimulates HIF-1-mediated transactivation of genes encoding proteins involved in metabolic reprogramming and lung metastasis in breast cancer.

Semenza GL
Molecular mechanisms mediating metastasis of hypoxic breast cancer cells.
Trends Mol Med. 2012; 18(9):534-43 [PubMed] Free Access to Full Article Related Publications
Breast cancers contain regions of intratumoral hypoxia in which reduced O(2) availability activates the hypoxia-inducible factors HIF-1 and HIF-2, which increase the transcription of genes encoding proteins that are required for many important steps in cancer progression. Recently, HIFs have been shown to play critical roles in the metastasis of breast cancer to the lungs through the transcriptional activation of genes encoding angiopoietin-like 4 and L1 cell adhesion molecule, which promote the extravasation of circulating cancer cells from the lung vasculature, and the lysyl oxidase family members LOX, LOXL2, and LOXL4, which promote invasion and metastatic niche formation. Digoxin, a drug that inhibits HIF-1 activity, blocks primary tumor growth, vascularization, invasion, and metastasis in ex vivo and in vivo assays.

Tanaka T, Yamaguchi J, Shoji K, Nangaku M
Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host.
J Biol Chem. 2012; 287(42):34866-82 [PubMed] Free Access to Full Article Related Publications
Anthracycline chemotherapeutic agents of the topoisomerase inhibitor family are widely used for the treatment of various tumors. Although targeted tumor tissues are generally situated in a hypoxic environment, the connection between efficacy of anthracycline agents and cellular hypoxia response has not been investigated in depth. Here, we report that doxorubicin (DXR) impairs the transcriptional response of the hypoxia-inducible factor (HIF) by inhibiting the binding of the HIF heterodimer to the consensus -RCGTG- enhancer element. This pleiotropic effect retarded migration of von Hippel-Lindau (VHL)-defective renal cell carcinoma and that of VHL-competent renal cell carcinoma in hypoxia. This effect was accompanied by a coordinated down-regulation of HIF target lysyl oxidase (LOX) family members LOX, LOX-like2 (LOXL2), and LOXL4. Furthermore, DXR suppressed HIF target genes in tumor xenografts, inhibited cardiac induction of HIF targets in rats with acute anemia, and impaired the angiogenic response in the isoproterenol-induced heart failure model, which may account for the clinical fragility of doxorubicin cardiomyopathy. Collectively, these findings highlight the impaired hypoxia response by anthracycline agents affecting both tumors and organs of the cancer host and offer a promising opportunity to develop HIF inhibitors using DXR as a chemical template.

Lin ZY, Chuang YH, Chuang WL
Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and LOXL2 genes related to promotion of cancer progression in hepatocellular carcinoma cells.
Biomed Pharmacother. 2012; 66(7):525-9 [PubMed] Related Publications
Impact of different cancer-associated fibroblast (CAF) cell lines on proliferation, migration, invasion and differential expressions of genes in different hepatocellular carcinoma (HCC) cell lines was investigated. Two human CAF cell lines (F26/KMUH, F28/KMUH) and two human HCC cell lines (HCC24/KMUH, HCC38/KMUH) were studied. Influence of F28/KMUH cells on expressions of genes in HCC38/KMUH cells was detected by microarray to select genes for further analysis. Both CAF cell lines promoted proliferation (all P<0.05), migration (all P<0.05) and Matrigel invasion (all P<0.0001) of both HCC cell lines. F26/KMUH cells showed stronger promoted effects on, firstly, proliferation of HCC24/KMUH cells (P=0.0064) and, secondly, migration of both HCC cell lines than F28/KMUH cells did (all P<0.002). Ten up-regulated genes (APLN, CCL2, CCL26, CXCR4, IL6, MUC1, LOXL2, PDGFA, PGK1, VEGFA) related to proliferation, migration, invasion and angiogenesis of HCC detected by microarray were selected for quantitative reverse transcriptase-polymerase chain reaction analysis. Both CAF cell lines had same tendency of effects on differential expressions of genes in same HCC cell line, but expressions of genes between different HCC cell lines were not consistent. Only CCL2, CCL26, IL6 and LOXL2 genes were consistently up-regulated in both HCC cell lines. In conclusion, the effects of CAFs to promote proliferation, migration and invasion of HCC cells are influenced by the characteristics of both CAFs and HCC cells. Up-regulations of CCL2, CCL26, IL6 and LOXL2 genes in cancer cells are part of the common effects of CAFs on HCC cells.

Loriot C, Burnichon N, Gadessaud N, et al.
Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations.
J Clin Endocrinol Metab. 2012; 97(6):E954-62 [PubMed] Related Publications
CONTEXT: Pheochromocytoma and paraganglioma are rare neural-crest-derived tumors. They are metastatic in 15% of cases, and the identification of a germline mutation in the SDHB gene is a predictive risk factor for malignancy and poor prognosis. To date, the link between SDHB mutations and malignancy is still missing.
OBJECTIVE: Epithelial to mesenchymal transition (EMT) is a developmental event, reactivated in cancer cells to promote cell mobility and invasiveness. The aim of this study was to address the participation of EMT in the metastatic evolution of pheochromocytoma/paraganglioma.
DESIGN AND PATIENTS: Transcriptomic profiling of EMT was performed on 188 tumor samples, using a set of 94 genes implicated in this pathway. Activation of EMT was further confirmed at protein level by immunohistochemistry in a second set of 93 tumors.
RESULTS: Hierarchical unsupervised classification showed that most SDHB-metastatic samples clustered together, indicating that EMT is differently regulated in these tumors. Major actors of EMT, metalloproteases and components of cellular junctions, were either up-regulated (LOXL2, TWIST, TCF3, MMP2, and MMP1) or down-regulated (KRT19 and CDH2) in SDHB-metastatic tumors compared with nonmetastatic ones. Interestingly, within metastatic tumors, most of these genes (LOXL2, TWIST, TCF3, MMP2, and KRT19) also allowed us to discriminate SDHB-mutated from non-SDHB-related tumors. In the second set of tumors, we studied Snail1/2 expression by immunohistochemistry and observed its specific nuclear translocation in all SDHB-metastatic tumors.
CONCLUSION: We have identified the first pathway that distinguishes SDHB-metastatic from all other types of pheochromocytomas/paragangliomas and suggest that activation of the EMT process might play a critical role in the particularly invasive phenotype of this group of tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LOXL2, Cancer Genetics Web: http://www.cancer-genetics.org/LOXL2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999