Gene Summary

Gene:LRP5; LDL receptor related protein 5
Aliases: HBM, LR3, OPS, EVR1, EVR4, LRP7, OPPG, BMND1, LRP-5, OPTA1, VBCH2
Summary:This gene encodes a transmembrane low-density lipoprotein receptor that binds and internalizes ligands in the process of receptor-mediated endocytosis. This protein also acts as a co-receptor with Frizzled protein family members for transducing signals by Wnt proteins and was originally cloned on the basis of its association with type 1 diabetes mellitus in humans. This protein plays a key role in skeletal homeostasis and many bone density related diseases are caused by mutations in this gene. Mutations in this gene also cause familial exudative vitreoretinopathy. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:low-density lipoprotein receptor-related protein 5
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (39)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Down-Regulation
  • TCF Transcription Factors
  • Receptors, LDL
  • Cell Proliferation
  • Adolescents
  • Mutation
  • Cancer Gene Expression Regulation
  • Intercellular Signaling Peptides and Proteins
  • Childhood Cancer
  • Signal Transduction
  • LDL-Receptor Related Proteins
  • cdc25 Phosphatases
  • Low Density Lipoprotein Receptor-Related Protein-5
  • Wnt-5a Protein
  • Cell Movement
  • Wnt Proteins
  • Reproducibility of Results
  • Brain and CNS Tumours
  • Neoplasm Invasiveness
  • Breast Cancer
  • Bone Cancer
  • Multiple Abnormalities
  • Neoplasm Metastasis
  • Osteoporosis
  • Eye Abnormalities
  • Pedigree
  • Frizzled Receptors
  • Transfection
  • Fetal Blood
  • Chromosome 11
  • Biomarkers, Tumor
  • Lens, Crystalline
  • Vitreous Body
  • Messenger RNA
  • Hyperplasia
  • Brain Stem Glioma, Childhood
  • Low Density Lipoprotein Receptor-Related Protein-6
  • Gene Expression Profiling
  • Proto-Oncogene Proteins
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LRP5 (cancer-related)

de Voer RM, Hahn MM, Weren RD, et al.
Identification of Novel Candidate Genes for Early-Onset Colorectal Cancer Susceptibility.
PLoS Genet. 2016; 12(2):e1005880 [PubMed] Free Access to Full Article Related Publications
Approximately 25-30% of colorectal cancer (CRC) cases are expected to result from a genetic predisposition, but in only 5-10% of these cases highly penetrant germline mutations are found. The remaining CRC heritability is still unexplained, and may be caused by a hitherto-undefined set of rare variants with a moderately penetrant risk. Here we aimed to identify novel risk factors for early-onset CRC using whole-exome sequencing, which was performed on a cohort of CRC individuals (n = 55) with a disease onset before 45 years of age. We searched for genes that were recurrently affected by rare variants (minor allele frequency ≤ 0.001) with potentially damaging effects and, subsequently, re-sequenced the candidate genes in a replication cohort of 174 early-onset or familial CRC individuals. Two functionally relevant genes with low frequency variants with potentially damaging effects, PTPN12 and LRP6, were found in at least three individuals. The protein tyrosine phosphatase PTP-PEST, encoded by PTPN12, is a regulator of cell motility and LRP6 is a component of the WNT-FZD-LRP5-LRP6 complex that triggers WNT signaling. All variants in LRP6 were identified in individuals with an extremely early-onset of the disease (≤30 years of age), and two of the three variants showed increased WNT signaling activity in vitro. In conclusion, we present PTPN12 and LRP6 as novel candidates contributing to the heterogeneous susceptibility to CRC.

Lv YF, Dai H, Yan GN, et al.
Downregulation of tumor suppressing STF cDNA 3 promotes epithelial-mesenchymal transition and tumor metastasis of osteosarcoma by the Wnt/GSK-3β/β-catenin/Snail signaling pathway.
Cancer Lett. 2016; 373(2):164-73 [PubMed] Related Publications
Epithelial to mesenchymal transition (EMT) has received considerable attention as a conceptual paradigm for explaining the invasive and metastatic behavior of cells during cancer progression. Our previous study showed that loss of expression of TSSC3 is positively associated with osteosarcoma malignancy and progression. However, whether TSSC3 mediates EMT in osteosarcoma is poorly understood. In the present study, we determined that TSSC3 downregulation induced cell migration and invasion ability and promoted mesenchymal transition of osteosarcoma cells by upregulating mesenchymal markers and inhibiting the epithelial markers. Furthermore, TSSC3 downregulation elicited a signaling cascade that included increased levels of Wnt3a and LRP5, inactivation of GSK-3β, accumulation of nuclear β-catenin and Snail, the augmented binding of β-catenin to TCF-4, and accordingly increased the expression of Wnt target genes (CD44, MMP7). The gene knockdown of these signaling proteins could inhibit TSSC3 downregulation-promoted EMT, migration, and invasion in osteosarcoma. Finally, TSSC3 overexpression obviously inhibited cell migration, invasion, and repressed mesenchymal phenotypes, reducing lung metastasis through GSK-3β activation. Collectively, TSSC3 downregulation promotes the EMT of osteosarcoma cells by regulating EMT markers via a signal transduction pathway that involves Snail, Wnt-β-catenin/TCF, and GSK-3β.

Zhou K, Xia M, Tang B, et al.
Isolation and comparison of mesenchymal stem cell‑like cells derived from human gastric cancer tissues and corresponding ovarian metastases.
Mol Med Rep. 2016; 13(2):1788-94 [PubMed] Related Publications
Mesenchymal stem cell (MSC)-like cells have been isolated from various types of tumor. It has previously been reported that MSCs are involved in tumorigenesis and its prognosis. The aim of the present study was to isolate and compare MSC-like cells from human gastric cancer (GC) and its metastatic deposits in ovarian tissue. MSC-like cells were isolated from human gastric cancer (hGC-MSCs) and the corresponding ovarian metastatic tissues (hGCOM-MSCs) from 40 patients. The characteristics of hGC-MSCs and hGCOM-MSCs, including their morphology, surface antigens, specific gene expression and differentiation potential, were similar to those of MSCs derived from human bone marrow (hBM-MSCs) but different from GC cells. In conclusion, the present study demonstrated that MSC-like cells could be isolated from GC tissue and its ovarian metastatic tissues. The existence of MSC-like cells in GC tissues and its ovarian metastatic tissues suggests that they may be a potential target for cancer therapy, and provides an experimental foundation for investigating their role in the initiation and progression of ovarian metastasis of GC.

Jin Y, Liu Y, Zhang J, et al.
The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer.
PLoS One. 2015; 10(12):e0144187 [PubMed] Free Access to Full Article Related Publications
Many studies demonstrated unique microRNA profiles in lung cancer. Nonetheless, the role and related signal pathways of miR-375 in lung cancer are largely unknown. Our study investigated relationships between carcinogenesis and miR-375 in adenocarcinoma, squamous cell carcinoma and small cell lung carcinoma to identify new molecular targets for treatment. We evaluated 723 microRNAs in microdissected cancerous cells and adjacent normal cells from 126 snap-frozen lung specimens using microarrays. We validated the expression profiles of miR-375 and its 22 putative target mRNAs in an independent cohort of 78 snap-frozen lung cancer tissues using quantitative reverse-transcriptase PCR. Moreover, we performed dual luciferase reporter assay and Western blot on 6 targeted genes (FZD8, ITGA10, ITPKB, LRP5, PIAS1 andRUNX1) in small cell lung carcinoma cell line NCI-H82. We also detected the effect of miR-375 on cell proliferation in NCI-H82. We found that miR-375 expression was significantly up-regulated in adenocarcinoma and small cell lung carcinoma but down-regulated in squamous cell carcinoma. Among the 22 putative target genes, 11 showed significantly different expression levels in at least 2 of 3 pair-wise comparisons (adenocarcinoma vs. normal, squamous cell carcinoma vs. normal or small cell lung carcinoma vs. normal). Six targeted genes had strong negative correlation with the expression level of miR-375 in small cell lung carcinoma. Further investigation revealed that miR-375 directly targeted the 3'UTR of ITPKB mRNA and over-expression of miR-375 led to significantly decreased ITPKB protein level and promoted cell growth. Thus, our study demonstrates the differential expression profiles of miR-375 in 3 subtypes of lung carcinomas and finds thatmiR-375 directly targets ITPKB and promoted cell growth in SCLC cell line.

White RF, Steele L, O'Callaghan JP, et al.
Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment.
Cortex. 2016; 74:449-75 [PubMed] Free Access to Full Article Related Publications
Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses.

Szwed M, Kania KD, Jozwiak Z
Toxicity of doxorubicin-transferrin conjugate is connected to the modulation of Wnt/β-catenin pathway in human leukemia cells.
Leuk Res. 2015; 39(10):1096-102 [PubMed] Related Publications
Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by constitutive activation of the BCR/ABL tyrosine kinase. However, the tyrosine kinase inhibitors like imatinib mesylate are not effective in the patients with advanced-stage of CML. Hence, there is an urgent need for new approaches to overcome a cancer cell's resistance in CML long term therapy. Development of new drug carriers, is presently one of the most challenging tasks in experimental oncology. In this report we investigated whether the toxicity of newly synthetized doxorubicin transferrin conjugate (DOX-TRF) may be connected to the limitation of multidrug resistance in CML cells by the alternations of Wnt/β-catenin signaling pathway. The studies were performed on human chronic myeloid leukemia cell lines sensitive (K562) and resistant (K562/DOX) to doxorubicin. Our research proves that DOX-TRF conjugate displays higher cytotoxicity toward both examined cell lines than the reference free drug (DOX) and induces more extensive pro-apoptotic changes. Moreover, by the of engagement of Wnt pathway agonist (LiCl) and antagonist (ICG 001) we demonstrate that DOX-TRF conjugate effectively reduces transcription of key genes involved in β-catenin signaling transduction trial (Wnt3a, DVL-1, FZD-3, LRP5, β-catenin, DKK2) and triggers morphology alternations of CML cells.

Li SC, Shi H, Khan M, et al.
Roles of miR-196a on gene regulation of neuroendocrine tumor cells.
Mol Cell Endocrinol. 2015; 412:131-9 [PubMed] Related Publications
This study aims at investigating miR-196a roles using in vitro models. miR-196a was detected in small intestinal neuroendocrine tumors (SI-NETs) and lung NETs. miR-196a target prediction analysis suggested HOXA9, HOXB7, LRP4 and RSPO2 genes for further investigation. The level of these four genes is detectable in SI-NET tissue specimens at different disease stages and serum samples of untreated and somatostatin analogs treated patients with liver metastases. A miR-196a inhibitor was used to silence its effects in NET cells. We show that the four target genes were significantly upregulated at transcriptional level in silenced NET cells. HOXA9, HOXB7, LRP4 and RSPO2 encoded proteins are also upregulated at translational level in miR-196a silenced NET cells. miR-196a downstream genes BMP4, ETS1, CTNNB1, FZD5, LRP5 and LRP6 were significantly upregulated at transcriptional level in miR-196a silenced CNDT2.5 and NCI-H727 cells. In addition, miR-196a clearly does not play a role in NET cell growth control.

Savelli G, Muni A
Somatostatin Receptors in an Anaplastic Oligodendroglioma Relapse Evidenced By 68Ga DOTANOC PET/CT.
Clin Nucl Med. 2015; 40(7):e363-5 [PubMed] Related Publications
Six years ago, a right frontal lobe anaplastic oligodendroglioma negative for AE1/AE3 and HBM-45, positive for 1p/19q deletion, EMA, GFAP, and synaptophysin was excised from a 50-year-old woman. Treatments that followed were radiation therapy, and surgery plus radiation therapy and temozolomide for a relapse with an early partial response, followed by disease progression. In the middle of last year, ⁶⁸Ga-DOTANOC PET/CT was carried out to evaluate the possibility of treatment with peptide receptor radionuclide therapy. The examination revealed a grossly round-shaped uptake corresponding to the surgical wall, with some smaller uptakes disseminated in different parts of the brain.

Schumann T, Adhikary T, Wortmann A, et al.
Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment.
Oncotarget. 2015; 6(15):13416-33 [PubMed] Free Access to Full Article Related Publications
The nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor associated with macrophage polarization. However, its function in tumor-associated macrophages (TAMs) has not been investigated to date. Here, we report the PPARβ/δ-regulated transcriptome and cistrome for TAMs from ovarian carcinoma patients. Comparison with monocyte-derived macrophages shows that the vast majority of direct PPARβ/δ target genes are upregulated in TAMs and largely refractory to synthetic agonists, but repressible by inverse agonists. Besides genes with metabolic functions, these include cell type-selective genes associated with immune regulation and tumor progression, e.g., LRP5, CD300A, MAP3K8 and ANGPTL4. This deregulation is not due to increased expression of PPARβ/δ or its enhanced recruitment to target genes. Instead, lipidomic analysis of malignancy-associated ascites revealed high concentrations of polyunsaturated fatty acids, in particular linoleic acid, acting as potent PPARβ/δ agonists in macrophages. These fatty acid ligands accumulate in lipid droplets in TAMs, thereby providing a reservoir of PPARβ/δ ligands. These observations suggest that the deregulation of PPARβ/δ target genes by ligands of the tumor microenvironment contributes to the pro-tumorigenic polarization of ovarian carcinoma TAMs. This conclusion is supported by the association of high ANGPTL4 expression with a shorter relapse-free survival in serous ovarian carcinoma.

Ren DN, Chen J, Li Z, et al.
LRP5/6 directly bind to Frizzled and prevent Frizzled-regulated tumour metastasis.
Nat Commun. 2015; 6:6906 [PubMed] Related Publications
How Wnt signalling including canonical and non-canonical pathways are initiated at the cell surface is not completely understood. Here we report that Wnt receptor Frizzled (Frz) and theco-receptors LRP5 and LRP6 (LRP5/6) directly interact with each other and this interaction is regulated by the LRP6 ectodomain. Importantly, through direct binding to Frz, LRP5/6 are able to prevent Frz-regulated non-canonical pathway activation and further non-canonical pathway-mediated tumour metastasis. Knockdown of endogenous LRP5/6 promotes otherwise-nonaggressive tumour cells to migrate in vitro, whereas a soluble recombinant protein of LRP6 ectodomain suppresses migration and metastasis of otherwise-aggressive tumour cells in vitro and in vivo. Furthermore, the expression level of membrane LRP5/6 correlates inversely with metastasis in mouse and human breast cancer. Our study suggests a previously unrecognized mode of receptor interaction, revealing the mechanism of LRP5/6 in inhibition of non-canonical pathway, and a possible clinical use of the LRP6 ectodomain to impede metastasis.

Ji T, Guo Y, Kim K, et al.
Neuropilin-2 expression is inhibited by secreted Wnt antagonists and its down-regulation is associated with reduced tumor growth and metastasis in osteosarcoma.
Mol Cancer. 2015; 14:86 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neuropilin 2 (NRP2) isa multi-functional co-receptor to many receptors, including VEGF receptor, c-Met and others. NRP2 has recently been implicated in tumor angiogenesis, growth, and metastasis of many other cancers. However, its role in osteosarcoma remains poorly understood.
RESULTS: NRP2 was overexpressed in osteosarcoma cell lines and tissues, and associated with poor survival of osteosarcoma patients. Knockdown of NRP2 expression by short-hairpin (Sh) RNA resulted in reduced tumor growth, metastasis, and blood vessel formation of osteosarcoma. Knockdown of NRP2 expression by ShRNA also inhibited the recruitment of HUVEC cells to osteosarcoma cells. Inhibition of Wnt signaling by overexpression of secreted Wnt antagonists soluble LRP5, Frzb, and WIF1 markedly down-regulated mRNA and protein expression of NRP2 in osteosarcoma cell lines.
CONCLUSIONS: Regulation of NRP2 receptor expression may represent a novel approach for treatment of osteosarcoma through retarding osteosarcoma growth, metastasis and blood vessel formation. In addition, down-regulation of NRP2 expression can be achieved by expression of secreted Wnt antagonists.

López-Knowles E, Wilkerson PM, Ribas R, et al.
Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer.
Breast Cancer Res. 2015; 17:35 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach.
METHODS: Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n=84), gene expression profiling (n=47), matched pre- and post-AI aCGH (n=19 pairs) and Ki67-based AI-response analysis (n=39).
RESULTS: Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1).
CONCLUSIONS: These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response.

Verdelli C, Avagliano L, Creo P, et al.
Tumour-associated fibroblasts contribute to neoangiogenesis in human parathyroid neoplasia.
Endocr Relat Cancer. 2015; 22(1):87-98 [PubMed] Related Publications
Components of the tumour microenvironment initiate and promote cancer development. In this study, we investigated the stromal component of parathyroid neoplasia. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) showed an abundant periacinar distribution of α-SMA(+) cells in normal parathyroid glands (n=3). This pattern was progressively lost in parathyroid adenomas (PAds; n=6) where α-SMA(+)cells were found to surround new microvessels, as observed in foetal parathyroid glands (n=2). Moreover, in atypical adenomas (n=5) and carcinomas (n=4), α-SMA(+) cells disappeared from the parenchyma and accumulated in the capsula and fibrous bands. At variance with normal glands, parathyroid tumours (n=37) expressed high levels of fibroblast-activation protein (FAP) transcripts, a marker of tumour-associated fibroblasts. We analysed the ability of PAd-derived cells to activate fibroblasts using human bone-marrow mesenchymal stem cells (hBM-MSCs). PAd-derived cells induced a significant increase in FAP and vascular endothelial growth factor A (VEGFA) mRNA levels in co-cultured hBM-MSCs. Furthermore, the role of the calcium-sensing receptor (CASR) and of the CXCL12/CXCR4 pathway in the PAd-induced activation of hBM-MSCs was investigated. Treatment of co-cultures of hBM-MSCs and PAd-derived cells with the CXCR4 inhibitor AMD3100 reduced the stimulated VEGFA levels, while CASR activation by the R568 agonist was ineffective. PAd-derived cells co-expressing parathyroid hormone (PTH)/CXCR4 and PTH/CXCL12 were identified by FACS, suggesting a paracrine/autocrine signalling. Finally, CXCR4 blockade by AMD3100 reduced PTH gene expression levels in PAd-derived cells. In conclusion, i) PAd-derived cells activated cells of mesenchymal origin; ii) PAd-associated fibroblasts were involved in tumuor neoangiogenesis and iii) CXCL12/CXCR4 pathway was expressed and active in PAd cells, likely contributing to parathyroid tumour neoangiogenesis and PTH synthesis modulation.

Xu X, Xu L, Gao F, et al.
Identification of a novel gene fusion (BMX-ARHGAP) in gastric cardia adenocarcinoma.
Diagn Pathol. 2014; 9:218 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cardia adenocarcinoma (GCA) is one of the major causes of cancer related mortality worldwide. We aim to provide new understanding in the pathogenesis of GCA through investigations on gene expression alterations.
METHODS: We preformed RNA-Seq for one pair of GCA and matched non-tumor tissues. Differentially expressed genes (DEGs) and fusion genes were acquired. PCR and gel analysis in additional 14 pairs of samples were performed to validate the chimeric transcripts.
RESULTS: 1590 up-regulated and 709 down-regulated genes were detected. Functional analysis revealed that these DEGs were significantly overrepresented in gene ontology items of cell cycle, tumor invasion and proliferation. Moreover, we firstly discovered 3 fusion genes in GCA, including BMX-ARHGAP, LRP5- LITAF and CBX3-C15orf57. The chimeric transcript BMX-ARHGAP was validated and recurrently occurred in 4/15 independent tumor tissues.
CONCLUSIONS: Our results may provide new understanding of GCA and biomarkers for further therapeutic studies.
VIRTUAL SLIDES: The virtual slide(s) for this article can be found here:

Klauzinska M, Castro NP, Rangel MC, et al.
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition.
Semin Cancer Biol. 2014; 29:51-8 [PubMed] Free Access to Full Article Related Publications
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.

Farkas SA, Vymetalkova V, Vodickova L, et al.
DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes.
Epigenomics. 2014; 6(2):179-91 [PubMed] Related Publications
AIM: The onset and progression of colorectal cancer (CRC) involves a cascade of genetic and/or epigenetic events. The aim of the present study was to address the DNA methylation status of genes relevant in colorectal carcinogenesis and its progression, such as genes frequently mutated in CRC, genes involved in the DNA repair and Wnt signaling pathway.
MATERIAL & METHODS: We analyzed methylation status in totally 160 genes in 12 paired colorectal tumors and adjacent healthy mucosal tissues using the Illumina Infinium Human Methylation 450 BeadChip.
RESULTS: We found significantly aberrant methylation in 23 genes (NEIL1, NEIL3, DCLRE1C, NHEJ1, GTF2H5, CCNH, CTNNB1, DKK2, DKK3, FZD5 LRP5, TLE3, WNT2, WNT3A, WNT6, TCF7L1, CASP8, EDNRB1, GPC6, KIAA1804, MYO1B, SMAD2 and TTN). External validation by mRNA expression showed a good agreement between hypermethylation in cancer and down-regulated mRNA expression of the genes EDNRB1, GPC6 and SMAD2, and between hypomethylation and up-regulated mRNA expression of the CASP8 and DCLRE1C genes.
CONCLUSION: Aberrant methylation of the DCLRE1C and GPC6 genes are presented here for the first time and are therefore of special interest for further validation as novel candidate biomarker genes in CRC, and merit further validation with specific assays.

Cnossen WR, te Morsche RH, Hoischen A, et al.
Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis.
Proc Natl Acad Sci U S A. 2014; 111(14):5343-8 [PubMed] Free Access to Full Article Related Publications
Polycystic livers are seen in the rare inherited disorder isolated polycystic liver disease (PCLD) and are recognized as the most common extrarenal manifestation in autosomal dominant polycystic kidney disease. Hepatic cystogenesis is characterized by progressive proliferation of cholangiocytes, ultimately causing hepatomegaly. Genetically, polycystic liver disease is a heterogeneous disorder with incomplete penetrance and caused by mutations in PRKCSH, SEC63, PKD1, or PKD2. Genome-wide SNP typing and Sanger sequencing revealed no pathogenic variants in hitherto genes in an extended PCLD family. We performed whole-exome sequencing of DNA samples from two members. A heterozygous variant c.3562C > T located at a highly conserved amino acid position (p.R1188W) in the low density lipoprotein receptor-related protein 5 (LRP5) gene segregated with the disease (logarithm of odds score, 4.62) but was not observed in more than 1,000 unaffected individuals. Screening of LRP5 in a PCLD cohort identified three additional mutations in three unrelated families with polycystic livers (p.V454M, p.R1529S, and p.D1551N), again all undetected in controls. All variants were predicted to be damaging with profound structural effects on LRP5 protein domains. Liver cyst tissue and normal hepatic tissue samples from patients and controls showed abundant LRP5 expression by immunohistochemistry. Functional activity analyses indicated that mutant LRP5 led to reduced wingless signal activation. In conclusion, we demonstrate that germ-line LRP5 missense mutations are associated with hepatic cystogenesis. The findings presented in this study link the pathophysiology of PCLD to deregulation of the canonical wingless signaling pathway.

Rabbani SA, Arakelian A, Farookhi R
LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo.
Cancer Med. 2013; 2(5):625-35 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) is a common hormone-dependent malignancy associated with the development of skeletal metastases. This is due to the increased expression of a number of growth factors, cytokines, and proteases which collectively drive the metastatic cascade in general and increased propensity to develop skeletal metastasis in particular. While a number of signaling pathways have been implicated in PCa progression, the highly complex wnt/β-catenin pathway is unique due to its ability to regulate gene expression, cell invasion, migration, survival, proliferation, and differentiation to contribute in the initiation and progression of PCa. Members of the wnt family bind to the Frizzle proteins or lipoprotein-related receptor proteins 5, 6 (LRP5, -6) to activate this key pathway. In the current study, we have investigated the role of wnt/β-catenin pathway in PCa progression, skeletal metastasis, and gene expression using the dominant negative plasmid of LRP5 (DN-LRP5) and human PCa cells PC-3. Inactivation of LRP5 resulted in mesenchymal to epithelial shift, lack of translocation of β-catenin to cell surface, increased tumor cell proliferation, decreased colony formation, migration and invasion in vitro. These effects were attributed to decreased expression of pro-invasive and pro-metastatic genes. In in vivo studies, PC-3-DN-LRP5 cells developed significantly smaller tumors and a marked decrease in skeletal lesion area and number as determined by X-ray, micro (μ) CT and histological analysis. Collectively results from these studies demonstrate the dominant role of this key pathway in PCa growth and skeletal metastasis and its potential as a viable therapeutic target.

Shi ZZ, Jiang YY, Hao JJ, et al.
Identification of putative target genes for amplification within 11q13.2 and 3q27.1 in esophageal squamous cell carcinoma.
Clin Transl Oncol. 2014; 16(7):606-15 [PubMed] Related Publications
BACKGROUND: Genomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes and candidate copy number driving genes in esophageal squamous cell carcinoma (ESCC).
METHODS: We used array comparative genomic hybridization to identify recurrent genomic alterations and screened the candidate targets of selected amplification regions by quantitative and semi-quantitative RT-PCR.
RESULTS: Thirty-four gains and 16 losses occurred in more than 50 % of ESCCs. High-level amplifications at 7p11.2, 8p12, 8q24.21, 11q13.2-q13.3, 12p11.21, 12q12 and homozygous deletions at 2q22.1, 8p23.1-p21.2, 9p21.3 and 14q11.2 were also identified. 11q13.2 was a frequent amplification region, in which five genes including CHKA, GAL, KIAA1394, LRP5 and PTPRCAP were overexpressed in tumor tissues than paracancerous normal tissues. The expression of ALG3 at 3q27.1 was higher in ESCCs, especially in patients with lymph node metastasis.
CONCLUSIONS: Target gene identification of amplifications or homozygous deletions will help to reveal the mechanism of tumor formation and explore new therapy method.

Wu XQ, Huang C, He X, et al.
Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer.
Cell Signal. 2013; 25(12):2462-8 [PubMed] Related Publications
Telomerase reverse transcriptase (TERT) is the catalytic component of telomerase, especially the rate-limiting determinant of telomerase activity. So far, TERT has been reported to be over-expressed in more than 90% of cancers, thereby playing a critical role in sustained proliferation and survival potentials of various cancer cells. Over the past decade, a comprehensive network of transcription factors has been shown to be involved in the regulation of TERT. Furthermore, accumulating evidence has suggested that TERT could modulate the expression of numerous genes involved in diverse group of cellular processes, including cell cycle regulation and cellular signaling. Therefore, it indicates that TERT is both an effector and a regulator in carcinoma. However, the mechanisms of the interaction between TERT and its target genes are still not fully understood. Thus, it is necessary to consolidate and summarize recent developments of the cross-talk between TERT and related genes in cancer cells or other cells with cancer cell characteristics, and elucidate these relevant mechanisms. In this review, we focus on various signaling pathways and genes that participate in the feedback regulation of TERT and the underlying feedback loop mechanism of TERT, further providing new insights into non-telomeric functions of telomerase and potentially to be used as a novel therapeutic target for cancer.

Knoblich K, Wang HX, Sharma C, et al.
Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation.
Cell Mol Life Sci. 2014; 71(7):1305-14 [PubMed] Related Publications
Ablation of tetraspanin protein TSPAN12 from human MDA-MB-231 cells significantly decreased primary tumor xenograft growth, while increasing tumor apoptosis. Furthermore, TSPAN12 removal markedly enhanced tumor-endothelial interactions and increased metastasis to mouse lungs. TSPAN12 removal from human MDA-MB-231 cells also caused diminished association between FZD4 (a key canonical Wnt pathway receptor) and its co-receptor LRP5. The result likely explains substantially enhanced proteosomal degradation of β-catenin, a key effecter of canonical Wnt signaling. Consistent with disrupted canonical Wnt signaling, TSPAN12 ablation altered expression of LRP5, Naked 1 and 2, DVL2, DVL3, Axin 1, and GSKβ3 proteins. TSPAN12 ablation also altered expression of several genes regulated by β-catenin (e.g. CCNA1, CCNE2, WISP1, ID4, SFN, ME1) that may help to explain altered tumor growth and metastasis. In conclusion, these results provide the first evidence for TSPAN12 playing a role in supporting primary tumor growth and suppressing metastasis. TSPAN12 appears to function by stabilizing FZD4-LRP5 association, in support of canonical Wnt-pathway signaling, leading to enhanced β-catenin expression and function.

Parviainen H, Schrade A, Kiiveri S, et al.
Expression of Wnt and TGF-β pathway components and key adrenal transcription factors in adrenocortical tumors: association to carcinoma aggressiveness.
Pathol Res Pract. 2013; 209(8):503-9 [PubMed] Free Access to Full Article Related Publications
Factors controlling benign and malignant adrenocortical tumorigenesis are largely unknown, but several mouse models suggest an important role for inhibin-alpha (INHA). To show that findings in the mouse are relevant to human tumors and clinical outcome, we investigated the expression of signaling proteins and transcription factors involved in the regulation of INHA in human tumor samples⋅ Thirty-one adrenocortical tumor samples, including 13 adrenocortical carcinomas (ACCs), were categorized according to Weiss score, hormonal profile, and patient survival data and analyzed using immunohistochemistry and RT-PCR. Expression of the TGF-β signaling mediator SMAD3 varied inversely with Weiss score, so that SMAD3 expression was lowest in the most malignant tumors. By contrast, SMAD2 expression was upregulated in most malignant tumors. Wnt pathway co-receptors LRP5 and LRP6 were predominantly expressed in benign adrenocortical tumors. In ACCs, expression of transcription factors GATA-6 and SF-1 correlated with that of their target gene INHA. Moreover, the diminished expression of GATA-6 and SF-1 in ACCs correlated with poor outcome. We conclude that the factors driving INHA expression are reduced in ACCs with poor outcome, implicating a role for INHA as a tumor suppressor in humans.

Qu Y, Dang S, Hou P
Gene methylation in gastric cancer.
Clin Chim Acta. 2013; 424:53-65 [PubMed] Related Publications
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.

Li T, Zhao H, Hung GC, et al.
Differentially expressed genes and pathways induced by organophosphates in human neuroblastoma cells.
Exp Biol Med (Maywood). 2012; 237(12):1413-23 [PubMed] Related Publications
Organophosphates (OPs) are toxic chemicals commonly used as pesticides and herbicides. Some OPs are highly toxic to humans and have been used in warfare and terrorist attacks. In order to elucidate the molecular mechanisms of injury caused by OPs, the differentially expressed genes were analyzed in human SK-N-SH neuroblastoma cells induced by three OPs. The SK-N-SH cells were treated with one of the three OPs, chlorpyrifos, dichlorvos or methamidophos at LC20 (high-dose), the concentration causing 20% cell death, as well as 1/20 of LC20 (low-dose), a sub-lethal concentration with no detectable cell death, for 24 h. The genome-wide gene changes were identified by Agilent Microarray System, and analyzed by microarray analysis tools. The analysis revealed neuroblastoma cells treated with the high doses of all three OPs markedly activated cell apoptosis and inhibited cell growth and proliferation genes, which would most likely lead to the process of cell death. Interestingly, the analysis also revealed significant decrease in expressions of many genes in a specific spliceosome pathway in cells treated with the low doses of all three different OPs. The change of spliceosome pathway may represent an important mechanism of injury in neuronal cells exposed to low doses of various OPs. In addition to unraveling a potentially different form of OP pathogenesis, this finding could provide a new diagnostic marker in assessing OP-associated injury in cells or tissues. In addition, these results could also contribute to the development of new prevention and/or therapeutic regimens against OP toxicity.

Cho SW, Lee EJ, Kim H, et al.
Dickkopf-1 inhibits thyroid cancer cell survival and migration through regulation of β-catenin/E-cadherin signaling.
Mol Cell Endocrinol. 2013; 366(1):90-8 [PubMed] Related Publications
Wnt/β-catenin signaling plays a role in tumorigenesis of human papillary thyroid cancer (PTC). Dickkopf-1 (Dkk-1) is an inhibitor of Wnt/β-catenin signaling. We investigated the therapeutic potential of Dkk-1 in human PTC cell lines, SNU-790, B-CPAP, and BHP10-3. Dkk-1 reversed the aberrant expression of β-catenin from nucleus to membrane and inhibited basal levels of TCF/LEF-dependent transcriptional activities. Furthermore, Dkk-1 inhibited cell viability in a dose-dependent manner and adenoviral transduction of constitutively active β-catenin blocked these effects, thus suggesting that the Dkk-1 anti-tumoral effect is mediated by Wnt/β-catenin signaling. Bromodeoxyuridine assay showed minimal effects of Dkk-1 on cell proliferation. Flow cytometric analysis with Annexin V staining showed marked induction of cell apoptosis by Dkk-1 treatment. Dkk-1 also restored the loss of membranous E-cadherin expression with consequent inhibition of cell migration and invasion. In conclusion, Dkk-1 inhibited the survival and migration of human PTC cells by regulating Wnt/β-catenin signaling and E-cadherin expression.

Redaelli S, Bentivegna A, Foudah D, et al.
From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells.
Stem Cell Res Ther. 2012; 3(6):47 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells that can differentiate into different cell lineages and have emerged as a promising tool for cell-targeted therapies and tissue engineering. Their use in a therapeutic context requires large-scale in vitro expansion, increasing the probability of genetic and epigenetic instabilities. Some evidence shows that an organized program of replicative senescence is triggered in human BM-MSCs (hBM-MSCs) on prolonged in vitro expansion that includes alterations in phenotype, differentiation potential, telomere length, proliferation rates, global gene-expression patterns, and DNA methylation profiles.
METHODS: In this study, we monitored the chromosomal status, the biologic behavior, and the senescence state of hBM-MSCs derived from eight healthy donors at different passages during in vitro propagation. For a more complete picture, the telomere length was also monitored in five of eight donors, whereas the genomic profile was evaluated in three of eight donors by array-comparative genomic hybridization (array-CGH). Finally, an epigenomic profile was delineated and compared between early and late passages, by pooling DNA of hBM-MSCs from four donors.
RESULTS: Our data indicate that long-term culture severely affects the characteristics of hBM-MSCs. All the observed changes (that is, enlarged morphology, decreased number of cell divisions, random loss of genomic regions, telomere shortening) might be regulated by epigenetic modifications. Gene Ontology analysis revealed that specific biologic processes of hBM-MSCs are affected by variations in DNA methylation from early to late passages.
CONCLUSIONS: Because we revealed a significant decrease in DNA methylation levels in hBM-MSCs during long-term culture, it is very important to unravel how these modifications can influence the biologic features of hBM-MSCs to keep track of this organized program and also to clarify the conflicting observations on hBM-MSC malignant transformation in the literature.

Wang K, Li N, Yeung CH, et al.
Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research.
Mol Hum Reprod. 2013; 19(2):57-71 [PubMed] Related Publications
Aberrant activation of the Wnt/β-catenin pathway occurs in cancers. This review presents several important cancer-related aspects of Wnt/β-catenin signalling relevant to the epididymis, provides evidence of such epididymal gene expression and suggests a new direction for further research. The data presented here indicate that besides containing many Wnt/β-catenin-pathway components, the normal adult human epididymis expresses much more β-catenin than the colorectal carcinoma cell line HCT116, which possesses elevated β-catenin expression. The low cancer incidence in the epididymis may be due to factors present in the human epididymis that regulate this oncogenic Wnt/β-catenin pathway, including (i) 14 of 17 secreted pathway inhibitors, (ii) the majority of the micro-RNAs known to target this pathway, (iii) plasma membrane-associated E-cadherin and CEACAM1 that anchor β-catenin, preventing its availability for nuclear entry and oncogenic transcriptional activity, (iv) the recently identified membrane-located tumourigenesis inhibitors RNF43 and ZNRF3 that mediate the degradation of the Wnt receptor components Fzds and Lrp5/6 and (v) nuclear KLF4, which competes with TCF for β-catenin, limiting its transcriptional activity and stabilizing telomeres, thereby reducing mutation incidence. The above regulatory factors expressed by the human epididymis, and the absence of androgen receptor translocation known to promote nuclear translocation of β-catenin in tumourigenesis in an animal model, may act synergistically to provide hostility in different cell compartments towards tumour formation. The lack of evidence for β-catenin in epididymal nuclei is noteworthy. Studying this phenomenon may help reveal the mechanisms underlying oncogenic Wnt/β-catenin signalling and shed new light on cancer therapy and prevention.

Starker LF, Fonseca AL, Fonseca A, et al.
Evidence of a stabilizing mutation of β-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas.
Endocrine. 2012; 42(3):612-5 [PubMed] Related Publications
Aberrant accumulation of β-catenin plays an important role in a variety of human neoplasms. This can be caused by stabilizing mutation of β-catenin (CTNNB1, exon 3) or by mutation or deregulated expression of other components of the WNT/β-catenin signaling pathway. Accumulation of non-phosphorylated active β-catenin has been reported to commonly occur in parathyroid adenomas from patients with primary hyperparathyroidism (pHPT), either due to the aberrantly spliced internally truncated WNT receptor LRP5 (LRP5Δ) or to a stabilizing mutation of β-catenin. The S37A mutation was reported to occur in 7.3 % in a single study of parathyroid adenomas, while in other studies no stabilizing mutations of β-catenin exon 3 were identified. The aim of this study was to determine the mutational frequency of the CTNNB1 gene, specifically exon 3 in a large series of parathyroid adenomas. One hundred and eighty sporadic parathyroid adenomas were examined for mutations in exon 3 of CTNNB1 by direct DNA sequencing, utilizing previously published primer sequences. The mutation S33C (TCT>TGT) was detected by direct-DNA sequencing of PCR fragments in 1 out of 180 sporadic parathyroid adenomas (0.68 %). Like serine 37, mutations of serine 33 have been reported in many neoplasms with resulting β-catenin stabilization, enhanced transcription, and oncogenic activities. Immunohistochemical analysis revealed an overexpression of the β-catenin protein in the lone mutant tumor. Taking also previous studies into account we conclude that activating mutations of the regulatory GSK-3β phosphorylation sites serine 33 and 37, encoded by CTNNB1 exon 3, rarely occur in parathyroid adenomas from patients with pHPT.

Herencia C, Martínez-Moreno JM, Herrera C, et al.
Nuclear translocation of β-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.
PLoS One. 2012; 7(4):e34656 [PubMed] Free Access to Full Article Related Publications
Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.

Almeida MQ, Azevedo MF, Xekouki P, et al.
Activation of cyclic AMP signaling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations.
J Clin Endocrinol Metab. 2012; 97(4):E687-93 [PubMed] Free Access to Full Article Related Publications
CONTEXT: The overwhelming majority of benign lesions of the adrenal cortex leading to Cushing syndrome are linked to one or another abnormality of the cAMP or protein kinase pathway. PRKAR1A-inactivating mutations are responsible for primary pigmented nodular adrenocortical disease, whereas somatic GNAS activating mutations cause macronodular disease in the context of McCune-Albright syndrome, ACTH-independent macronodular hyperplasia, and, rarely, cortisol-producing adenomas.
OBJECTIVE AND DESIGN: The whole-genome expression profile (WGEP) of normal (pooled) adrenals, PRKAR1A- (3) and GNAS-mutant (3) was studied. Quantitative RT-PCR and Western blot were used to validate WGEP findings.
RESULTS: MAPK and p53 signaling pathways were highly overexpressed in all lesions against normal tissue. GNAS-mutant tissues were significantly enriched for extracellular matrix receptor interaction and focal adhesion pathways when compared with PRKAR1A-mutant (fold enrichment 3.5, P < 0.0001 and 2.1, P < 0.002, respectively). NFKB, NFKBIA, and TNFRSF1A were higher in GNAS-mutant tumors (P < 0.05). Genes related to the Wnt signaling pathway (CCND1, CTNNB1, LEF1, LRP5, WISP1, and WNT3) were overexpressed in PRKAR1A-mutant lesions.
CONCLUSION: WGEP analysis revealed that not all cAMP activation is the same: adrenal lesions harboring PRKAR1A or GNAS mutations share the downstream activation of certain oncogenic signals (such as MAPK and some cell cycle genes) but differ substantially in their effects on others.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LRP5, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999