NOS3

Gene Summary

Gene:NOS3; nitric oxide synthase 3
Aliases: eNOS, ECNOS
Location:7q36.1
Summary:Nitric oxide is a reactive free radical which acts as a biologic mediator in several processes, including neurotransmission and antimicrobial and antitumoral activities. Nitric oxide is synthesized from L-arginine by nitric oxide synthases. Variations in this gene are associated with susceptibility to coronary spasm. Alternative splicing and the use of alternative promoters results in multiple transcript variants. [provided by RefSeq, Oct 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:nitric oxide synthase, endothelial
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (72)
Pathways:What pathways are this gene/protein implicaed in?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Genetic Predisposition
  • Sepsis
  • Skin
  • Nitric Oxide Synthase Type III
  • beta Carotene
  • Chromosome 7
  • Texas
  • Statistics, Nonparametric
  • alpha Catenin
  • Receptor, TIE-2
  • Young Adult
  • TNF
  • Smoking
  • Vascular Endothelial Growth Factor Receptor-2
  • Serpins
  • Vulvar Cancer
  • Turkey
  • Uterus
  • Recurrence
  • Polymorphism
  • Survivors
  • Nitric Oxide Synthase
  • Case-Control Studies
  • Republic of Korea
  • Single Nucleotide Polymorphism
  • Bladder Cancer
  • Alleles
  • Stomach Cancer
  • Breast Cancer
  • Cancer Gene Expression Regulation
  • Genetic Association Studies
  • Messenger RNA
  • Promoter Regions
  • Serbia
  • Spain
  • Prostate Cancer
  • Genotype
  • Up-Regulation
  • Sirtuin 1
  • beta 2-Microglobulin
  • Oxidative Stress
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NOS3 (cancer-related)

Ceylan GG, Ceylan C, Gülmemmedov B, et al.
Polymorphisms of eNOS, catalase, and myeloperoxidase genes in prostate cancer in Turkish men: preliminary results.
Genet Mol Res. 2016; 15(3) [PubMed] Related Publications
Prostate cancer (PCa) is the most common type of neoplasm in European males. Genetic and epigenetic factors contribute to PCa development and progression. In this study, we aimed to assess the relationship between PCa and polymorphisms in the genes encoding endothelial nitric oxide synthase (eNOS), catalase (CAT), and myeloperoxidase (MPO). In total, 193 patients were included in the study. Patients were divided into three groups: PCa (78), benign prostate hyperplasia (40), and control males (75). The parameters assessed included body mass index (BMI), smoking habits, presence of prostatism, prostate-specific antigen (PSA) levels, Gleason scores of prostate specimens, as well as polymorphisms in eNOS-G894T, CAT- 262T, and MPO G-463T genes. BMI and smoking status of controls and patient groups showed no significant difference. CAT-262T gene polymorphism was found to be homozygous in 35.4% of PCa patients, which was 4.02-fold that in the controls (P = 0.006). There was no statistically significant difference in eNOS-G894T and MPO G-463T gene polymorphisms between any of the groups. In conclusion, we found catalase levels to be associated with PCa diagnosis and PSA value. We did not find any significant differences between groups for other polymorphisms, but we believe that further studies with a large sample size may be needed before drawing definite conclusions.

Dai Y, Cui J, Gan P, Li W
Downregulation of tetrahydrobiopterin inhibits tumor angiogenesis in BALB/c-nu mice with hepatocellular carcinoma.
Oncol Rep. 2016; 36(2):669-75 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is a highly vascular tumor, and treatment options for patients of advanced-stage are limited. Nitric oxide (NO), which is derived from endothelial nitric oxide synthase (eNOS), provides crucial signals for angiogenesis in the tumor microenvironment. Tetrahydrobiopterin (BH4) is an essential cofactor eNOS and represents a critical determinant of NO production. To examine whether treatment of 2,4-diamino-6-hydroxypyrimidine (DAHP) inhibits angiogenesis of HCC, BALB/c-nu mice were injected with HepG-2 cells with DAHP. Supplemental DAHP treatment decreased K-ras mRNA transcripts, inhibition of phosphorylation of eNOS and Akt, inhibition of guanosine triphosphate cyclohydrolase (GTPCH), and decreased significantly NO synthesis, and then inhibited angiogenesis, compared with the results observed in the saline group. Histopathology demonstrated angiogenesis and tumor formation were significantly inhibited in HCC. DAHP downregulates GTPCH protein expression, corresponding to decreased levels of BH4 and the contents of NO. In addition, DAHP downregulates eNOS and Akt protein expression, corresponding to decreased eNOS phosphorylation at Ser1177 and Akt phosphorylation, compared with the saline control. We suggest that DAHP, recognized as a specific competitive inhibitor of GTPCH, can decrease tumor BH4 and NO by the inhibition of the wild-type Ras-PI3K/Akt pathway, and then inhibiting angiogenesis, and may provide a novel and promising way to target BH4 synthetic pathways to inhibit angiogenesis and to control potential progression of HCC. Whether DAHP has a therapeutic potential will require more direct testing in humans.

Diler SB, Öden A
The T -786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Prostate Cancer Cases.
Genetika. 2016; 52(2):249-54 [PubMed] Related Publications
In previously conducted some studies it has been revealed that nitric oxide (NO) and nitric oxide synthase (NOS) system play a significant role in carcinogenesis. Nitric oxide (NO) is regulated by endothelial nitric oxide synthase (eNOS) enzyme which is one of the isoenzymes of NO synthase (NOS). In this study we have tried to come to a conclusion about whether eNOS gene T -786C, G894T and Intron 4 VNTR (4a/b) polymorphisms might be considered as a risk factor causing prostate cancer (PCa) or not. A total of 200 subjects were included in this research. 84 patients with PCa (mean age 70.0 ± 6.4) and 116 healthy controls (mean age 69.9 ± 7.5) were recruited in this case-control study. Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN GmbH, Maryland, USA), according to the manufacturer's guidelines. The T-786C, G894T and Intron 4 VNTR (4a/b) polymorphisms were amplified using polymerase chain reation (PCR), detected by restriction fragment length polymorphism (RFLP). For T -786C polymorphism CC genotype [odds ratio (OR): 0.34, 95% confidence interval (CI): 0.15-0.78, P = 0.009)] and allele frequency (OR: 0.631, CI: 0.421-0.946, P = 0.026) is significant for control. In patients with PCa eNOS G894T polymorphism, both GT (OR: 0.069, CI: 0.027-0.174; P = 0.0001) and TT (OR: 0.040, CI: 0.013-0.123; P = = 0.0001) genotype distribution, and also T allele frequency (OR: 0.237, CI: 0.155-0.362, P = 0.0001) were considered significant statistically. While genotype distribution for the other polymorphism eNOS, intron 4 VNTR (4a/b), is insignificant statistically, "a" allele frequency was found out to be significant (OR: 2.223, CI: 1.311-3.769, P = 0.003). In this study we indicated that genotype and allele frequencies of eNOS T -786C and G894T polymorphisms are statistically significant in patients with PCa. eNOS T -786C and G894T polymorphisms may be associated with PCa susceptibility in the Turkish population. In contrast, intron 4 VNTR (4a/b) polymorphism may not be related to PCa susceptibility in these patients.

Basmaci C, Pehlivan M, Tomatir A, et al.
Effects of TNFα, NOS3, MDR1 Gene Polymorphisms on Clinical Parameters, Prognosis and Survival of Multiple Myeloma Cases.
Asian Pac J Cancer Prev. 2016; 17(3):1009-14 [PubMed] Related Publications
It is not clear how gene polymorphisms affecting drugs can contributes totheir efficacy in multiple myeloma (MM). We here aimed to explore associations among gene polymorphisms of tumor necrosis factor alpha (TNFα), nitric oxide synthesis 3 (NOS3) and multi-drug resistance 1 (MDR1), clinical parameters, prognosis and survival in MM patients treated with VAD (vincristine-adriamycine-dexamethasone), MP (mephalane-prednisolone), autolougus stem cell transplantation (ASCT), BODEC (bortezomib-dexamethasone-cyclophosphamide) and TD (thalidomide-dexamethasone). We analyzed TNFα, NOS 3 and MDR1 in 77 patients with MM and 77 healthy controls. The genotyping was performed with PCR and/or PCR-RFLP. There was no clinically significant difference between MM and control groups when TNF α(-238) and (-857) and MDR1 gene polymorphisms were studied. However, the TNFαgene polymorphism (-308) GG genotype (p=0.012) and NOS3 (+894) TT genotype (p=0.008) were more common in the MM group compared to healthy controls. NOS3 (VNTR) AA (p=0.007) and NOS3 (+894) GG genotypes (p=0.004) were decreased in the MM group in contrast. In conclusion, the NOS3 (+894) TT and TNF α(-308) GG genotypes may have roles in myeloma pathogenesis.

Pizzo RJ, Azadniv M, Guo N, et al.
Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells.
Exp Hematol. 2016; 44(5):378-89 [PubMed] Related Publications
In addition to participation in homing, egress, and transmigration of hematopoietic cells, marrow endothelium also contributes to cell proliferation and survival. Endothelial cells from multiple vascular beds are able to prevent spontaneous or therapy-induced apoptosis in acute myelogenous leukemia (AML) blasts. Marrow-derived endothelial cells from leukemia patients have not been well-characterized, and in this work, endothelial cells were purified from marrow aspirates from normal subjects or from newly diagnosed AML patients to compare these cells phenotypically and functionally. By reverse transcription polymerase chain reaction, these cells express CD31, Tie-2, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS), supporting endothelial origin. They take up acetyl low-density lipoprotein and are able to form tubular structures. Culture of AML cells with endothelial cells from both normal and AML subjects supported adhesion, transmigration, and leukemia colony-forming unit outgrowth. RNA-sequencing analysis revealed 130 genes significantly up- or downregulated in AML-derived endothelial cells as compared with those derived from normal marrow. The genes differentially expressed (p < 0.001) were included in biological function categories involving cancer, cell development, cell growth and proliferation, cell signaling, inflammatory response, and cell death and survival. Further pathway analysis revealed upregulation of c-Fos and genes involved in chemotaxis such as CXCL16. AML-derived endothelial cells are similar in phenotype and function to their normal marrow-derived counterparts, but genomic analysis suggests a differential signature with altered expression of genes, which could play a role in leukemogenesis or leukemia cell maintenance in the marrow microenvironment.

Velázquez KT, Enos RT, McClellan JL, et al.
MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer.
Am J Physiol Gastrointest Liver Physiol. 2016; 310(6):G347-58 [PubMed] Free Access to Full Article Related Publications
Clinical studies have linked microRNA-155 (miR-155) expression in the tumor microenvironment to poor prognosis. However, whether miR-155 upregulation is predictive of a pro- or antitumorigenic response is unclear, as the limited preclinical data available remain controversial. We examined miR-155 expression in tumor tissue from colon cancer patients. Furthermore, we investigated the role of this microRNA in proliferation and apoptosis, inflammatory processes, immune cell populations, and transforming growth factor-β/SMAD signaling in a chemically induced (azoxymethane-dextran sulfate sodium) mouse model of colitis-associated colon cancer. We found a higher expression of miR-155 in the tumor region than in nontumor colon tissue of patients with colon cancer. Deletion of miR-155 in mice resulted in a greater number of polyps/adenomas, an increased symptom severity score, a higher grade of epithelial dysplasia, and a decrease in survival. Surprisingly, these findings were associated with an increase in apoptosis in the normal mucosa, but there was no change in proliferation. The protumorigenic effects of miR-155 deletion do not appear to be driven solely by dysregulation of inflammation, as both genotypes had relatively similar levels of inflammatory mediators. The enhanced tumorigenic response in miR-155(-/-) mice was associated with alterations in macrophages and neutrophils, as markers for these populations were decreased and increased, respectively. Furthermore, we demonstrated a greater activation of the transforming growth factor-β/SMAD pathway in miR-155(-/-) mice, which was correlated with the increased tumorigenesis. Given the multiple targets of miR-155, careful evaluation of its role in tumorigenesis is necessary prior to any consideration of its potential as a biomarker and/or therapeutic target in colon cancer.

Yanar K, Çakatay U, Aydın S, et al.
Relation between Endothelial Nitric Oxide Synthase Genotypes and Oxidative Stress Markers in Larynx Cancer.
Oxid Med Cell Longev. 2016; 2016:4985063 [PubMed] Free Access to Full Article Related Publications
Nitric oxide synthase (eNOS/NOS3) is responsible for the endothelial synthesis of nitric oxide (NO(•)). G894T polymorphism leads to the amino acid substitution from Glu298Asp that causes lower NOS3 activity and basal NO(•) production in NOS3 894T (298Asp) allele carriers compared with the GG homozygotes. NO(•) acts as an antioxidant protecting against Fenton's reaction which generates highly reactive hydroxyl radicals. Allelic variation of NOS3 may influence an individual's risk of laryngeal cancer (LC). In the current study we have examined the possible relationship between NOS3 G894T genotypes and various systemic oxidative damage markers such as protein carbonyl, advanced oxidation protein products, Cu, Zn-superoxide dismutase, thiol group fractions, and lipid hydroperoxides in LC patients. Genotyping was carried out by PCR-RFLP. In LC patients with TT genotype, Cu, Zn-superoxide dismutase activities and nonprotein thiol levels were significantly higher than the controls. In patients with GT and GG genotype, high levels of lipid hydroperoxides showed statistical significance when compared to controls. Our results indicate a potential relationship among G894T polymorphism of NOS3, and impaired redox homeostasis. Further studies are required to determine the role of NOS3 gene polymorphism and impaired plasma redox homeostasis.

Fu Q, Liu X, Liu Y, et al.
MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase.
Int J Mol Med. 2015; 36(5):1417-25 [PubMed] Related Publications
Skeletal metastasis is the major problem in the management of prostate cancer (PCa). Even though the regulatory role of microRNAs (miRNAs) in the control of tumor metastases has been well described in numerous types of cancer, the importance in bone metastasis of PCa remains largely unknown. In the present study, the differentially expressed miRNAs were identified between the primary PCa and bone metastatic PCa samples by comparing their expression profiling using miRNA microarray, and 4 miRNAs (miR‑335, ‑543, ‑196 and ‑19a) were noted to be significantly downregulated in bone metastasis compared with primary PCa. Among those, the downregulation of 2 miRNAs (miR‑335 and ‑543) was confirmed in a total of 20 paired primary PCa and bone metastasis samples using reverse transcription‑quantitative polymerase chain reaction. Using the online target prediction tool, endothelial nitric oxide synthase (eNOS) was found to be a shared target of miR‑335 and ‑543, which was further verified using the luciferase assay. By examining the expression pattern of eNOS in primary PCa and skeletal metastatic samples, the mRNA and protein expression levels of eNOS were markedly upregulated in the metastatic samples. Furthermore, exogenous overexpression of miR‑335 and ‑543 significantly downregulated the expression level of eNOS, and substantially compromised the ability of migration and invasion in vitro. These findings suggested that miR‑335 and ‑543 are associated with bone metastasis of PCa and indicated that they may have important roles in the bone metastasis, which may also be clinically used as novel biomarkers in discriminating the different stages of human PCa and predicting bone metastasis.

Erickson-DiRenzo E, Enos G, Thibeault SL
Early Cellular Response to Radiation in Human Vocal Fold Fibroblasts.
Ann Otol Rhinol Laryngol. 2016; 125(5):425-32 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
OBJECTIVES: Radiation therapy is a common treatment strategy for laryngeal carcinoma. However, radiation is not without adverse side effects, especially toward healthy vocal fold tissue, which can lead to long-term impairments in vocal function. The objective of this preliminary study was to investigate early responses of healthy human vocal fold fibroblasts (VFF) to radiation.
METHODS: VFF were exposed to a single or fractionated dose radiation scheme. Nonradiated VFF served as controls. Morphology of radiated and control VFF was subjectively examined. Quantitative polymerase chain reaction was used to evaluate the effect of radiation on extracellular matrix and inflammatory-related genes. VFF viability was investigated using a LIVE/DEAD and clonogenic assay.
RESULTS: Single or fractioned dose radiated VFF were morphologically indistinguishable from control VFF. No significant differences in gene expression were observed following either radiation scheme and as compared to controls. Clonogenic assay revealed reduced VFF viability following the fractionated but not single dose scheme. No changes in viability were detected using the LIVE/DEAD assay.
CONCLUSIONS: We present one of the first investigations to evaluate early responses of healthy VFF to radiation. Findings will contribute to a growing body of literature seeking to elucidate the biological mechanisms underlying voice changes following radiation therapy for laryngeal carcinoma.

Huang CY, Batzorig U, Cheng WL, et al.
Glucose-regulated protein 94 mediates cancer progression via AKT and eNOS in hepatocellular carcinoma.
Tumour Biol. 2016; 37(4):4295-304 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a crucial health issue worldwide. High glucose-regulated protein 94 (GRP94) expression has been observed in different types of cancer, suggesting a link between tumor progression and GRP94 expression. However, the mechanisms underlying the role of GRP94 in HCC progression remain unclear. We used specific small hairpin RNA (shRNA) to manipulate GRP94 expression in HCC cells. Tissue arrays, MTT assays, xCELLigence assays, and in vivo xenograft model were performed to identify clinicopathological correlations and to analyze cell growth. We found that high GRP94 expression reflected a poor response and a lower survival rate. In vitro and in vivo studies showed that silencing GRP94 suppressed cancer progression. Mechanistically, GRP94 knockdown reduced AKT, phospho-AKT, and eNOS levels but did not influence the AMPK pathway. Our results demonstrated that GRP94 is a key molecule in HCC progression that modulates the AKT pathway and eNOS levels. Our findings suggest that GRP94 may be a new prognostic and therapeutic target for HCC.

Vannini F, Kashfi K, Nath N
The dual role of iNOS in cancer.
Redox Biol. 2015; 6:334-43 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes.

Ryk C, Koskela LR, Thiel T, et al.
Outcome after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes.
Redox Biol. 2015; 6:272-7 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
PURPOSE: Bacillus Calmette-Guérin (BCG)-treatment is an established treatment for bladder cancer, but its mechanisms of action are not fully understood. High-risk non-muscle invasive bladder-cancer (NMIBC)-patients failing to respond to BCG-treatment have worse prognosis than those undergoing immediate radical cystectomy and identification of patients at risk for BCG-failure is of high priority. Several studies indicate a role for nitric oxide (NO) in the cytotoxic effect that BCG exerts on bladder cancer cells. In this study we investigated whether NO-synthase (NOS)-gene polymorphisms, NOS2-promoter microsatellite (CCTTT)n, and the NOS3-polymorphisms-786T>C (rs2070744) and Glu298Asp (rs1799983), can serve as possible molecular markers for outcome after BCG-treatment for NMIBC.
MATERIALS AND METHODS: All NMIBC-patients from a well-characterized population based cohort were analyzed (n=88). Polymorphism data were combined with information from 15-years of clinical follow-up. The effect of BCG-treatment on cancer-specific death (CSD), recurrence and progression in patients with varying NOS-genotypes were studied using Cox proportional hazard-models and log rank tests.
RESULTS: BCG-treatment resulted in significantly better survival in patients without (Log rank: p=0.006; HR: 0.12, p=0.048), but not in patients with a long version ((CCTTT)n ≧13 repeats) of the NOS2-promoter microsatellite. The NOS3-rs2070744(TT) and rs1799983(GG)-genotypes showed decreased risk for CSD (Log rank(TT): p=0.001; Log rank(GG): p=0.010, HR(GG): 0.16, p=0.030) and progression (Log rank(TT): p<0.001, HR(TT): 0.05, p=0.005; Log rank(GG): p<0.001, HR(GG): 0.10, p=0.003) after BCG-therapy compared to the other genotypes. There was also a reduction in recurrence in BCG-treated patients that was mostly genotype independent. Analysis of combined genotypes identified a subgroup of 30% of the BCG-treated patients that did not benefit from BCG-treatment.
CONCLUSIONS: Our results suggest that the investigated polymorphisms influence patient response to BCG-treatment and thus may serve as possible markers for identification of BCG-failures.

Alam A, Mukhopadhyay ND, Ning Y, et al.
A Preliminary Study on Racial Differences in HMOX1, NFE2L2, and TGFβ1 Gene Polymorphisms and Radiation-Induced Late Normal Tissue Toxicity.
Int J Radiat Oncol Biol Phys. 2015; 93(2):436-43 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
PURPOSE: This study tested whether racial differences in genetic polymorphisms of 4 genes involved in wound repair and response to radiation can be used to predict the occurrence of normal tissue late effects of radiation therapy and indicate potential therapeutic targets.
METHODS AND MATERIALS: This prospective study examined genetic polymorphisms that modulate the expression of 4 genes involved in inflammation and fibrosis and response to radiation (HMOX1, NFE2L2, NOS3, and TGFβ1). DNA from blood samples of 179 patients (∼ 80% breast and head and neck) collected at the time of diagnosis by their radiation oncologist as exhibiting late normal tissue toxicity was used for the analysis. Patient demographics were as follows: 56% white, 43% African American, 1% other. Allelic frequencies of the different polymorphisms of the participants were compared with those of the general American population stratified by race. Twenty-six additional patients treated with radiation, but without toxicity at 3 months or later after therapy, were also analyzed.
RESULTS: Increased frequency of a long GT repeat in the HMOX1 promoter was associated with late effects in both African American and white populations. The single nucleotide polymorphisms (SNP) rs1800469 in the TGFβ1 promoter and the rs6721961 SNP in the NFE2L2 promoter were also found to significantly associate with late effects in African Americans but not whites. A combined analysis of these polymorphisms revealed that >90% of African American patients with late effects had at least 1 of these minor alleles, and 58% had 2 or more. No statistical significance was found relating the studied NOS3 polymorphisms and normal tissue toxicity.
CONCLUSIONS: These results support a strong association between wound repair and late toxicities of radiation. The presence of these genetic risk factors can vary significantly among different ethnic groups, as demonstrated for some of the SNPs. Future studies should account for the possibility of such ethnic heterogeneity in the late toxicities of radiation.

Thomas LN, Merrimen J, Bell DG, et al.
Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer.
Prostate. 2015; 75(15):1726-36 [PubMed] Related Publications
BACKGROUND: Carboxypeptidase-D (CPD) cleaves C-terminal arginine for conversion to nitric oxide (NO) by nitric oxide synthase (NOS). Prolactin (PRL) and androgens stimulate CPD gene transcription and expression, which increases intracellular production of NO to promote viability of prostate cancer (PCa) cells in vitro. The current study evaluated whether hormonal upregulation of CPD and NO promote PCa cell viabilty in vivo, by correlating changes in expression of CPD and nitrotyrosine residues (products of NO action) with proliferation marker Ki67 and associated proteins during PCa development and progression.
METHODS: Fresh prostate tissues, obtained from 40 men with benign prostatic hyperplasia (BPH) or PCa, were flash-frozen at the time of surgery and used for RT-qPCR analysis of CPD, androgen receptor (AR), PRL receptor (PRLR), eNOS, and Ki67 levels. Archival paraffin-embedded tissues from 113 men with BPH or PCa were used for immunohistochemical (IHC) analysis of CPD, nitrotyrosines, phospho-Stat5 (for activated PRLR), AR, eNOS/iNOS, and Ki67.
RESULTS: RT-qPCR and IHC analyses showed strong AR and PRLR expression in benign and malignant prostates. CPD mRNA levels increased ∼threefold in PCa compared to BPH, which corresponded to a twofold increase in Ki67 mRNA levels. IHC analysis showed a progressive increase in CPD from 11.4 ± 2.1% in benign to 21.8 ± 3.2% in low-grade (P = 0.007), 40.7 ± 4.0% in high-grade (P < 0.0001) and 50.0 ± 9.5% in castration-recurrent PCa (P < 0.0001). Immunostaining for nitrotyrosines and Ki67 mirrored these increases during PCa progression. CPD, nitrotyrosines, and Ki67 tended to co-localize, as did phospho-Stat5.
CONCLUSIONS: CPD, nitrotyrosine, and Ki67 levels were higher in PCa than in benign and tended to co-localize, along with phospho-Stat5. The strong correlation in expression of these proteins in benign and malignant prostate tissues, combined with abundant AR and PRLR, supports in vitro evidence that the CPD-Arg-NO pathway is involved in the regulation of PCa cell proliferation. It further highlights a role for PRL in the development and progression of PCa.

Khan FH, Pandian V, Ramraj S, et al.
Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells.
BMC Genomics. 2015; 16:501 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: MetastamiRs have momentous clinical relevance and have been correlated with disease progression in many tumors. In this study, we identified neuroblastoma metastamiRs exploiting unique mouse models of favorable and high-risk metastatic human neuroblastoma. Further, we related their deregulation to the modulation of target proteins and established their association with clinical outcomes.
RESULTS: Whole genome miRNA microarray analysis identified 74 metastamiRs across the manifold of metastatic tumors. RT-qPCR on select miRNAs validated profile expression. Results from bio-informatics across the ingenuity pathway, miRCancer, and literature data-mining endorsed the expression of these miRNAs in multiple tumor systems and showed their role in metastasis, identifying them as metastamiRs. Immunoblotting and TMA-IHC analyses revealed alterations in the expression/phosphorylation of metastamiRs' targets, including ADAMTS-1, AKT1/2/3, ASK1, AURKβ, Birc1, Birc2, Bric5, β-CATENIN, CASP8, CD54, CDK4, CREB, CTGF, CXCR4, CYCLIN-D1, EGFR, ELK1, ESR1, CFOS, FOSB, FRA, GRB10, GSK3β, IL1α, JUND, kRAS, KRTAP1, MCP1, MEGF10, MMP2, MMP3, MMP9, MMP10, MTA2, MYB, cMYC, NF2, NOS3, P21, pP38, PTPN3, CLEAVED PARP, PKC, SDF-1β, SEMA3D, SELE, STAT3, TLR3, TNFα, TNFR1, and VEGF in aggressive cells ex vivo and in a manifold of metastatic tumors in vivo. miRNA mimic (hsa-miR-125b, hsa-miR-27b, hsa-miR-93, hsa-miR-20a) and inhibitor (hsa-miR-1224-3p, hsa-miR-1260) approach for select miRNAs revealed the direct influence of the altered metastamiRs in the regulation of identified protein targets. Clinical outcome association analysis with the validated metastamiRs' targets corresponded strongly with poor overall and relapse-free survival.
CONCLUSIONS: For the first time, these results identified a comprehensive list of neuroblastoma metastamiRs, related their deregulation to altered expression of protein targets, and established their association with poor clinical outcomes. The identified set of distinctive neuroblastoma metastamiRs could serve as potential candidates for diagnostic markers for the switch from favorable to high-risk metastatic disease.

Di Salvatore M, Lo Giudice L, Rossi E, et al.
Association of IL-8 and eNOS polymorphisms with clinical outcomes in bevacizumab-treated breast cancer patients: an exploratory analysis.
Clin Transl Oncol. 2016; 18(1):40-6 [PubMed] Related Publications
BACKGROUND: The role of bevacizumab in metastatic breast cancer is controversial. Identification of predictive biomarkers could help to select patients who really benefit from it. We evaluated the association of angiogenesis-related gene polymorphisms with the treatment outcome of bevacizumab in metastatic breast cancer patients.
PATIENTS AND METHODS: eNOS-786T/C and -894G/T, IL-8-251T/A genomic polymorphisms were assessed in 31 metastatic breast cancer patients treated with bevacizumab plus chemotherapy in the first-line setting. Testing for association between each polymorphism and treatment outcome was performed.
RESULTS: Patients with IL-8 251 AA genotype showed a significantly lower progression-free survival in each combination comparison: "TT" vs "AA" (13 vs 8 months; p = 0.008); TT vs TA vs AA (13 vs 11 vs 8 months; p = 0.02); TT vs TA +AA (13 vs 11 months; p = 0.01); TT + TA vs AA (12 vs 8 months; p = 0.01) and a lower overall survival when compared with TT +TA genotype (26 vs 51 months, p = 0.04). Patients carrying eNOS 894 TT genotype showed a statistically significant lower progression-free survival than patients with GG genotype (11.5 vs 26.5 months; p = 0.04) with no differences in the overall survival. No association with response rate was found with any of the polymorphisms analyzed.
CONCLUSION: These findings suggest that IL-8 251T/A and eNOS-894 G/T polymorphisms might have a role in predicting treatment outcome of bevacizumab in metastatic breast cancer. Our results are hypothesis generating and need to be confirmed in larger clinical trials.

Gao X, Wang J, Wang W, et al.
eNOS Genetic Polymorphisms and Cancer Risk: A Meta-Analysis and a Case-Control Study of Breast Cancer.
Medicine (Baltimore). 2015; 94(26):e972 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The association between endothelial nitric oxide synthase (eNOS) polymorphisms (intron 4a/b, -786T>C and 894G>T) and cancer risk remains elusive. In addition, no studies focused on their associations with the risk of breast cancer in Chinese Han population. Thus, a meta-analysis was conducted to determine the relationship between eNOS polymorphisms and cancer risk, and then a case-control study in Chinese Han population was performed to assess their associations with breast cancer susceptibility.Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. The pooled analysis indicated that eNOS intron 4a/b and -786T>C polymorphisms were significantly associated with an increased risk of overall cancer. In subgroup analyses based on cancer type, the significant association was found between eNOS intron 4a/b polymorphism and prostate cancer risk, eNOS -786T>C polymorphism and risk of prostate, bladder and breast cancers, and eNOS 894G>T polymorphism and breast cancer risk. In subgroup analyses based on ethnicity, eNOS intron 4a/b and -786T>C polymorphisms were associated with an increased risk of cancer in Caucasians. In consistent with our meta-analysis results, a case-control study in Chinese Han population showed significant associations of eNOS -786T>C and 894G>T polymorphisms with the increased risk of breast cancer. In addition, stratified analyses based on pathological type showed that eNOS 894G>T polymorphism was only associated with the risk of infiltrative ductal carcinoma. Stratified analyses by tumor stage showed that eNOS -786T>C polymorphism was only associated with the risk of tumor stage III and IV.In conclusion, our meta-analysis and case-control study suggest that eNOS -786T>C and 894G>T polymorphisms are associated with the increased risk of breast cancer.

Cole PD, Finkelstein Y, Stevenson KE, et al.
Polymorphisms in Genes Related to Oxidative Stress Are Associated With Inferior Cognitive Function After Therapy for Childhood Acute Lymphoblastic Leukemia.
J Clin Oncol. 2015; 33(19):2205-11 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
PURPOSE: Survivors of childhood acute lymphoblastic leukemia (ALL) exhibit increased rates of neurocognitive deficits. This study was conducted to test whether interpatient variability in neurocognitive outcomes can be explained by polymorphisms in candidate genes conferring susceptibility to neurocognitive decline.
METHODS: Neurocognitive testing was conducted in 350 pediatric leukemia survivors, treated on Dana-Farber Cancer Institute ALL Consortium Protocols 95-01 or 00-01. Genomic DNA was isolated from bone marrow collected at remission. Candidate polymorphisms were selected on the basis of prior literature, targeting genes related to drug metabolism, oxidative damage, altered neurotransmission, neuroinflammation, and folate physiology. Single nucleotide polymorphisms were detected using either a customized multiplexed Sequenom MassARRAY assay or polymerase chain reaction-based allelic discrimination assays. Multivariable logistic regression models were used to estimate the effects of genotype on neurocognitive outcomes, adjusted for the effects of demographic and treatment variables. False-discovery rate correction was made for multiple hypothesis testing, indicated as a Q value.
RESULTS: Inferior cognitive or behavioral outcomes were associated with polymorphisms in three genes related to oxidative stress and/or neuroinflammation: NOS3 (IQ, Q = 0.008; Vocabulary Q = 0.011; Matrix Reasoning Q = 0.008), SLCO2A1 (IQ Q = 0.043; Digit Span Q = 0.006; Block Design Q = 0.076), and COMT (Behavioral Assessment System for Children-2 Attention Q = 0.080; and Hyperactivity Q = 0.084). Survivors homozygous for NOS3 894T, with at least one SLCO2A1 variant G allele or with at least one GSTP1 variant allele, had lower mean estimated IQ scores than those without these genotypes.
CONCLUSION: These data are consistent with the hypothesis that oxidative damage contributes to chemotherapy-associated neurocognitive decline among children with leukemia.

Yuan C, Yip SP, Wu VW, et al.
Association between genetic polymorphisms and carotid atherosclerosis in patients treated with radiotherapy for nasopharyngeal carcinoma.
Radiat Oncol. 2015; 10:39 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Radiotherapy (RT) of the neck is commonly given to nasopharyngeal carcinoma (NPC) patients for preventing cervical lymph node metastasis. However, neck RT may induce the development of carotid atherosclerosis. The mechanisms of radiation-induced carotid atherosclerosis are still unclear and no previous study has investigated the genetic involvement of radiation-induced carotid atherosclerosis. The present study aims to determine the association between genetic polymorphisms and carotid atherosclerosis in patients treated with RT for nasopharyngeal carcinoma.
METHODS: The present study recruited 128 post-RT NPC patients. Carotid plaque score was assessed using ultrasonography. Thirteen single nucleotide polymorphisms (SNPs) that affect the function of anti-atherosclerotic genes, including SOD2, SOD3, CAT, PON1, PPARG, ADIPOQ, IL10, TGFB1 and NOS3, were genotyped. Association between the 13 SNPs and carotid atherosclerosis was evaluated using multiple regression after adjustment for covariates (PLINK). Multiple testing was corrected using Benjamini-Hochberg step-up false discovery rate controlling procedure.
RESULTS: rs662 and rs705379 of PON1 were close to be significantly associated with carotid plaque score (Corrected P value, P cor  =0.0528 and P cor  =0.0842). When the two SNPs were combined together, TC haplotype in rs662-rs705379 of PON1 was significantly associated with higher carotid plaque score (P cor  < 0.05). None of the other SNPs showed significant association with carotid plaque score.
CONCLUSIONS: TC haplotype in rs662-rs705379 of PON1 is likely to be a genetic risk factor of carotid plaque score. Post-RT NPC patients with the TC haplotype may need earlier and more frequent carotid ultrasound examinations for early detection of carotid atherosclerosis.

Haque S, Mandal RK, Akhter N, et al.
G894T and 4a/b polymorphisms of NOS3 gene are not associated with cancer risk: a meta-analysis.
Asian Pac J Cancer Prev. 2015; 16(7):2929-37 [PubMed] Related Publications
Endothelial nitric oxide synthase (eNOS or NOS3) produces nitric oxide and genetic polymorphisms of NOS3 gene play significant roles in various processes of carcinogenesis. The results from published studies on the association between NOS3 G894T and NOS3 intron 4 (4a/b) polymorphisms and cancer risk are conflicting and inconclusive. However, i n order to assess this relationship more precisely, a meta-analysis was performed with PubMed (Medline), EMBASE and Google web searches until February 2014 to select all published case- control and cohort studies. Genotype distribution data were collected to calculate the pooled odd ratios (ORs) and 95% confidence intervals (CIs) to evaluate the strength of association. A total of 10,546 cancer cases and 10,550 controls were included from twenty four case-control studies for the NOS3 G894T polymorphism. The results indicated no significant association with cancer risk as observed in allelic (T vs G: OR=1.024, 95%CI=0.954 to 1.099, p=0.508), homozygous (TT vs GG: OR=1.137, 95%CI=0.944 to 1.370, p=0.176), heterozygous (GT vs GG: OR=0.993, 95%CI=0.932 to 1.059, p=0.835), recessive (TT vs GG+GT: OR=1.100, 95%CI=0.936 to 1.293, p=0.249) and dominant (TT+GT vs GG: OR=1.012, 95%CI=0.927 to 1.105, p=0.789) genetic models. Similarly, a total of 3,449 cancer cases and 3,691 controls were recruited from fourteen case-control studies for NOS3 4a/b polymorphism. Pooled results indicated no significant association under allelic (A vs B: OR=0.981, 95%CI=0.725 to 1.329, p=0.902), homozygous (AA vs BB: OR=1.166, 95%CI=0.524 to 2.593, p=0.707), heterozygous (BA vs BB: OR=1.129, 95%CI=0.896 to 1.422, p=0.305), dominant (AA+BA vs BB: OR=1.046, 95%CI=0.779 to 1.405, p=0.763) and recessive (AA vs BB+BA: OR=1.196, 95%CI=0.587 to 2.439, p=0.622) genetic contrast models. This meta-analysis suggests that G894T and 4a/b polymorphisms of NOS3 gene are not associated with increased or decreased risk of overall cancer.

Polat F, Diler SB, Azazi İ, Öden A
T-786C, G894T, and intron 4 VNTR (4a/b) polymorphisms of the endothelial nitric oxide synthase gene in bladder cancer cases.
Asian Pac J Cancer Prev. 2015; 16(6):2199-202 [PubMed] Related Publications
The aim of the present study was to determine whether endothelial nitric oxide synthase (eNOS) gene polymorphisms play a role in development of bladder cancer in the Turkish population. The study was performed on 75 patients (64 men, 11 women) with bladder cancer and 143 healthy individuals (107 men, 36 women) with any kind of cancer history. Three eNOS gene polymorphisms (T-786C promoter region, G894T and intron 4 VNTR 4a/b) were determined with polymerase chain reaction and restriction fragment lenght polymorphism methods. In our study, GT and TT genotypes for eNOS G894T polymorphism were found to significantly vary among patients with bladder cancer and control group (OR: 0.185, CI: 0.078-0.439, p=0.0001 and OR: 0.324, CI: 0.106-0.990, p=0.026). Also, the frequency of the 894T allele was significantly higher in patients with bladder cancer (51%). No association was identified for eNOS T-786C and intron 4 VNTR 4a/b polymorphisms between patients with bladder cancer and control groups in our Turkish population.

Español AJ, Salem A, Rojo D, Sales ME
Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase.
Int Immunopharmacol. 2015; 29(1):87-92 [PubMed] Related Publications
Breast cancer is the most common type of cancer in women and represents a major issue in public health. The most frequent methods to treat these tumors are surgery and/or chemotherapy. The latter can exert not only beneficial effects by reducing tumor growth and metastasis, but also toxic actions on normal tissues. Metronomic therapy involves the use of low doses of cytotoxic drugs alone or in combination to improve efficacy and to reduce adverse effects. We have previously reported that breast tumors highly express functional muscarinic acetylcholine receptors (mAChRs) that regulate tumor progression. For this reason, mAChRs could be considered as therapeutic targets in breast cancer. In this paper, we investigated the ability of a combination of the cytotoxic drug paclitaxel plus carbachol, a cholinergic agonist, at low doses, to induce death in breast tumor MCF-7 cells, via mAChR activation, and the role of nitric oxide synthase (NOS) and arginase in this effect. We observed that the combination of carbachol plus paclitaxel at subthreshold doses significantly increased cytotoxicity in tumor cells without affecting MCF-10A cells, derived from human normal mammary gland. This effect was reduced in the presence of the muscarinic antagonist atropine. The combination also increased nitric oxide production by NOS1 and NOS3 via mAChR activation, concomitantly with an up-regulation of NOS3 expression. The latter effects were accompanied by a reduction in arginase II activity. In conclusion, our work demonstrates that mAChRs expressed in breast tumor cells could be considered as candidates to become targets for metronomic therapy in cancer treatment.

Bogdan C
Nitric oxide synthase in innate and adaptive immunity: an update.
Trends Immunol. 2015; 36(3):161-78 [PubMed] Related Publications
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.

Zhang L, Chen LM, Wang MN, et al.
The G894t, T-786c and 4b/a polymorphisms in Enos gene and cancer risk: a meta-analysis.
J Evid Based Med. 2014; 7(4):263-9 [PubMed] Related Publications
OBJECTIVE: Published results on association between eNOS polymorphisms and cancer risk are conflicting. We aimed to investigate the association and give an overall understanding of possible risk role of eNOS.
METHOD: We searched PubMed and EMbase databases. The pooled ORs and 95% CIs for the association between eNOS polymorphisms and cancer risk was estimated using fixed- or random- effect model. Subgroup and sensitivity analyses were employed for further analysis.
RESULTS: The Overall results showed no significant association of G894T polymorphism with cancer susceptibility (T vs. G: OR 1.02, 95% CI 0.97 to 1.07; TT+GT vs. GG: OR 1.02, 95% CI 0.96 to 1.09; TT vs. GT+GG: OR 1.05, 95% CI 0.93 to 1.17). For the T-786C polymorphism, pooled OR under recessive model suggested that CC genotype was significantly associated with increased cancer risk (CC vs. TC+TT: OR 1.31, 95% CI 1.09 to 1.57). For the 4b/a polymorphism, pooled OR for recessive model suggested positive result of 4a/4a genotype (aa vs. ba+bb: OR 1.64, 95% CI 1.11 to 2.43). In subgroup analysis by ethnicity, significant association was found in Caucasians in recessive model but not in Asians for T-786C and 4b/a, respectively. In subgroup analysis by cancer types, significant result was obtained for breast cancer in recessive model for the T-786C polymorphism.
CONCLUSION: The eNOS G894T polymorphism may not be a major risk factor for most types of cancers. The CC of T-786C polymorphism and 4a/4a of 4b/a polymorphism are associated with cancer risk, especially in Caucasians. There is significant association between T786C polymorphism and breast cancer risk. More data are needed to verify these results.

Geng R, Chen Z, Zhao X, et al.
Oxidative stress-related genetic polymorphisms are associated with the prognosis of metastatic gastric cancer patients treated with epirubicin, oxaliplatin and 5-fluorouracil combination chemotherapy.
PLoS One. 2014; 9(12):e116027 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Oxidative stress genes are related to cancer development and treatment response. In this study, we aimed to determine the predictive and prognostic roles of oxidative stress-related genetic polymorphisms in metastatic gastric cancer (MGC) patients treated with chemotherapy.
METHODS: In this retrospective study, we genotyped nine oxidative stress-related single nucleotide polymorphisms (SNPs) in NQO1, SOD2, SOD3, PON1, GSTP1, GSTT1, and NOS3 (rs1800566, rs10517, rs4880, rs1799895, rs662, rs854560, rs1695, rs2266637, rs1799983, respectively) in 108 consecutive MGC patients treated with epirubicin, oxaliplatin, and 5-fluorouracil (EOF) regimen as the first-line chemotherapy and analyzed the association between the genotypes and the disease control rate (DCR), progression-free survival (PFS), and overall survival (OS).
RESULTS: We found that, in addition to a lower pathological grade (p = 0.017), NQO1 rs1800566 CT/TT genotype was an independent predictive factor of poor PFS (hazard ratio [HR] = 1.97, 95% confidence interval [CI] = 1.23-3.16; p = 0.005). PON1 rs662 AA/AG genotype was significantly associated with poor OS (HR = 1.95, 95% CI = 1.07-3.54; p = 0.029). No associations were detected between the nine SNPs and DCR.
CONCLUSIONS: NQO1 rs1800566 is an independent predictive factor of PFS for MGC patients treated with EOF chemotherapy, and PON1 rs662 is a noteworthy prognostic factor of OS. Information on oxidative stress-related genetic variants may facilitate optimization of individualized chemotherapy in clinical practice.

Steiner J, Davis J, McClellan J, et al.
Dose-dependent benefits of quercetin on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer.
Cancer Biol Ther. 2014; 15(11):1456-67 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Breast cancer is the leading cause of cancer related death in women. Quercetin is a flavonol shown to have anti-carcinogenic actions. However, few studies have investigated the dose-dependent effects of quercetin on tumorigenesis and none have used the C3(1)/SV40 Tag breast cancer mouse model. At 4 weeks of age female C3(1)/SV40 Tag mice were randomized to one of four dietary treatments (n = 15-16/group): control (no quercetin), low-dose quercetin (0.02% diet), moderate-dose quercetin (0.2% diet), or high-dose quercetin (2% diet). Tumor number and volume was assessed twice a week and at sacrifice (20 wks). Results showed an inverted 'U' dose-dependent effect of dietary quercetin on tumor number and volume; at sacrifice the moderate dose was most efficacious and reduced tumor number 20% and tumor volume 78% compared to control mice (C3-Con: 9.0 ± 0.9; C3-0.2%: 7.3 ± 0.9) and (C3-Con: 2061.8 ± 977.0 mm(3); and C3-0.2%: 462.9 ± 75.9 mm(3)). Tumor volume at sacrifice was also reduced by the moderate dose compared to the high and low doses (C3-2%: 1163.2 ± 305.9 mm(3); C3-0.02%: 1401.5 ± 555.6 mm(3)), as was tumor number (C3-2%: 10.7 ± 1.3 mm(3); C3-0.02%: 8.1 ± 1.1 mm(3)). Gene expression microarray analysis performed on mammary glands from C3-Con and C3-0.2% mice determined that 31 genes were down-regulated and 9 genes were up-regulated more than 2-fold (P < 0.05) by quercetin treatment. We report the novel finding that there is a distinct dose-dependent effect of quercetin on tumor number and volume in a transgenic mouse model of human breast cancer, which is associated with a specific gene expression signature related to quercetin treatment.

Mooij HL, Cabrales P, Bernelot Moens SJ, et al.
Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function.
J Am Heart Assoc. 2014; 3(6):e001274 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation genes EXT1 and EXT2 on endothelial function in vitro as well as in vivo.
METHODS AND RESULT: Flow-mediated dilation, a marker of nitric oxide bioavailability, was studied in Ext1(+/-) and Ext2(+/-) mice versus controls (n=7 per group), as well as in human subjects with heterozygous loss of function mutations in EXT1 and EXT2 (n=13 hereditary multiple exostoses and n=13 controls). Endothelial function was measured in microvascular endothelial cells under laminar flow with or without siRNA targeting EXT1 or EXT2. Endothelial glycocalyx and maximal arteriolar dilatation were significantly altered in Ext1(+/-) and Ext2(+/-) mice compared to wild-type littermates (glycocalyx: wild-type 0.67±0.1 μm, Ext1(+/-) 0.28±0.1 μm and Ext2(+/-) 0.25±0.1 μm, P<0.01, maximal arteriolar dilation during reperfusion: wild-type 11.3±1.0%), Ext1(+/-) 15.2±1.4% and Ext2(+/-) 13.8±1.6% P<0.05). In humans, brachial artery flow-mediated dilation was significantly increased in hereditary multiple exostoses patients (hereditary multiple exostoses 8.1±0.8% versus control 5.6±0.7%, P<0.05). In line, silencing of microvascular endothelial cell EXT1 and EXT2 under flow led to significant upregulation of endothelial nitric oxide synthesis and phospho-endothelial nitric oxide synthesis protein expression.
CONCLUSIONS: Our data implicate that heparan sulfate elongation genes EXT1 and EXT2 are involved in maintaining endothelial homeostasis, presumably via increased nitric oxide bioavailability.

Ben Chaaben A, Mariaselvam C, Salah S, et al.
Polymorphisms in oxidative stress-related genes are associated with nasopharyngeal carcinoma susceptibility.
Immunobiology. 2015; 220(1):20-5 [PubMed] Related Publications
Nasopharyngeal carcinoma (NPC) is a complex multifactorial disorder involving both genetic and environmental factors. Polymorphisms of genes encoding nitric oxide synthase (NOS) and antioxidant glutathione-S transferases (GSTs) have been associated with various tumors. We examined the combined role of NOS3, NOS2 and GST polymorphisms in NPC risk in Tunisians. We found that NOS3−786C allele and −786 CC genotype, NOS3+894T allele and +894 GT+TT genotypes, NOS2−277 G allele and −277 GG genotype, and GSTT1 del/del genotype, are more prevalent in NPC patients as compared to healthy controls. Our results suggest that genetically driven dysfunction in red–ox stress pathway could augment the risk in NPC-susceptible individuals.

Zhao C, Yan W, Zu X, et al.
Association between endothelial nitric oxide synthase 894G>T polymorphism and prostate cancer risk: a meta-analysis of literature studies.
Tumour Biol. 2014; 35(12):11727-33 [PubMed] Related Publications
To date, several studies have been conducted to assess the association between endothelial nitric oxide synthase (eNOS) gene 894G > T polymorphism and prostate cancer (PCa) risk, but the results are conflicting. To derive a more precise estimation of the relationship between 894G > T polymorphism and PCa risk, the present meta-analysis was performed. A total of eight case-control studies were included in this meta-analysis. The pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated to evaluate the associations. Our results suggested that 894G > T polymorphism is associated with PCa risk under codominant (GT vs. GG) (OR = 1.11, 95 % CI = 1.01-1.22, P = 0.04) and overdominant (GT vs. GG + TT) (OR = 1.12, 95 % CI = 1.02-1.23, P = 0.02) models in the overall population, while there are no associations observed under dominant (GT + TT vs. GG), recessive (TT vs. GG + GT), and allelic (T vs. G) models. Moreover, when the eligible studies were stratified according to sources of control, significant association between 894G > T polymorphism and susceptibility of PCa was also identified under codominant (OR = 1.12, 95 % CI = 1.01-1.24, P = 0.03) and overdominant (OR = 1.13, 95 % CI = 1.02-1.25, P = 0.02) models when using healthy individuals as control. However, there are no significant associations found under any genetic models when using BPH patients as control group. In conclusion, the present meta-analysis suggested that the eNOS gene 894G > T polymorphism might be a risk factor in the onset of PCa.

Nikolić ZZ, Pavićević DLj, Romac SP, Brajušković GN
Genetic variants within endothelial nitric oxide synthase gene and prostate cancer: a meta-analysis.
Clin Transl Sci. 2015; 8(1):23-31 [PubMed] Related Publications
Several variants within gene-encoding endothelial isoform of nitric oxide synthase have been reported to confer prostate cancer (PCa) susceptibility and/or progression. Nevertheless, studies referring to this issue have yielded inconsistent results. In order to elucidate the involvement of these variants in prostate carcinogenesis, we have conducted a meta-analysis of previously published case-control and relevant case-only studies. Eleven studies comprising in total 3,806 cases and 4,466 controls were included in the meta-analysis which yielded evidence of association of rs2070744 (ORCC = 1.43, 95% CI 1.04-1.97; p = 0.03) and intron 4a/b variant (ORab+aa = 1.47, 95% CI 1.00-2.14; p = 0.05) with PCa risk under recessive and dominant model, respectively. Furthermore, PCa patients carrying 4a/b a allele were found to have an increased risk of cancer progression to a less differentiated form, characterized by a high Gleason score (OR = 2.29, 95% CI 1.51-3.49; p < 0.01) and to higher TNM stage (OR = 2.55, 95% CI 1.71-3.81; p < 0.01). These results support the involvement of NOS3 variants in molecular pathogenesis of PCa.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NOS3, Cancer Genetics Web: http://www.cancer-genetics.org/NOS3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999