Gene Summary

Gene:PBRM1; polybromo 1
Aliases: PB1, BAF180
Summary:This locus encodes a subunit of ATP-dependent chromatin-remodeling complexes. The encoded protein has been identified as in integral component of complexes necessary for ligand-dependent transcriptional activation by nuclear hormone receptors. Mutations at this locus have been associated with primary clear cell renal cell carcinoma. [provided by RefSeq, Feb 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein polybromo-1
Source:NCBIAccessed: 17 August, 2015


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Missense Mutation
  • Molecular Sequence Data
  • Transcription Factors
  • Kidney Cancer
  • Nuclear Proteins
  • Renal Cell Carcinoma
  • High-Throughput Nucleotide Sequencing
  • Reproducibility of Results
  • Gene Expression
  • Lung Cancer
  • Histones
  • Histone-Lysine N-Methyltransferase
  • Up-Regulation
  • Cancer Gene Expression Regulation
  • Staging
  • DNA Sequence Analysis
  • DNA-Binding Proteins
  • Chromatin Assembly and Disassembly
  • Chromosomal Proteins, Non-Histone
  • Transcriptome
  • p53 Protein
  • Tumor Suppressor Gene
  • Molecular Targeted Therapy
  • Chromatin
  • Tumor Suppressor Proteins
  • Gene Expression Profiling
  • DNA Mutational Analysis
  • Mutation
  • Promoter Regions
  • Loss of Heterozygosity
  • Pancreatic Cancer
  • Exome
  • Young Adult
  • DNA Helicases
  • Ultraviolet Rays
  • Tumor Markers
  • DNA Methylation
  • Epigenetics
  • Chromosome 3
Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PBRM1 (cancer-related)

Park JH, Lee C, Suh JH, et al.
Decreased ARID1A expression correlates with poor prognosis of clear cell renal cell carcinoma.
Hum Pathol. 2015; 46(3):454-60 [PubMed] Related Publications
Clear cell renal cell carcinoma (CCRCC) is the most common renal cell carcinoma. It has a relatively unfavorable prognosis compared to other common renal cell carcinomas. Recently, comprehensive molecular studies in CCRCC revealed important genetic alterations, including changes in the VHL, PBRM1, and ARID1A genes. The expression of ARID1A protein is associated with tumor progression and prognosis in many cancers. This study aimed to evaluate the nuclear expression of ARID1A in CCRCC and to assess its expression with the clinical prognosis. The nuclear expression of ARID1A was evaluated in 290 cases of CCRCC by immunohistochemistry. To determine the clinicopathological association with ARID1A, each of the cases was divided into 2 groups, low- and high-expression groups, according to the average proportion of nuclear staining. Decreased ARID1A expression was associated with the higher nuclear grade and higher pTNM stage (P < .001 and P = .013, respectively). The ARID1A low-expression group revealed significantly shorter cancer-specific and progression-free survival times (P = .001 and P < .001, respectively). Furthermore, Cox regression analysis showed that ARID1A expression was an independent prognostic factor for progression-free survival (P = .009). These results suggest that nuclear expression of ARID1A may serve as a new prognostic marker in CCRCC patients.

Randall JM, Millard F, Kurzrock R
Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art.
Cancer Metastasis Rev. 2014; 33(4):1109-24 [PubMed] Related Publications
Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2-3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.

Petrini I, Meltzer PS, Kim IK, et al.
A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors.
Nat Genet. 2014; 46(8):844-9 [PubMed] Related Publications
We analyzed 28 thymic epithelial tumors (TETs) using next-generation sequencing and identified a missense mutation (chromosome 7 c.74146970T>A) in GTF2I at high frequency in type A thymomas, a relatively indolent subtype. In a series of 274 TETs, we detected the GTF2I mutation in 82% of type A and 74% of type AB thymomas but rarely in the aggressive subtypes, where recurrent mutations of known cancer genes have been identified. Therefore, GTF2I mutation correlated with better survival. GTF2I β and δ isoforms were expressed in TETs, and both mutant isoforms were able to stimulate cell proliferation in vitro. Thymic carcinomas carried a higher number of mutations than thymomas (average of 43.5 and 18.4, respectively). Notably, we identified recurrent mutations of known cancer genes, including TP53, CYLD, CDKN2A, BAP1 and PBRM1, in thymic carcinomas. These findings will complement the diagnostic assessment of these tumors and also facilitate development of a molecular classification and assessment of prognosis and treatment strategies.

Czarnecka AM, Kornakiewicz A, Kukwa W, Szczylik C
Frontiers in clinical and molecular diagnostics and staging of metastatic clear cell renal cell carcinoma.
Future Oncol. 2014; 10(6):1095-111 [PubMed] Related Publications
The last few years have brought advances in the understanding of the molecular biology of metastatic clear cell renal cell carcinoma (RCC). Both preclinical research and clinical trials brought together results from the latest advancements in RCC diagnostic and staging. Understanding of the complex molecular alterations involved in the development and progression of RCC enables development of immunohistochemical and genetic diagnostic tools and is also opening the doors for experimental targeted therapies. At the same time, improvements of medical and molecular imaging improves the sensitivity and specificity of metastatic disease diagnosis. Moreover, independent validation of molecular profiles across high-throughput platforms, methods, laboratories and cancer populations has recently been successfully performed in RCC. Generation of informative, clinical diagnostic tools is likely to contribute to development of novel personalized diagnostic and treatment protocols and ensure prolonged survival of RCC patient in the near future.

Yoshikawa Y, Sato A, Tsujimura T, et al.
Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.
Int J Cancer. 2015; 136(3):560-71 [PubMed] Related Publications
We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis.

Simbolo M, Fassan M, Ruzzenente A, et al.
Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups.
Oncotarget. 2014; 5(9):2839-52 [PubMed] Free Access to Full Article Related Publications
One-hundred-fifty-three biliary cancers, including 70 intrahepatic cholangiocarcinomas (ICC), 57 extrahepatic cholangiocarcinomas (ECC) and 26 gallbladder carcinomas (GBC) were assessed for mutations in 56 genes using multigene next-generation sequencing. Expression of EGFR and mTOR pathway genes was investigated by immunohistochemistry. At least one mutated gene was observed in 118/153 (77%) cancers. The genes most frequently involved were KRAS (28%), TP53 (18%), ARID1A (12%), IDH1/2 (9%), PBRM1 (9%), BAP1 (7%), and PIK3CA (7%). IDH1/2 (p=0.0005) and BAP1 (p=0.0097) mutations were characteristic of ICC, while KRAS (p=0.0019) and TP53 (p=0.0019) were more frequent in ECC and GBC. Multivariate analysis identified tumour stage and TP53 mutations as independent predictors of survival. Alterations in chromatin remodeling genes (ARID1A, BAP1, PBRM1, SMARCB1) were seen in 31% of cases. Potentially actionable mutations were seen in 104/153 (68%) cancers: i) KRAS/NRAS/BRAF mutations were found in 34% of cancers; ii) mTOR pathway activation was documented by immunohistochemistry in 51% of cases and by mutations in mTOR pathway genes in 19% of cancers; iii) TGF-ß/Smad signaling was altered in 10.5% cancers; iv) mutations in tyrosine kinase receptors were found in 9% cases. Our study identified molecular subgroups of cholangiocarcinomas that can be explored for specific drug targeting in clinical trials.

Brugarolas J
Molecular genetics of clear-cell renal cell carcinoma.
J Clin Oncol. 2014; 32(18):1968-76 [PubMed] Free Access to Full Article Related Publications
Renal cell carcinoma of clear-cell type (ccRCC) is an enigmatic tumor type, characterized by frequent inactivation of the VHL gene (infrequently mutated in other tumor types), responsiveness to angiogenesis inhibitors, and resistance to both chemotherapy and conventional radiation therapy. ccRCC tumors exhibit substantial mutation heterogeneity. Recent studies using massively parallel sequencing technologies have implicated several novel driver genes. In VHL wild-type tumors, mutations were discovered in TCEB1, which encodes Elongin C, a protein that binds to VHL and is required for its function. Several additional tumor suppressor genes have been identified near the VHL gene, within a region that is frequently deleted in ccRCC on chromosome 3p: SETD2, BAP1, and PBRM1. Mutations in BAP1 and PBRM1 are largely mutually exclusive and are associated with different tumor biology and patient outcomes. In addition, the mTORC1 pathway is deregulated by mutations in MTOR, TSC1, PIK3CA, and PTEN in approximately 20% of ccRCCs. Mutations in TSC1, and possibly other genes, may predict for sensitivity to mTORC1 inhibitors. These discoveries provide insight into ccRCC development and set the foundation for the first molecular genetic classification of the disease, paving the way for subtype-specific therapies.

Rao Q, Xia QY, Shen Q, et al.
Coexistent loss of INI1 and BRG1 expression in a rhabdoid renal cell carcinoma (RCC): implications for a possible role of SWI/SNF complex in the pathogenesis of RCC.
Int J Clin Exp Pathol. 2014; 7(4):1782-7 [PubMed] Free Access to Full Article Related Publications
In this study, we analyzed the immunohistochemical and molecular profiles of an unusual RCC showed coexistent absence of INI1 and BRG1 expression, rhabdoid morphology, and poor prognosis. Histologically, the tumor had rhabdoid features, which were demonstrated by large round to polygonal cells with eccentric nuclei, prominent nucleoli, and eosinophilic cytoplasm varying from abundant to scanty. Immunohistochemically, the tumor were positive for BRM, PBRM1, ARID1A, CD10, CKpan, Vimentin, carbonic anhydrase IX (CA-IX), and P504S (AMACR) but negative for INI1, BRG1, HMB45, melan A, CK7, CD117, Ksp-cadherin, TFEB, TFE3, and Cathepsin K. We detected all three exons status of the VHL gene of the tumor and observed 1 somatic mutations in 1st exon. Chromosome 3p deletion, coupled with polysomy of chromosome 3 was also found. Based on these findings, it is further indicated that in some cases, rhabdoid RCC may arise from clear cell RCC. SWI/SNF chromatin remodeling complex may be an attractive candidate for being the "second hit" in RCCs and may play an important role during tumor progression. The role of SWI/SNF complex in rhabdoid RCC should be further studied on a larger number of cases.

Le Loarer F, Zhang L, Fletcher CD, et al.
Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material.
Genes Chromosomes Cancer. 2014; 53(6):475-86 [PubMed] Free Access to Full Article Related Publications
Epithelioid sarcomas (ES) are mesenchymal neoplasms subclassified into distal and proximal subtypes based on their distinct clinical presentations and histologic features. Consistent loss of SMARCB1 nuclear expression has been considered as the hallmark abnormality for both subtypes, a feature shared with atypical teratoid/rhabdoid tumor of infancy (ATRT). While virtually all ATRTs harbor underlying SMARCB1 somatic or germline alterations, mechanisms of SMARCB1 inactivation in ES are less well defined. To further define mechanisms of SMARCB1 inactivation a detailed molecular analysis was performed on 40 ES (25 proximal and 15 distal ES, with classic morphology and negative SMARCB1 expression) for their genomic status of SMARCB1 and related genes encoding the SWI/SNF subunits (PBRM1, BRG1, BRM, SMARCC1/2 and ARID1A) by FISH using custom BAC probes. An additional control group was included spanning a variety of 41 soft tissue neoplasms with either rhabdoid/epithelioid features or selected histotypes previously shown to lack SMARCB1 by IHC. Furthermore, 12 ES were studied by array CGH (aCGH) and an independent TMA containing 50 additional ES cases was screened for Aurora Kinase A (AURKA) and cyclin D1 immunoexpression. Homozygous SMARCB1 deletions were found by FISH in 36/40 ES (21/25 proximal-type). One of the distal-type ES displayed homozygous SMARCB1 deletion in the tumor cells, along with a heterozygous deletion within normal tissue, finding confirmed by array CGH. None of the proximal ES lacking homozygous SMARCB1 deletions displayed alterations in other SWI/SNF subunits gene members. Among controls, only the SMARCB1-immunonegative myoepithelial carcinomas displayed SMARCB1 homozygous deletions in 3/5 cases, while no gene specific abnormalities were seen among all other histologic subtypes of sarcomas tested regardless of the SMARCB1 protein status. There was no consistent pattern of AURKA and Cyclin D1 expression. The array CGH was successful in 9/12 ES, confirming the SMARCB1 and other SWI/SNF genes copy numbers detected by FISH. Our study confirms the shared pathogenesis of proximal and distal ES, showing consistent SMARCB1 homozygous deletions. Additionally we report the first ES case associated with a SMARCB1 constitutional deletion, establishing a previously undocumented link with ATRT. Alternative mechanisms of SMARCB1 inactivation in SMARCB1-disomic ES remain to be identified, but appear unrelated to large genomic abnormalities in other SWI/SNF subunits.

Parker PJ, Justilien V, Riou P, et al.
Atypical protein kinase Cι as a human oncogene and therapeutic target.
Biochem Pharmacol. 2014; 88(1):1-11 [PubMed] Free Access to Full Article Related Publications
Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family. The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions. Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer.

Buck MJ, Raaijmakers LM, Ramakrishnan S, et al.
Alterations in chromatin accessibility and DNA methylation in clear cell renal cell carcinoma.
Oncogene. 2014; 33(41):4961-5 [PubMed] Related Publications
Recent studies have demonstrated that in clear cell renal cell carcinoma (ccRCC) several chromatin remodeling enzymes are genetically inactivated. Although, growing evidence in cancer models has demonstrated the importance of epigenetic changes, currently only changes in DNA methylation can be accurately determined from clinical samples. To address this limitation, we have applied formaldehyde-assisted isolation of regulatory elements (FAIREs) combined with next-generation sequencing (FAIRE-seq) to identify specific changes in chromatin accessibility in clinical samples of ccRCC. We modified the FAIRE procedure to allow us to examine chromatin accessibility for small samples of solid tumors. Our FAIRE results were compared with DNA-methylation analysis and show how chromatin accessibility decreases at many sites where DNA-methylation remains unchanged. In addition, our FAIRE-seq analysis allowed us to identify regulatory elements associated with both normal and tumor tissue. We have identified decreases in chromatin accessibility at key ccRCC-linked genes, including PBRM1, SETD2 and MLL2. Overall, our results demonstrate the power of examining multiple aspects of the epigenome.

Jiao Y, Pawlik TM, Anders RA, et al.
Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas.
Nat Genet. 2013; 45(12):1470-3 [PubMed] Free Access to Full Article Related Publications
Through exomic sequencing of 32 intrahepatic cholangiocarcinomas, we discovered frequent inactivating mutations in multiple chromatin-remodeling genes (including BAP1, ARID1A and PBRM1), and mutation in one of these genes occurred in almost half of the carcinomas sequenced. We also identified frequent mutations at previously reported hotspots in the IDH1 and IDH2 genes encoding metabolic enzymes in intrahepatic cholangiocarcinomas. In contrast, TP53 was the most frequently altered gene in a series of nine gallbladder carcinomas. These discoveries highlight the key role of dysregulated chromatin remodeling in intrahepatic cholangiocarcinomas.

Gossage L, Murtaza M, Slatter AF, et al.
Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma.
Genes Chromosomes Cancer. 2014; 53(1):38-51 [PubMed] Related Publications
VHL is mutated in the majority of patients with clear cell renal cell carcinoma (ccRCC), with conflicting clinical relevance. Recent studies have identified recurrent mutations in histone modifying and chromatin remodeling genes, including BAP1, PBRM1, SETD2, KDM6A, and JARID1c. Current evidence suggests that BAP1 mutations are associated with aggressive disease. The clinical significance of the remaining genes is unknown. In this study, targeted sequencing of VHL and JARID1c (entire genes) and coding regions of BAP1, PBRM1, SETD2, and KDM6A was performed on 132 ccRCCs and matched normal tissues. Associations between mutations and clinical and pathological outcomes were interrogated. Inactivation of VHL (coding mutation or promoter methylation) was seen in 75% of ccRCCs. Somatic noncoding VHL alterations were identified in 29% of ccRCCs and may be associated with improved overall survival. BAP1 (11%), PBRM1 (33%), SETD2 (16%), JARID1c (4%), and KDM6A (3%) mutations were identified. BAP1-mutated tumors were associated with metastatic disease at presentation (P = 0.023), advanced clinical stage (P = 0.042) and a trend towards shorter recurrence free survival (P = 0.059) when compared with tumors exclusively mutated for PBRM1. Our results support those of recent publications pointing towards a role for BAP1 and PBRM1 mutations in risk stratifying ccRCCs. Further investigation of noncoding alterations in VHL is warranted.

Simon JM, Hacker KE, Singh D, et al.
Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects.
Genome Res. 2014; 24(2):241-50 [PubMed] Free Access to Full Article Related Publications
Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting ∼25% of all expressed genes. Furthermore, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds.

Xiao X, Tang C, Xiao S, et al.
Enhancement of proliferation and invasion by MicroRNA-590-5p via targeting PBRM1 in clear cell renal carcinoma cells.
Oncol Res. 2013; 20(11):537-44 [PubMed] Related Publications
MicroRNAs (miRNAs) play an important role in cancer development. In our study, miR-590-5p is found to be upregulated in the examined renal cell carcinoma (RCC) cell lines. PBRM1 acts as tumor suppressor in RCC, and its downregulation is associated with increased proliferation and aggressive behavior in RCC. We confirmed that PBRM1 was a direct target of miR-590-5p. miR-590-5p could regulate PBRM1 mRNA and protein expressions in clear cell renal carcinoma (ccRCC) ACHN and 786-O cells. Downregulation of miR-590-5p, which resulted in increased PBRM1, inhibited proliferation and invasion of ccRCC cells. Upregulation of miR-590-5p, which resulted in decreased PBRM1, promoted proliferation and invasion of ccRCC cells. The process of miR-590-5p promoting proliferation was found to be implicated in its inhibition of G1/S transition of ccRCC cells, and the action mechanisms were involved in its downregulation of PBRM1/p21(WAF1/CIP1) expression. In conclusion, we identified the role of miR-590-5p, serving as an oncomir in ccRCC, and our findings provide a potential target for the treatment of ccRCC.

da Costa WH, Rezende M, Carneiro FC, et al.
Polybromo-1 (PBRM1), a SWI/SNF complex subunit is a prognostic marker in clear cell renal cell carcinoma.
BJU Int. 2014; 113(5b):E157-63 [PubMed] Related Publications
OBJECTIVE: To analyse the immunohistochemical and mRNA expression of SWI/SNF (SWItch/Sucrose NonFermentable) complex subunit polybromo-1 (PBRM1) in clear cell renal cell carcinoma (ccRCC) and its impact on clinical outcomes.
PATIENTS AND METHODS: In all, 213 consecutive patients treated surgically for renal cell carcinoma (RCC) between 1992 and 2009 were selected. A single pathologist reviewed all cases to effect a uniform reclassification and determined the most representative tumour areas for construction of a tissue microarray. In addition, mRNA expression of PBRM1 was analysed by reverse transcriptase-polymerase chain reaction.
RESULTS: Of the 112-immunostained ccRCC specimens, 34 (30.4%) were PBRM1-negative, and 78 (69.6%) were PBRM1-positive. The protein expression of PBRM1 was associated with tumour stage (P < 0.001), clinical stage (P < 0.001), pN stage (P = 0.035) and tumour size (P = 0.002). PBRM1 mRNA expression was associated with clinical stage (P = 0.023), perinephric fat invasion (P = 0.008) and lymphovascular invasion (P = 0.042). PBRM1 significantly influenced tumour recurrence and tumour-related death. Disease-specific survival rates for patients whose specimens showed positive- and negative-PBRM1 expression were 89.7% and 70.6%, respectively (P = 0.017). Recurrence-free survival rates in patients with positive- and negative-expression of PBRM1 were 87.3% and 66.7%, respectively (P = 0.048).
CONCLUSIONS: PBRM1-negative expression is a markedly poor prognosis event in ccRCC. We encourage PBRM1 study by other groups in order to validate our findings and confirm its possible role as a useful marker in the management of patients with ccRCC.

Karlo CA, Di Paolo PL, Chaim J, et al.
Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations.
Radiology. 2014; 270(2):464-71 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To investigate associations between computed tomographic (CT) features of clear cell renal cell carcinoma (RCC) and mutations in VHL, PBRM1, SETD2, KDM5C, or BAP1 genes.
MATERIALS AND METHODS: The institutional review board approved this retrospective, hypothesis-generating study of 233 patients with clear cell RCC and waived the informed consent requirement. The study was HIPAA compliant. Three radiologists independently reviewed pretreatment CT images of all clear cell RCCs without knowledge of their genomic profile. One radiologist measured largest diameter and enhancement parameters of each clear cell RCC. Associations between CT features and mutations in VHL, PBRM1, SETD2, KDM5C, and BAP1 genes were tested by using the Fisher exact test. Associations between mutations and size and enhancement were assessed by using the independent t test. Interreader agreement was calculated by using the Fleiss κ.
RESULTS: Mutation frequencies among clear cell RCCs were as follows: VHL, 53.2% (124 of 233); PBRM1, 28.8% (67 of 233); SETD2, 7.3% (17 of 233); KDM5C, 6.9% (16 of 233); and BAP1, 6.0% (14 of 233). Mutations of VHL were significantly associated with well-defined tumor margins (P = .013), nodular tumor enhancement (P = .021), and gross appearance of intratumoral vascularity (P = .018). Mutations of KDM5C and BAP1 were significantly associated with evidence of renal vein invasion (P = .022 and .046, respectively). The genotype of solid clear cell RCC differed significantly from the genotype of multicystic clear cell RCC. While mutations of SETD2, KDM5C, and BAP1 were absent in multicystic clear cell RCC, mutations of VHL (P = .016) and PBRM1 (P = .017) were significantly more common among solid clear cell RCC. Interreader agreement for CT feature assessments ranged from substantial to excellent (κ = 0.791-0.912).
CONCLUSION: This preliminary radiogenomics analysis of clear cell RCC revealed associations between CT features and underlying mutations that warrant further investigation and validation.

Oike T, Ogiwara H, Nakano T, et al.
Inactivating mutations in SWI/SNF chromatin remodeling genes in human cancer.
Jpn J Clin Oncol. 2013; 43(9):849-55 [PubMed] Related Publications
Chromosomal deoxyribonucleic acid and histone proteins form a highly condensed structure known as chromatin. Chromatin remodeling proteins regulate deoxyribonucleic acid transcription, synthesis and repair by changing nucleosomal composition in an adenosine triphosphate-dependent manner and mediate access of deoxyribonucleic acid-binding proteins to deoxyribonucleic acid double strands. Recently, large-scale genome sequencing studies identified somatic mutations in genes encoding chromatin remodeling proteins in a variety of human solid cancers. Notably, inactivating mutations in genes encoding the catalytic and regulatory subunits of the switch/sucrose non-fermenting chromatin remodeling complex have been detected in several solid cancers: sucrose non-fermenting/switch/sucrose non-fermenting-related, matrix-associated, actin-dependent regulator of chromatin, subfamily b, member 1/Brahma-related gene 1-associated factor 47/integrase interactor 1 mutations in rhabdoid tumors; AT-rich interactive domain-containing protein 1 A/Brahma-related gene 1-associated factor 250a mutations in ovarian clear cell carcinoma, hepatocellular carcinoma and gastric adenocarcinoma; polybromo 1/Brahma-related gene 1-associated factor 180 mutations in renal clear cell carcinoma; Brahma-related gene 1/switch/sucrose non-fermenting-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 mutations in non-small-cell lung carcinoma and AT-rich interactive domain-containing protein 2/Brahma-related gene 1-associated factor 200 mutations in hepatocellular carcinoma and malignant melanoma. This suggests that the switch/sucrose non-fermenting complex has a tumor-suppressive function, and that switch/sucrose non-fermenting gene deficiencies may affect the properties of cancer cells, which could be of value for the development of novel therapeutic strategies.

Brugarolas J
PBRM1 and BAP1 as novel targets for renal cell carcinoma.
Cancer J. 2013 Jul-Aug; 19(4):324-32 [PubMed] Free Access to Full Article Related Publications
Technological advances in genome sequencing have led to the identification of novel driver genes mutated in renal cancer. Hitherto, 1 gene was known to be frequently mutated in renal cell carcinoma of clear cell type (ccRCC), the von Hippel-Lindau (VHL) gene. VHL was identified by positional cloning as the gene responsible for a familial syndrome with renal cancer predisposition, von Hippel-Lindau. Subsequently, VHL was found to be inactivated in approximately 90% of sporadic ccRCC. The discovery of VHL, together with the elucidation of its function, transformed the treatment of ccRCC leading to the introduction of 5 new drugs into the clinic. However, no other familial ccRCC predisposing genes are frequently mutated in sporadic ccRCC. With the development of massively parallel sequencing, a plethora of somatically mutated genes has been identified. Most genes are mutated at low frequencies, but 3 genes are mutated in more than 10% of ccRCC, PBRM1 (mutated in ~50%), BAP1 (~15%), and SETD2 (~15%). Like VHL, all 3 genes are 2-hit tumor suppressor genes. Furthermore, these 3 genes are within a 50-Mb region on the short arm of chromosome 3p that encompasses VHL and is deleted in ~90% of ccRCC. We discovered that PBRM1 mutations tend to anticorrelate with BAP1 mutations in ccRCC and that PBRM1- and BAP1-mutated tumors exhibit different biology and are associated with markedly different outcomes. This established the foundation for the first molecular genetic classification of sporadic ccRCC. Herein, I review the evidence that implicated PBRM1 and BAP1 as renal cancer driver genes, provide an update on the function of the gene products, and speculate on how mutations in these genes may be exploited therapeutically.

Peña-Llopis S, Christie A, Xie XJ, Brugarolas J
Cooperation and antagonism among cancer genes: the renal cancer paradigm.
Cancer Res. 2013; 73(14):4173-9 [PubMed] Free Access to Full Article Related Publications
It is poorly understood how driver mutations in cancer genes work together to promote tumor development. Renal cell carcinoma (RCC) offers a unique opportunity to study complex relationships among cancer genes. The four most commonly mutated genes in RCC of clear-cell type (the most common type) are two-hit tumor suppressor genes, and they cluster in a 43-Mb region on chromosome 3p that is deleted in approximately 90% of tumors: VHL (mutated in ∼80%), PBRM1 (∼50%), BAP1 (∼15%), and SETD2 (∼15%). Meta-analyses that we conducted show that mutations in PBRM1 and SETD2 co-occur in tumors at a frequency higher than expected by chance alone, indicating that these mutations may cooperate in tumorigenesis. In contrast, consistent with our previous results, mutations in PBRM1 and BAP1 tend to be mutually exclusive. Mutation exclusivity analyses (often confounded by lack of statistical power) raise the possibility of functional redundancy. However, mutation exclusivity may indicate negative genetic interactions, as proposed herein for PBRM1 and BAP1, and mutations in these genes define RCC with different pathologic features, gene expression profiles, and outcomes. Negative genetic interactions among cancer genes point toward broader context dependencies of cancer gene action beyond tissue dependencies. An enhanced understanding of cancer gene dependencies may help to unravel vulnerabilities that can be exploited therapeutically.

Comprehensive molecular characterization of clear cell renal cell carcinoma.
Nature. 2013; 499(7456):43-9 [PubMed] Free Access to Full Article Related Publications
Genetic changes underlying clear cell renal cell carcinoma (ccRCC) include alterations in genes controlling cellular oxygen sensing (for example, VHL) and the maintenance of chromatin states (for example, PBRM1). We surveyed more than 400 tumours using different genomic platforms and identified 19 significantly mutated genes. The PI(3)K/AKT pathway was recurrently mutated, suggesting this pathway as a potential therapeutic target. Widespread DNA hypomethylation was associated with mutation of the H3K36 methyltransferase SETD2, and integrative analysis suggested that mutations involving the SWI/SNF chromatin remodelling complex (PBRM1, ARID1A, SMARCA4) could have far-reaching effects on other pathways. Aggressive cancers demonstrated evidence of a metabolic shift, involving downregulation of genes involved in the TCA cycle, decreased AMPK and PTEN protein levels, upregulation of the pentose phosphate pathway and the glutamine transporter genes, increased acetyl-CoA carboxylase protein, and altered promoter methylation of miR-21 (also known as MIR21) and GRB10. Remodelling cellular metabolism thus constitutes a recurrent pattern in ccRCC that correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.

Ibragimova I, Maradeo ME, Dulaimi E, Cairns P
Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC.
Epigenetics. 2013; 8(5):486-93 [PubMed] Free Access to Full Article Related Publications
Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC.

Nickerson ML, Im KM, Misner KJ, et al.
Somatic alterations contributing to metastasis of a castration-resistant prostate cancer.
Hum Mutat. 2013; 34(9):1231-41 [PubMed] Free Access to Full Article Related Publications
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease, and molecular markers that differentiate indolent from aggressive subtypes are needed. We sequenced the exomes of five metastatic tumors and healthy kidney tissue from an index case with mCRPC to identify lesions associated with disease progression and metastasis. An Ashkenazi Jewish (AJ) germline founder mutation, del185AG in BRCA1, was observed and AJ ancestry was confirmed. Sixty-two somatic variants altered proteins in tumors, including cancer-associated genes, TMPRSS2-ERG, PBRM1, and TET2. The majority (n = 53) of somatic variants were present in all metastases and only a subset (n = 31) was observed in the primary tumor. Integrating tumor next-generation sequencing and DNA copy number showed somatic loss of BRCA1 and TMPRSS2-ERG. We sequenced 19 genes with deleterious mutations in the index case in additional mCRPC samples and detected a frameshift, two somatic missense alterations, tumor loss of heterozygosity, and combinations of germline missense SNPs in TET2. In summary, genetic analysis of metastases from an index case permitted us to infer a chronology for the clonal spread of disease based on sequential accrual of somatic lesions. The role of TET2 in mCRPC deserves additional analysis and may define a subset of metastatic disease.

Hakimi AA, Ostrovnaya I, Reva B, et al.
Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network.
Clin Cancer Res. 2013; 19(12):3259-67 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To investigate the impact of newly identified chromosome 3p21 epigenetic tumor suppressors PBRM1, SETD2, and BAP1 on cancer-specific survival (CSS) of 609 patients with clear cell renal cell carcinoma (ccRCC) from 2 distinct cohorts.
EXPERIMENTAL DESIGN: Select sequencing on 3p tumor suppressors of 188 patients who underwent resection of primary ccRCC at the Memorial Sloan-Kettering Cancer Center (MSKCC) was conducted to interrogate the genotype-phenotype associations. These findings were compared with analyses of the genomic and clinical dataset from our nonoverlapping The Cancer Genome Atlas (TCGA) cohort of 421 patients with primary ccRCC.
RESULTS: 3p21 tumor suppressors are frequently mutated in both the MSKCC (PBRM1, 30.3%; SETD2, 7.4%; BAP1, 6.4%) and the TCGA (PBRM1, 33.5%; SETD2, 11.6%; BAP1, 9.7%) cohorts. BAP1 mutations are associated with worse CSS in both cohorts [MSKCC, P = 0.002; HR 7.71; 95% confidence interval (CI)2.08-28.6; TCGA, P = 0.002; HR 2.21; 95% CI 1.35-3.63]. SETD2 are associated with worse CSS in the TCGA cohort (P = 0.036; HR 1.68; 95% CI 1.04-2.73). On the contrary, PBRM1 mutations, the second most common gene mutations of ccRCC, have no impact on CSS.
CONCLUSION: The chromosome 3p21 locus harbors 3 frequently mutated ccRCC tumor suppressor genes. BAP1 and SETD2 mutations (6%-12%) are associated with worse CSS, suggesting their roles in disease progression. PBRM1 mutations (30%-34%) do not impact CSS, implicating its principal role in the tumor initiation. Future efforts should focus on therapeutic interventions and further clinical, pathologic, and molecular interrogation of this novel class of tumor suppressors.

Saladi SV, Wong PG, Trivedi AR, et al.
BRG1 promotes survival of UV-irradiated melanoma cells by cooperating with MITF to activate the melanoma inhibitor of apoptosis gene.
Pigment Cell Melanoma Res. 2013; 26(3):377-91 [PubMed] Free Access to Full Article Related Publications
Microphthalmia-associated transcription factor (MITF) is a survival factor in melanocytes and melanoma cells. MITF regulates expression of antiapoptotic genes and promotes lineage-specific survival in response to ultraviolet (UV) radiation and to chemotherapeutics. SWI/SNF chromatin-remodeling enzymes interact with MITF to regulate MITF target gene expression. We determined that the catalytic subunit, BRG1, of the SWI/SNF complex protects melanoma cells against UV-induced death. BRG1 prevents apoptosis in UV-irradiated melanoma cells by activating expression of the melanoma inhibitor of apoptosis (ML-IAP). Down-regulation of ML-IAP compromises BRG1-mediated survival of melanoma cells in response to UV radiation. BRG1 regulates ML-IAP expression by cooperating with MITF to promote transcriptionally permissive chromatin structure on the ML-IAP promoter. The alternative catalytic subunit, BRM, and the BRG1-associated factor, BAF180, were found to be dispensable for elevated expression of ML-IAP in melanoma cells. Thus, we illuminate a lineage-specific mechanism by which a specific SWI/SNF subunit, BRG1, modulates the cellular response to DNA damage by regulating an antiapoptotic gene and implicate this subunit of the SWI/SNF complex in mediating the prosurvival function of MITF.

Lichner Z, Scorilas A, White NM, et al.
The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma.
Am J Pathol. 2013; 182(4):1163-70 [PubMed] Related Publications
Clear cell renal cell carcinoma (ccRCC) is the most common tumor of the adult kidney, with an increasing rate of incidence. Recently, exome sequencing studies have revealed that the SWI/SNF (switch/sucrose nonfermentable) members PBRM1 and ARID1A are mutated in ccRCC, and it has also been suggested that aberrant chromatin regulation is a key step in kidney cancer pathogenesis. Herein, we show that down-regulation of another SW/SNF component, ARID1A, occurs frequently in ccRCC. We detected copy number loss of ARID1A in 16% of patients with ccRCC. Immunohistochemistry indicated that 67% of ccRCC (53 of 79) had significantly lower expression of BAF250a, the protein product of ARID1A, than did the matched normal kidney cortex. In parallel, we conducted in silico mRNA expression analysis on 404 ccRCC tumors and 167 normal kidney cortex samples using publicly available databases and confirmed significant down-regulation of ARID1A in 68.8% of patients. We also show that decreased BAF250a protein and ARID1A mRNA expression correlate with tumor stage and grade. Our results indicate that both the protein and mRNA levels of ARID1A are statistically significant prognostic markers for ccRCC. Even after controlling for other confounders in the multivariate analysis, BAF250 retained its prognostic significance. BAF250a IHC is easy to perform and represents a potential biomarker that could be incorporated in laboratory practice to enhance the accuracy of the existing prognostic models.

Shain AH, Pollack JR
The spectrum of SWI/SNF mutations, ubiquitous in human cancers.
PLoS One. 2013; 8(1):e55119 [PubMed] Free Access to Full Article Related Publications
SWI/SNF is a multi-subunit chromatin remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, thereby modulating gene expression. Accumulating evidence suggests that SWI/SNF functions as a tumor suppressor in some cancers. However, the spectrum of SWI/SNF mutations across human cancers has not been systematically investigated. Here, we mined whole-exome sequencing data from 24 published studies representing 669 cases from 18 neoplastic diagnoses. SWI/SNF mutations were widespread across diverse human cancers, with an excess of deleterious mutations, and an overall frequency approaching TP53 mutation. Mutations occurred most commonly in the SMARCA4 enzymatic subunit, and in subunits thought to confer functional specificity (ARID1A, ARID1B, PBRM1, and ARID2). SWI/SNF mutations were not mutually-exclusive of other mutated cancer genes, including TP53 and EZH2 (both previously linked to SWI/SNF). Our findings implicate SWI/SNF as an important but under-recognized tumor suppressor in diverse human cancers, and provide a key resource to guide future investigations.

Numata M, Morinaga S, Watanabe T, et al.
The clinical significance of SWI/SNF complex in pancreatic cancer.
Int J Oncol. 2013; 42(2):403-10 [PubMed] Free Access to Full Article Related Publications
Chromatin remodeling factors have been the subject of great interest in oncology. However, little is known about their role in pancreatic cancer. The objective of this study was to clarify the clinical significance of the SWItch/sucrose non-fermentable (SWI/SNF) complex in patients with pancreatic cancer. A total of 68 patients with pancreatic cancer who underwent R0, 1 resection were enrolled. Cancer tissues were processed to tissue microarray, then stained immunohistochemically by using antibody of SWI/SNF components; BRM, BRG1, BAF250a, BAF180 and BAF47. The correlation of expression levels and clinicopathological outcomes were analyzed, followed by the multivariate analysis of prognostic factors for overall survival. The expression levels of the SWI/SNF components were categorized as low or high according to the median value of Histoscore. Statistical analysis revealed that BRM expression was related to tumor size, T factor, M factor, lymphatic invasion and stage BRG1 expression to histology and stage BAF180 expression to tumor size and BAF47 expression to lymphatic invasion, respectively. Multivariate Cox proportional hazard analysis showed that high BRM and low BAF180 expression levels were independent predictors of worse survival in patients with pancreatic cancer. High BRM, and low BAF180 were also independent prognostic factors for poor survival in the subgroup with adjuvant gemcitabine. These results suggest that the specific cofactors of SWI/SNF chromatin remodeling complex certainly have roles in pancreatic cancer. High BRM, and low BAF180 are useful biomarkers for poor prognosis in pancreatic cancer.

Linehan WM, Rathmell WK
Kidney cancer.
Urol Oncol. 2012 Nov-Dec; 30(6):948-51 [PubMed] Free Access to Full Article Related Publications
Over 65,000 Americans are diagnosed with kidney cancer each year and nearly 13,000 die of this disease. Kidney cancer is not a single disease, it is made up of a number of different types of cancer, each with a different histology, a different clinical course, responding differently to therapy and caused by a different gene. Study of the 13 genes that are known to cause kidney cancer has led to the understanding that kidney cancer is a metabolic disease. Recent discoveries of chromatin remodeling/histone modifying genes, such as PBRM1 and SETD2, have opened up new areas of intense interest in the study of the fundamental genetic basis of kidney cancer. New approaches to immunotherapy with agents such as the CTLA4 inhibitor, ipilumumab, have opened up promising new directions for clinical trials. A number of new agents targeting of VEGF receptor signaling and the mTOR pathways as well as novel approaches targeting HIF2 will hopefully provide the foundation for the development of effective forms of therapy for this disease.

Hakimi AA, Chen YB, Wren J, et al.
Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma.
Eur Urol. 2013; 63(5):848-54 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Historically, VHL was the only frequently mutated gene in clear cell renal cell carcinoma (ccRCC), with conflicting clinical relevance. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC including PBRM1, SETD2, BAP1, and KDM5C. PBRM1, SETD2, and BAP1 are located in close proximity to VHL within a commonly lost (approximately 90%) 3p locus. To date, the clinical and pathologic significance of mutations in these novel candidate tumor suppressors is unknown.
OBJECTIVE: To determine the frequency of and render the first clinical and pathologic outcome associated with mutations of these novel candidate tumor suppressors in ccRCC.
DESIGN, SETTING, AND PARTICIPANTS: Targeted sequencing was performed in 185 ccRCCs and matched normal tissues from a single institution. Pathologic features, baseline patient characteristics, and follow-up data were recorded.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The linkage between mutations and clinical and pathologic outcomes was interrogated with the Fisher exact test (for stage and Fuhrman nuclear grade) and the permutation log-rank test (for cancer-specific survival [CSS]).
RESULTS AND LIMITATIONS: PBRM1, BAP1, SETD2, and KDM5C are mutated at 29%, 6%, 8%, and 8%, respectively. Tumors with mutations in PBRM1 or any of BAP1, SETD2, or KDM5C (19%) are more likely to present with stage III disease or higher (p = 0.01 and p = 0.001, respectively). Small tumors (<4 cm) with PBRM1 mutations are more likely to exhibit stage III pathologic features (odds ratio: 6.4; p = 0.001). BAP1 mutations tend to occur in Fuhrman grade III-IV tumors (p = 0.052) and are associated with worse CSS (p = 0.01). Clinical outcome data are limited by the number of events.
CONCLUSIONS: Most mutations of chromatin modulators discovered in ccRCC are loss of function, associated with advanced stage, grade, and possibly worse CSS. Further studies validating the clinical impact of these novel mutations and future development of therapeutics remedying these tumor suppressors are warranted.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PBRM1, Cancer Genetics Web: http://www.cancer-genetics.org/PBRM1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999