PTGER2

Gene Summary

Gene:PTGER2; prostaglandin E receptor 2
Aliases: EP2
Location:14q22.1
Summary:This gene encodes a receptor for prostaglandin E2, a metabolite of arachidonic acid which has different biologic activities in a wide range of tissues. Mutations in this gene are associated with aspirin-induced susceptibility to asthma. [provided by RefSeq, Oct 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:prostaglandin E2 receptor EP2 subtype
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (9)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Repressor Proteins
  • Colorectal Cancer
  • Membrane Proteins
  • Cell Movement
  • Cyclic AMP
  • Gene Expression Profiling
  • Transcription Factors
  • Phosphorylation
  • Signal Transduction
  • Case-Control Studies
  • Antineoplastic Agents
  • Immunohistochemistry
  • Risk Factors
  • Dinoprostone
  • PTGER2
  • siRNA
  • Adenocarcinoma
  • Cell Proliferation
  • Prostaglandin-Endoperoxide Synthases
  • Xanthones
  • Biomarkers, Tumor
  • Thromboxane A2
  • Sulfonamides
  • Cyclooxygenase 2 Inhibitors
  • COX2 (PTGS2)
  • Receptors, Prostaglandin E, EP4 Subtype
  • Survival Rate
  • Receptors, Prostaglandin E
  • Cyclooxygenase 1
  • DNA Methylation
  • Chromosome 14
  • Promoter Regions
  • Xenograft Models
  • Cancer Gene Expression Regulation
  • Single Nucleotide Polymorphism
  • Non-Small Cell Lung Cancer
  • Receptors, Prostaglandin E, EP2 Subtype
  • beta Catenin
  • Receptors, Prostaglandin E, EP3 Subtype
  • Messenger RNA
  • Lung Cancer
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTGER2 (cancer-related)

Kim HJ, Kang TW, Haam K, et al.
Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis.
Exp Mol Med. 2018; 50(12):156 [PubMed] Free Access to Full Article Related Publications
DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand-receptor interaction pathway. Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract.

Subbaramaiah K, Iyengar NM, Morrow M, et al.
Prostaglandin E
J Biol Chem. 2019; 294(1):361-371 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Obesity increases the risk of hormone receptor-positive breast cancer in postmenopausal women. Levels of aromatase, the rate-limiting enzyme in estrogen biosynthesis, are increased in the breast tissue of obese women. Both prostaglandin E

Semmlinger A, von Schoenfeldt V, Wolf V, et al.
EP3 (prostaglandin E2 receptor 3) expression is a prognostic factor for progression-free and overall survival in sporadic breast cancer.
BMC Cancer. 2018; 18(1):431 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
BACKGROUND: In various cancers, overexpression of cyclooxygenase (COX)-2 and elevated prostaglandin (PG) E2 synthesis have been associated with tumor development and progression. The potential of COX-2 inhibitors in cancer prevention and treatment has been shown repeatedly; however, their clinical use is limited due to toxicity. PGE2 signals via EP receptors 1-4, whose functions are analyzed in current research in search for targeted anti-PG therapies. EP2 and EP4 rather promote tumorigenesis, while the role of EP3, especially in breast cancer, is not yet clear and both pro- and anti-tumorigenic effects have been described. Our study evaluates EP3 receptor expression in sporadic breast cancer and its association with clinicopathological parameters, progression-free and overall survival.
METHODS: Two hundred eighty-nine sporadic breast cancer samples without primary distant metastasis were immunohistochemically analyzed for EP3 receptor expression. Tissue was stained with primary anti-EP3-antibodies. Immunoreactivity was quantified by the immunoreactivity-score (IRS); samples with an IRS ≥ 2 scored as EP3 positive. Chi-squared and Mann-Whitney-U test were used for comparison of data; Kaplan-Meier estimates and Cox-regression were used for survival analyses.
RESULTS: EP3 receptor was expressed in 205 of 289 samples analyzed (70.9%). EP3 receptor expression was not associated with clinicopathological parameters (e. g. tumor size, hormone receptors, lymph node status). Kaplan-Meier estimates showed a significant association of EP3 positivity with improved progression-free survival (p = 0.002) and improved overall survival (p = 0.001) after up to 10 years. Cox regression analysis confirmed EP3 positivity as a significant prognostic factor even when other known prognosticators were accounted for.
CONCLUSIONS: In sporadic breast cancer, EP3 receptor expression is not significantly associated with clinicopathological parameters but is a significant prognostic factor for improved progression-free and overall survival. However, the functional aspects of EP3 receptor in breast cancer and the way how EP3 may oppose the pro-tumorigenic effects of PGE2 elevation and COX-2 overexpression are not fully understood so far. Further studies aiming at identification of the factors regulated by EP3 are necessary to evaluate the possibility of targeting EP3 in future anti-tumor therapy in breast cancer.

Xu G, Wang Y, Li W, et al.
COX-2 Forms Regulatory Loop with YAP to Promote Proliferation and Tumorigenesis of Hepatocellular Carcinoma Cells.
Neoplasia. 2018; 20(4):324-334 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
COX-2 and YAP are shown to be highly associated with hepatocellular carcinoma (HCC) and frequently upregulated during tumor formation. However, despite their importance, whether there is a mutual interaction between COX-2 and YAP and how they regulate each other are not clear. In this paper, we showed that COX-2 overexpression in HCC cell lines resulted in increased levels of YAP mRNA, protein, and its target genes. COX-2 promoted proliferation of HCC cell lines, and knockdown of YAP antagonized this effect. In addition, our results indicated that EP2 and Wnt/β-Catenin mediate the transcriptional induction of YAP by COX-2. On the other hand, YAP increased COX-2 expression at the level of transcription requiring intact TEAD binding sites in the COX-2 promoter. Collectively, these findings indicated that COX-2 is not only a stimulus of YAP but also a target of Hippo-YAP pathway, thus forming a positive feedback circuit, COX-2-PGE

Hou PC, Li YH, Lin SC, et al.
Hypoxia-Induced Downregulation of DUSP-2 Phosphatase Drives Colon Cancer Stemness.
Cancer Res. 2017; 77(16):4305-4316 [PubMed] Related Publications
Cancer stem-like cells (CSC) evolve to overcome the pressures of reduced oxygen, nutrients or chemically induced cell death, but the mechanisms driving this evolution are incompletely understood. Here, we report that hypoxia-mediated downregulation of the dual specificity phosphatase 2 (DUSP2) is critical for the accumulation of CSC in colorectal cancer. Reduced expression of DUSP2 led to overproduction of COX-2-derived prostaglandin E

Hsu HH, Lin YM, Shen CY, et al.
Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells.
Int J Mol Sci. 2017; 18(6) [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC). The expression of matrix metalloproteinases (MMPs) has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM) promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.

Xing W, Xiao Y, Lu X, et al.
GFI1 downregulation promotes inflammation-linked metastasis of colorectal cancer.
Cell Death Differ. 2017; 24(5):929-943 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Inflammation is frequently associated with initiation, progression, and metastasis of colorectal cancer (CRC). Here, we unveil a CRC-specific metastatic programme that is triggered via the transcriptional repressor, GFI1. Using data from a large cohort of clinical samples including inflammatory bowel disease and CRC, and a cellular model of CRC progression mediated by cross-talk between the cancer cell and the inflammatory microenvironment, we identified GFI1 as a gating regulator responsible for a constitutively activated signalling circuit that renders CRC cells competent for metastatic spread. Further analysis of mouse models with metastatic CRC and human clinical specimens reinforced the influence of GFI1 downregulation in promoting CRC metastatic spread. The novel role of GFI1 is uncovered for the first time in a human solid tumour such as CRC. Our results imply that GFI1 is a potential therapeutic target for interfering with inflammation-induced CRC progression and spread.

Schmidt A, Sinnett-Smith J, Young S, et al.
Direct growth-inhibitory effects of prostaglandin E2 in pancreatic cancer cells in vitro through an EP4/PKA-mediated mechanism.
Surgery. 2017; 161(6):1570-1578 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
BACKGROUND: There is strong evidence linking inflammation and the development of pancreatic ductal adenocarcinoma. Cyclooxygenase-2 (COX-2) and COX-2-derived PGE
METHODS: Human pancreatic ductal adenocarcinoma cell lines, Panc-1 and MIA PaCa-2, were treated with PGE
RESULTS: PGE
CONCLUSION: Our study provides evidence that PGE

Filipenko I, Schwalm S, Reali L, et al.
Upregulation of the S1P
Biochim Biophys Acta. 2016; 1861(11):1840-1851 [PubMed] Related Publications
Breast cancer is one of the most common and devastating malignancies among women worldwide. Recent evidence suggests that malignant progression is also driven by processes involving the sphingolipid molecule sphingosine 1-phosphate (S1P) and its binding to cognate receptor subtypes on the cell surface. To investigate the effect of this interaction on the metastatic phenotype, we used the breast cancer cell line MDA-MB-231 and the sublines 4175 and 1833 derived from lung and bone metastases in nude mice, respectively. In both metastatic cell lines expression of the S1P

Sidahmed E, Sen A, Ren J, et al.
Colonic Saturated Fatty Acid Concentrations and Expression of COX-1, but not Diet, Predict Prostaglandin E2 in Normal Human Colon Tissue.
Nutr Cancer. 2016; 68(7):1192-201 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Prostaglandin E2 (PGE2) in the colon is a pro-inflammatory mediator that is associated with increased risk of colon cancer. In this study, expression of genes in the PGE2 pathway were quantified in colon biopsies from a trial of a Mediterranean versus a Healthy Eating diet in 113 individuals at high risk for colon cancer. Colon biopsies were obtained before and after 6 months of intervention. Quantitative, real-time PCR was used to measure mRNA expression of prostaglandin H synthases (PTGS1 and 2), prostaglandin E synthases (PTGES1 and 3), prostaglandin dehydrogenase (HPGD), and PGE2 receptors (PTGER2, PTGER4). The most highly expressed genes were HPGD and PTGS1. In multivariate linear regression models of baseline data, both colon saturated fatty acid concentrations and PTGS1 expression were significant, positive predictors of colon PGE2 concentrations after controlling for nonsteroidal anti-inflammatory drug use, gender, age, and smoking status. The effects of dietary intervention on gene expression were minimal with small increases in expression noted for PTGES3 in both arms and in PTGER4 in the Mediterranean arm. These results indicate that short-term dietary change had little effect on enzymes in the prostaglandin pathway in the colon and other factors, such as differences in fatty acid metabolism, might be more influential.

Rong Y, Yuan CH, Qu Z, et al.
Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2.
Sci Rep. 2016; 6:23824 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Chemotherapies often induce drug-resistance in cancer cells and simultaneously stimulate proliferation and activation of Myeloid-Derived Suppressor Cells (MDSCs) to inhibit anti-tumor T cells, thus result in poor prognosis of patients with breast cancers. To date, the mechanism underlying the expansion of MDSCs in response to chemotherapies is poorly understood. In the present study, we used in vitro cell culture and in vivo animal studies to demonstrate that doxorubicin-resistant breast cancer cells secret significantly more prostaglandin E2 (PGE2) than their parental doxorubicin-sensitive cells. The secreted PGE2 can stimulate expansion and polymerization of MDSCs by directly target to its receptors, EP2/EP4, on the surface of MDSCs, which consequently triggers production of miR-10a through activating PKA signaling. More importantly, activated MDSCs can inhibit CD4(+)CD25(-) T cells as evidenced by reduced proliferation and IFN-γ release. In order to determine the molecular pathway that involves miR-10a mediated activation of MDSCs, biochemical and pharmacological studies were carried out. We found that miR-10a can activate AMPK signaling to promote expansion and activation of MDSCs. Thus, these results reveal, for the first time, a novel role of PGE2/miR-10a/AMPK signaling axis in chemotherapy-induced immune resistance, which might be targeted for treatment of chemotherapy resistant tumors.

Merz C, von Mässenhausen A, Queisser A, et al.
IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.
Am J Pathol. 2016; 186(4):974-84 [PubMed] Related Publications
Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2.

Andersson E, Arvidsson Y, Swärd C, et al.
Expression profiling of small intestinal neuroendocrine tumors identifies subgroups with clinical relevance, prognostic markers and therapeutic targets.
Mod Pathol. 2016; 29(6):616-29 [PubMed] Related Publications
We wanted to define the transcriptome of small intestinal neuroendocrine tumors in order to identify clinically relevant subgroups of tumors, prognostic markers and novel targets for treatment. Genome-wide expression profiling was conducted on tumor biopsies from 33 patients with well-differentiated neuroendocrine tumors of the distal ileum and metastatic disease at the time of diagnosis. Unsupervised hierarchical clustering analysis identified three groups of tumors. The largest group, comprising half of the tumors, was characterized by longer patient survival and higher expression of neuroendocrine markers, including SSTR2. Tumors with higher grade (G2/3) or gain of chromosome 14 were associated with shorter patient survival and increased expression of cell cycle-promoting genes. Pathway analysis predicted the prostaglandin E receptor 2 (PTGER2) as the most significantly activated regulator in tumors of higher grade, whereas Forkhead box M1 (FOXM1) was the most significantly activated regulator in tumors with gain of chromosome 14. Druggable genes identified from expression profiles included clinically proven SSTR2 and also novel targets, for example, receptor tyrosine kinases (RET, FGFR1/3, PDGFRB and FLT1), epigenetic regulators, molecular chaperones and signal transduction molecules. Evaluation of candidate drug targets on neuroendocrine tumors cells (GOT1) showed significant inhibition of tumor cell growth after treatment with tyrosine kinase inhibitors or inhibitors of HDAC, HSP90 and AKT. In conclusion, we have defined the transcriptome of small intestinal neuroendocrine tumors and identified novel subgroups with clinical relevance. We found specific gene expression patterns associated with tumor grade and chromosomal alterations. Our data also suggest novel prognostic biomarkers and therapies for these patients.

Schumacher Y, Aparicio T, Ourabah S, et al.
Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth.
Oncogene. 2016; 35(20):2602-14 [PubMed] Related Publications
First identified as a dedicated CREB (cAMP response element-binding protein) co-activator, CRTC1 (CREB-regulated transcription co-activator 1) has been widely implicated in various neuronal functions because of its predominant expression in the brain. However, recent evidences converge to indicate that CRTC1 is aberrantly activated in an expanding number of adult malignancies. In this study, we provide strong evidences of enhanced CRTC1 protein content and transcriptional activity in mouse models of sporadic (APC(min/+) mice) or colitis-associated colon cancer azoxymethane/dextran sulfate sodium (AOM/DSS-treated mice), and in human colorectal tumors specimens compared with adjacent normal mucosa. Among signals that could trigger CRTC1 activation during colonic carcinogenesis, we demonstrate that treatment with cyclooxygenase 2 (COX2) inhibitors reduced nuclear CRTC1 active form levels in colonic tumors of APC(min/+) or AOM/DSS mice. In accordance, prostaglandins E2 (PGE2) exposure to human colon cancer cell lines promoted CRTC1 dephosphorylation and parallel nuclear translocation, resulting in enhanced CRTC1 transcriptional activity, through EP1 and EP2 receptors signaling and consecutive calcineurin and protein kinase A activation. In vitro CRTC1 loss of function in colon cancer cell lines was associated with reduced viability and cell division rate as well as enhanced chemotherapy-induced apoptosis on PGE2 treatment. Conversely, CRTC1 stable overexpression significantly increased colonic xenografts tumor growth, therefore demonstrating the role of CRTC1 signaling in colon cancer progression. Identification of the transcriptional program triggered by enhanced CRTC1 expression during colonic carcinogenesis, revealed some notable pro-tumorigenic CRTC1 target genes including NR4A2, COX2, amphiregulin (AREG) and IL-6. Finally, we demonstrate that COX2, AREG and IL-6 promoter activities triggered by CRTC1 are dependent on functional AP1 and CREB transcriptional partners. Overall, our study establishes CRTC1 as new mediator of PGE2 signaling, unravels the importance of its dysregulation in colon cancer and strengthens its use as a bona fide cancer marker.

Huang X, Taeb S, Jahangiri S, et al.
miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD).
Oncotarget. 2015; 6(26):22439-51 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
MicroRNA contribute to tumor radiation resistance, which is an important clinical problem, and thus we are interested in identifying and characterizing their function. We demonstrate that miR-620 contributes to radiation resistance in cancer cells by increasing proliferation, and decreasing the G2/M block. We identify the hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (HPGD/15-PGDH) tumor suppressor gene as a direct miR-620 target, which results in increased prostaglandin E2 (PGE2) levels. Furthermore, we show that siRNA targeting of HPGD or administration of exogenous PGE2 recapitulates radioresistance. Targeting of the EP2 receptor that responds to PGE2 using pharmacological or genetic approaches, abrogates radioresistance. Tumor xenograft experiments confirm that miR-620 increases proliferation and tumor radioresistance in vivo. Regulation of PGE2 levels via targeting of HPGD by miR-620 is an innovative manner by which a microRNA can induce radiation resistance.

Allison SE, Petrovic N, Mackenzie PI, Murray M
Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2.
Biochem Pharmacol. 2015; 96(4):306-14 [PubMed] Related Publications
Metastasis is the major cause of death in cancer patients. Elevated expression of cyclooxygenase-2 (COX-2) is observed in many human cancers and over-production of downstream prostaglandins (PGs) has been shown to stimulate metastasis. A role for increased PGE2 production has been proposed, but whether other PGs contribute is currently unclear. In this study the pro-migratory actions of individual PGs were evaluated in MDA-MB-468 breast cancer cells that stably over-expressed COX-2 (MDA-COX-2 cells); cell migration was quantified using 3D-matrigel droplet assays. Inhibition of the prostacyclin and PGE synthases, but not alternate prostanoid synthases, prevented the increase in MDA-COX-2 cell migration produced by arachidonic acid (AA); direct treatment of cells with the stable prostacyclin analogue cicaprost also promoted migration. Pharmacological antagonism and knockdown of the IP receptor decreased cell migration, while antagonists of the alternate DP, EP2, FP, and TP prostanoid receptors were inactive. In support of these findings, activation of the IP receptor also enhanced migration in the MDA-MB-468, MDA-MB-231 and A549 cell lines, and IP receptor knock-down in MDA-COX-2 cells decreased the expression of a number of pro-migratory genes. In further studies, the prostacyclin/IP receptor and PGE2/EP4 receptor pathways were found to be functionally independent and the inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) selectively impaired the IP-receptor-dependent migration in MDA-COX-2 cells. Taken together, the prostacyclin/IP/PI3K-p38 MAPK axis has emerged as a novel pro-migratory pathway in breast cancer cells that over-express COX-2. This information could be utilized in novel treatment strategies to minimize tumor metastasis.

Du M, Shi F, Zhang H, et al.
Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of β-catenin expression via EP3-4 receptor.
Oncol Rep. 2015; 34(2):715-26 [PubMed] Related Publications
Prostaglandin E2 (PGE2) is involved in cholangiocarcinoma cell proliferation, migration and invasion through E prostanoid receptors, including EP1, EP2 and EP4. However, the functions and the mechanisms of those splice variants of EP3 receptors in promoting liver cancer cell growth and invasion remain to be elucidated. In our previous studies, four isoforms of EP3 receptors, EP3-4, EP3-5, EP3-6 and EP3-7 receptors, were detected in CCLP1 and HuCCT1 cells. However, the functions of these receptors in these cells have yet to be determined. It was reported that β-catenin is closely correlated with malignancy, including cholangiocarcinoma. The present study was designed to examine the effects of 4-7 isoforms of EP3 in promoting cholangiocarcinoma progression and the mechanisms by which PGE2 increases β-catenin protein via EP3 receptors. The results showed that PGE2 promotes cholangiocarcinoma progression via the upregulation of β-catenin protein, and the EP3-4 receptor pathway is mainly responsible for this regulation. These findings reveal that PGE2 upregulated the cholangiocarcinoma cell β-catenin protein through the EP3-4R/Src/EGFR/PI3K/AKT/GSK-3β pathway. The present study identified the functions of EP3 and the mechanisms by which PGE2 regulates β-catenin expression and promoted cholangiocarcinoma cell growth and invasion.

Ma X, Aoki T, Tsuruyama T, Narumiya S
Definition of Prostaglandin E2-EP2 Signals in the Colon Tumor Microenvironment That Amplify Inflammation and Tumor Growth.
Cancer Res. 2015; 75(14):2822-32 [PubMed] Related Publications
Inflammation in the colon contributes significantly to colorectal cancer development. While aspirin reduces the colorectal cancer risk, its action mechanism, especially in inflammation in tumor microenvironment, still remains obscure. Here, we examined this issue by subjecting mice deficient in each prostaglandin (PG) receptor to colitis-associated cancer model. Deficiency of PGE receptor subtype EP2 selectively reduced, and deficiency of EP1 and EP3 enhanced, the tumor formation. EP2 is expressed in infiltrating neutrophils and tumor-associated fibroblasts in stroma, where it regulates expression of inflammation- and growth-related genes in a self-amplification manner. Notably, expression of cytokines such as TNFα and IL6, a chemokine, CXCL1, a PG-producing enzyme, COX-2, and Wnt5A was significantly elevated in tumor lesions of wild-type mice but this elevation was significantly suppressed in EP2-deficient mice. Intriguingly, EP2 stimulation in cultured neutrophils amplified expression of TNFα, IL6, CXCL1, COX-2, and other proinflammatory genes synergistically with TNFα, and EP2 stimulation in cultured fibroblasts induced expression of EP2 itself, COX-2, IL6, and Wnt genes. EP2 expression in infiltrating neutrophils and tumor-associated fibroblasts was also found in clinical specimen of ulcerative colitis-associated colorectal cancer. Bone marrow transfer experiments suggest that EP2 in both cell populations is critical for tumorigenesis. Finally, administration of a selective EP2 antagonist potently suppressed tumorigenesis in this model. Our study has thus revealed that EP2 in neutrophils and tumor-associated fibroblasts promotes colon tumorigenesis by amplifying inflammation and shaping tumor microenvironment, and suggests that EP2 antagonists are promising candidates of aspirin-alternative for chemoprevention of colorectal cancer.

Fernández-Martínez AB, Lucio-Cazaña J
Intracellular EP2 prostanoid receptor promotes cancer-related phenotypes in PC3 cells.
Cell Mol Life Sci. 2015; 72(17):3355-73 [PubMed] Related Publications
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been involved in the pathogenesis of prostate cancer (PC). HIF-1α, which is up-regulated by PGE2 in LNCaP cells and PC3 cells, has been shown to contribute to metastasis and chemo-resistance of castrate-resistant PC (a lethal form of PC) and to promote in PC cells migration, invasion, angiogenesis and chemoresistance. The selective blockade of PGE2-EP2 signaling pathway in PC3 cells results in inhibition of cancer cell proliferation and invasion. PGE2 affects many mechanisms that have been shown to play a role in carcinogenesis such as proliferation, apoptosis, migration, invasion and angiogenesis. Recently, we have found in PC3 cells that most of these PGE2-induced cancer-related features are due to intracellular PGE2 (iPGE2). Here, we aimed to study in PC3 cells the role of iPGE2-intracellular EP2 (iEP2)-HIF-1α signaling in several events linked to PC progression using an experimental approach involving pharmacological inhibition of the prostaglandin uptake transporter and EGFR and pharmacological and genetic modulation of EP2 receptor and HIF-1α. We found that iPGE2 increases HIF-1α expression through iEP2-dependent EGFR transactivation and that inhibition of any of the axis iEP2-EGFR-HIF-1α in cells treated with PGE2 or EP2 agonist results in prevention of the increase in PC3 cell proliferation, adhesion, migration, invasion and angiogenesis in vitro. Of note, PGE2 induced EP2 antagonist-sensitive DNA synthesis in nuclei isolated from PC3 cells, which indicates that they have functional EP2 receptors. These results suggest that PGE2-EP2 dependent intracrine mechanisms involving EGFR and HIF-1α play a role in PC.

Yoon AR, Stasinopoulos I, Kim JH, et al.
COX-2 dependent regulation of mechanotransduction in human breast cancer cells.
Cancer Biol Ther. 2015; 16(3):430-7 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The ability of living cells to exert physical forces upon their surrounding is a necessary prerequisite for diverse biological processes, such as local cellular migrations in wound healing to metastatic-invasion of cancer. How forces are coopted in metastasis has remained unclear, however, because the mechanical interplay between cancer cells and the various stromal components has not been experimentally accessible. Current dogma implicates inflammation in these mechanical processes. Using Fourier transform traction microscopy, we measured the force-generating capacity of human breast cancer cells occupying a spectrum of invasiveness as well as basal and inducible COX-2 expression (MCF-7

Shehzad A, Ul Islam S, Lee J, Lee YS
Prostaglandin E2 reverses curcumin-induced inhibition of survival signal pathways in human colorectal carcinoma (HCT-15) cell lines.
Mol Cells. 2014; 37(12):899-906 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Prostaglandin E2 (PGE2) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. PGE2 inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of PGE2 and whether addition of exogenous PGE2 affects curcumin-induced cell death. HCT-15 cells were treated with curcumin and PGE2, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B (NF-κB) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). PGE2 inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with PGE2 or curcumin abolished the protective effect of PGE2 and enhanced curcumin-induced cell death. PGE2 activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. PGE2 also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of PGE2. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of NF-κB (p50 and p65) subunit activation. PGE2 markedly activated nuclear translocation of NF-κB. EMSA confirmed the DNA-binding activities of NF-κB subunits. These results suggest that inhibition of curcumin-induced apoptosis by PGE2 through activation of PKA, Ras, and NF-κB signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Pomianowska E, Sandnes D, Grzyb K, et al.
Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma.
BMC Cancer. 2014; 14:413 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
BACKGROUND: Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis.
METHODS: Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [(3)H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [(3)H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR.
RESULTS: Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis.
CONCLUSIONS: The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic tumours. PGE2 exerts a suppressive effect on proliferation and fibrogenesis in pancreatic stellate cells. These effects of PGE2 are mediated by the cAMP pathway and suggest a role of EP2 receptors.

Resler AJ, Makar KW, Heath L, et al.
Genetic variation in prostaglandin synthesis and related pathways, NSAID use and colorectal cancer risk in the Colon Cancer Family Registry.
Carcinogenesis. 2014; 35(9):2121-6 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Although use of non-steroidal anti-inflammatory drugs (NSAIDs) generally decreases colorectal cancer (CRC) risk, inherited genetic variation in inflammatory pathways may alter their potential as preventive agents. We investigated whether variation in prostaglandin synthesis and related pathways influences CRC risk in the Colon Cancer Family Registry by examining associations between 192 single nucleotide polymorphisms (SNPs) and two variable nucleotide tandem repeats (VNTRs) within 17 candidate genes and CRC risk. We further assessed interactions between these polymorphisms and NSAID use on CRC risk. Using a case-unaffected-sibling-control design, this study included 1621 primary invasive CRC cases and 2592 sibling controls among Caucasian men and women aged 18-90. After adjustment for multiple comparisons, two intronic SNPs were associated with rectal cancer risk: rs11571364 in ALOX12 [OR(het/hzv) = 1.87, 95% confidence interval (CI) = 1.19-2.95, P = 0.03] and rs45525634 in PTGER2 (OR(het/hzv) = 0.49, 95% CI = 0.29-0.82, P = 0.03). Additionally, there was an interaction between NSAID use and the intronic SNP rs2920421 in ALOX12 on risk of CRC (P = 0.03); among those with heterozygous genotypes, risk was reduced for current NSAID users compared with never or former users (OR(het) = 0.60, 95% CI = 0.45-0.80), though not among those with homozygous wild-type or variant genotypes. The results of this study suggest that genetic variation in ALOX12 and PTGER2 may affect the risk of rectal cancer. In addition, this study suggests plausible interactions between NSAID use and variants in ALOX12 on CRC risk. These results may aid in the development of genetically targeted cancer prevention strategies with NSAIDs.

Hollingshead MG, Stockwin LH, Alcoser SY, et al.
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.
BMC Genomics. 2014; 15:393 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
BACKGROUND: Development of cancer therapeutics partially depends upon selection of appropriate animal models. Therefore, improvements to model selection are beneficial.
RESULTS: Forty-nine human tumor xenografts at in vivo passages 1, 4 and 10 were subjected to cDNA microarray analysis yielding a dataset of 823 Affymetrix HG-U133 Plus 2.0 arrays. To illustrate mining strategies supporting therapeutic studies, transcript expression was determined: 1) relative to other models, 2) with successive in vivo passage, and 3) during the in vitro to in vivo transition. Ranking models according to relative transcript expression in vivo has the potential to improve initial model selection. For example, combining p53 tumor expression data with mutational status could guide selection of tumors for therapeutic studies of agents where p53 status purportedly affects efficacy (e.g., MK-1775). The utility of monitoring changes in gene expression with extended in vivo tumor passages was illustrated by focused studies of drug resistance mediators and receptor tyrosine kinases. Noteworthy observations included a significant decline in HCT-15 colon xenograft ABCB1 transporter expression and increased expression of the kinase KIT in A549 with serial passage. These trends predict sensitivity to agents such as paclitaxel (ABCB1 substrate) and imatinib (c-KIT inhibitor) would be altered with extended passage. Given that gene expression results indicated some models undergo profound changes with in vivo passage, a general metric of stability was generated so models could be ranked accordingly. Lastly, changes occurring during transition from in vitro to in vivo growth may have important consequences for therapeutic studies since targets identified in vitro could be over- or under-represented when tumor cells adapt to in vivo growth. A comprehensive list of mouse transcripts capable of cross-hybridizing with human probe sets on the HG-U133 Plus 2.0 array was generated. Removal of the murine artifacts followed by pairwise analysis of in vitro cells with respective passage 1 xenografts and GO analysis illustrates the complex interplay that each model has with the host microenvironment.
CONCLUSIONS: This study provides strategies to aid selection of xenograft models for therapeutic studies. These data highlight the dynamic nature of xenograft models and emphasize the importance of maintaining passage consistency throughout experiments.

Bieniek J, Childress C, Swatski MD, Yang W
COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins.
Prostate. 2014; 74(10):999-1011 [PubMed] Related Publications
BACKGROUND: Previous studies have shown that COX-2 inhibitors inhibit cancer cell proliferation. However, the molecular mechanism remains elusive.
METHODS: Prostate cancer LNCaP, 22Rv1, and PC3 cells were cultured and treated with the COX-2 inhibitors celecoxib and CAY10404. Knockdown of COX-2 in LNCaP cells was carried out using lentiviral vector-loaded COX-2 shRNA. Cell cycle progression and cell proliferation were analyzed by flow cytometry, microscopy, cell counting, and the MTT assay. The antagonists of EP1, EP2, EP3, and EP4 were used to examine the effects of the PGE2 signaling. The effect of COX-2 inhibitors and COX-2 knockdown on expression of the kinetochore/centromere genes and proteins was determined by RT-PCR and immunoblotting.
RESULTS: Treatment with the COX-2 inhibitors celecoxib and CAY10404 or knockdown of COX-2 significantly inhibited prostate cancer cell proliferation. Flow-cytometric analysis and immunofluorescent staining confirmed the cell cycle arrested at the G2/M phase. Biochemical analysis showed that inhibition of COX-2 or suppression of COX-2 expression induced a dramatic down-regulation of key proteins in the kinetochore/centromere assembly, such as ZWINT, Cdc20, Ndc80, CENP-A, Bub1, and Plk1. Furthermore, the EP1 receptor antagonist SC51322, but not the EP2, EP3, and EP4 receptor antagonists, produced similar effects to the COX-2 inhibitors on cell proliferation and down-regulation of kinetochore/centromere proteins, suggesting that the effect of the COX-2 inhibition is through inactivation of the EP1 receptor signaling.
CONCLUSIONS: Our studies indicate that inhibition of COX-2 can arrest prostate cancer cell cycle progression through inactivation of the EP1 receptor signaling and down-regulation of kinetochore/centromere proteins.

Magnus N, Garnier D, Meehan B, et al.
Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations.
Proc Natl Acad Sci U S A. 2014; 111(9):3544-9 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
The coagulation system links immediate (hemostatic) and late (inflammatory, angiogenic) tissue responses to injury, a continuum that often is subverted in cancer. Here we provide evidence that tumor dormancy is influenced by tissue factor (TF), the cancer cell-associated initiator of the coagulation system and a signaling receptor. Thus, indolent human glioma cells deficient for TF remain viable but permanently dormant at the injection site for nearly a year, whereas the expression of TF leads to a step-wise transition to latent and overt tumor growth phases, a process that is preceded by recruitment of vascular (CD105(+)) and myeloid (CD11b(+) and F4/80(+)) cells. Importantly, the microenvironment orchestrated by TF expression drives permanent changes in the phenotype, gene-expression profile, DNA copy number, and DNA methylation state of the tumor cells that escape from dormancy. We postulate that procoagulant events in the tissue microenvironment (niche) may affect the fate of occult tumor cells, including their biological and genetic progression to initiate a full-blown malignancy.

Kashiwagi E, Shiota M, Yokomizo A, et al.
EP2 signaling mediates suppressive effects of celecoxib on androgen receptor expression and cell proliferation in prostate cancer.
Prostate Cancer Prostatic Dis. 2014; 17(1):10-7 [PubMed] Related Publications
BACKGROUND: Non-steroidal anti-inflammatory drugs inhibit the activity of cyclooxygenases (COXs), and their usage reduces the risks associated with prostate cancer. Celecoxib is a selective COX-2 inhibitor and reported to prevent the progression of prostate cancer. However, the mechanisms involved remain unclear. In this study, we investigated the suppression of prostate cancer growth by celecoxib and elucidated the biological relevance of the inhibited pathway in prostate cancer cell lines.
METHODS: Western blotting, quantitative real-time PCR and cell proliferation assay were used to resolve the mechanism of celecoxib in prostate cancer cell line PC3, LNCaP and their derivatives.
RESULTS: Celecoxib induced apoptosis and downregulated EP2, CREB and androgen receptor (AR). Moreover, EP2 antagonist downregulated CREB as well as COX-2 and AR, resulting in the suppression of cell proliferation. Furthermore, EP2 and CREB knockdown induced AR downregulation, indicating that AR suppression by celecoxib is mediated by EP2/CREB signaling.
CONCLUSIONS: Celecoxib exerts antitumor activity through EP2 signaling regulating AR and COX-2 expression. Furthermore, in addition to celecoxib, therapeutics targeting EP2 may also be promising against prostate cancers.

Kach J, Sandbo N, La J, et al.
Antifibrotic effects of noscapine through activation of prostaglandin E2 receptors and protein kinase A.
J Biol Chem. 2014; 289(11):7505-13 [PubMed] Article available free on PMC after 04/01/2020 Related Publications
Myofibroblast differentiation is a key process in the pathogenesis of fibrotic disease. We have shown previously that differentiation of myofibroblasts is regulated by microtubule polymerization state. In this work, we examined the potential antifibrotic effects of the antitussive drug, noscapine, recently found to bind microtubules and affect microtubule dynamics. Noscapine inhibited TGF-β-induced differentiation of cultured human lung fibroblasts (HLFs). Therapeutic noscapine treatment resulted in a significant attenuation of pulmonary fibrosis in the bleomycin model of the disease. Noscapine did not affect gross microtubule content in HLFs, but inhibited TGF-β-induced stress fiber formation and activation of serum response factor without affecting Smad signaling. Furthermore, noscapine stimulated a rapid and profound activation of protein kinase A (PKA), which mediated the antifibrotic effect of noscapine in HLFs, as assessed with the PKA inhibitor, PKI. In contrast, noscapine did not activate PKA in human bronchial or alveolar epithelial cells. Finally, activation of PKA and the antifibrotic effect of noscapine in HLFs were blocked by the EP2 prostaglandin E2 receptor antagonist, PF-04418948, but not by the antagonists of EP4, prostaglandin D2, or prostacyclin receptors. Together, we demonstrate for the first time the antifibrotic effect of noscapine in vitro and in vivo, and we describe a novel mechanism of noscapine action through EP2 prostaglandin E2 receptor-mediated activation of PKA in pulmonary fibroblasts.

Takahashi T, Uehara H, Izumi K
Inhibitory effect of soluble EP2 receptor on ovarian tumor growth in nude mice and utility of TMPRSS4 as a combinatorial molecular target.
Int J Oncol. 2013; 43(2):416-24 [PubMed] Related Publications
We have previously reported that FuEP2/Ex2, a soluble decoy receptor for PGE2, suppresses tumor growth in an orthotopic xenograft model. To examine whether it has further uses, we examined the effect of FuEP2/Ex2 in an intraperitoneal metastasis model of ovarian cancer cells. We established FuEP2/Ex2-expressing ovarian cancer cells (SKOV/ip-FuEP2/Ex2) and injected them intraperitoneally into female nude mice. Mice injected with SKOV/ip-FuEP2/Ex2 had no ascitic fluid and showed smaller tumor lesions compared to mice injected with vector control cells, with decreased microvessel density and M2 macrophages. To identify molecular targets for combination treatment, we conducted cDNA microarray analysis and found three genes encoding enzyme [matrix metalloproteinase-7 (MMP-7), transmembrane protease serin 4 (TMPRSS4) and cytocrome P450 1B1 (CYP1B1)] to be upregulated in SKOV/ip-FuEP2/Ex2-derived tumors. Administration of TMPRSS4 inhibitor further reduced tumor weight and decreased the number of Ki-67‑positive cells in SKOV/ip-FuEP2/Ex2-injected mice. These data indicate a possible EP-targeting strategy using FuEP2/Ex2 in the treatment of ovarian cancer and suggest that dual targeting of EP-mediated signaling and TMPRSS4 may enhance therapeutic value.

Huang HF, Shu P, Murphy TF, et al.
Significance of divergent expression of prostaglandin EP4 and EP3 receptors in human prostate cancer.
Mol Cancer Res. 2013; 11(4):427-39 [PubMed] Related Publications
PGE2 has been implicated in prostate cancer tumorigenesis. We hypothesized that abnormal prostaglandin receptor (EPR) expression may contribute to prostate cancer growth. Twenty-six archived radical prostatectomy specimens were evaluated by immunohistochemistry (IHC) and Western blotting for the expression of EP1, EP2, EP3, and EP4. As a corollary, EPR expression in one normal (PZ-HPV7) and four prostate cancer cell lines (CA-HPV10, LNCaP, PC3, and Du145) were assessed by Western blotting. Prostate cancer and normal cell growth were compared in vitro after EPR blockade, siRNA EPR knockdown, or overexpression. EP1, EP2, EP3, and EP4 receptors were detected by IHC in all areas of benign tissue within the clinical prostate cancer specimens. In areas of prostate cancer, EP4 and EP2 were overexpressed in 85% (22 of 26) and 75% (18 of 24) and EP3 expression was reduced in all (26 of 26, 100%) specimens (P < 0.05 vs. benign tissue). EP1 showed no specific differential expression pattern. Increased EP4 and reduced EP3 was confirmed by Western blotting in fresh clinical specimens and in prostate cancer cell lines (CA-HPV10, LNCaP, PC3, and Du145) compared with the normal prostate cell line (PZ-HPV7). EP2 and EP4 siRNA knockdown resulted in reduced in vitro growth and metastasis-related gene expression (MMP9 and Runx2) of prostate cancer lines, and in vitro migration was inhibited by EP4 antagonists. As a corollary, EP3-overexpressing PC3 cells displayed impaired growth in vitro. Human prostate cancer is associated with EP4 and EP2 overexpression and reduced EP3 expression. These data suggest that targeting specific EPR may represent a novel therapeutic approach for prostate cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTGER2, Cancer Genetics Web: http://www.cancer-genetics.org/PTGER2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999