GPRC5A; G protein-coupled receptor, class C, group 5, member A (12p13.1)

Gene Summary

Gene:GPRC5A; G protein-coupled receptor, class C, group 5, member A
Aliases: RAI3, TIG1, RAIG1, GPCR5A, PEIG-1
Summary:This gene encodes a member of the type 3 G protein-coupling receptor family, characterized by the signature 7-transmembrane domain motif. The encoded protein may be involved in interaction between retinoid acid and G protein signalling pathways. Retinoic acid plays a critical role in development, cellular growth, and differentiation. This gene may play a role in embryonic development and epithelial cell differentiation. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, GeneCard, Gene
Protein:retinoic acid-induced protein 3
Updated:14 December, 2014

Cancer Overview

Research Indicators

Publications Per Year (1989-2014)
Graph generated 14 December 2014 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Knockout Mice
  • Gene Expression Profiling
  • Breast Cancer
  • Signal Transduction
  • Germ-Line Mutation
  • Western Blotting
  • Retinoids
  • G-Protein-Coupled Receptors
  • Neoplastic Cell Transformation
  • Tumor Markers
  • Neovascularization, Physiologic
  • Genomics
  • Immunoenzyme Techniques
  • Genotype
  • S100P
  • Cancer Gene Expression Regulation
  • Metabolic Networks and Pathways
  • Phenotype
  • Neoplasm Recurrence, Local
  • Squamous Cell Carcinoma
  • Chromosome 12
  • Lung Cancer
  • Flap Endonucleases
  • Apoptosis
  • Messenger RNA
  • Neoplasm Proteins
  • Ubiquitin-Conjugating Enzymes
  • Non-Small Cell Lung Cancer
  • Oligonucleotide Array Sequence Analysis
  • Adenocarcinoma
  • DNA Sequence Analysis
  • Survival Rate
  • Cultured Cells
  • Respiratory Mucosa
  • Kidney
  • Cell Proliferation
  • Cyclin D1
  • DNA Repair
  • Drug Screening Assays, Antitumor
Tag cloud generated 14 December, 2014 using data from PubMed, MeSH and CancerIndex

Related Links

Latest Publications: GPRC5A (cancer-related)

Sokolenko AP, Bulanova DR, Iyevleva AG, et al.
High prevalence of GPRC5A germline mutations in BRCA1-mutant breast cancer patients.
Int J Cancer. 2014; 134(10):2352-8 [PubMed] Related Publications
In a search for new breast cancer (BC) predisposing genes, we performed a whole exome sequencing analysis using six patient samples of familial BC and identified a germline inactivating mutation c.183delG [p. Arg61fs] in an orphan G protein-coupled receptor GPRC5A. An extended case-control study revealed a tenfold enrichment for this mutation in BC patients carrying the 5382insC allele of BRCA1, the major founder mutation in the Russian population, compared to wild-type BRCA1 BC cases [6/117 (5.1%) vs. 8/1578 (0.5%), p = 0.0002]. In mammary tumors (n = 60), the mRNA expression of GPRC5A significantly correlated with that of BRCA1 (p = 0.00018). In addition, the amount of GPRC5A transcript was significantly lower in BC obtained from BRCA1 mutation carriers (n = 17) compared to noncarriers (n = 93) (p = 0.026). Accordingly, a siRNA-mediated knockdown of either BRCA1 or GPRC5A in the MDA-MB-231 human BC cell line reduced expression of GPRC5A or BRCA1, respectively. Knockdown of GPRC5A also attenuated radiation-induced BRCA1- and RAD51-containing nuclear DNA repair foci. Taken together, these data suggest that GPRC5A is a modifier of BC risk in BRCA1 mutation carriers and reveals a functional interaction of these genes.

Related: Breast Cancer

Xin H, Wang K, Hu G, et al.
Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.
PLoS One. 2014; 9(1):e85308 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.

Related: Liver Cancer

Moritz R, Ellinger J, Nuhn P, et al.
DNA hypermethylation as a predictor of PSA recurrence in patients with low- and intermediate-grade prostate cancer.
Anticancer Res. 2013; 33(12):5249-54 [PubMed] Related Publications
BACKGROUND: DNA CpG island hypermethylation causes gene silencing and is a common event in prostate carcinogenesis and progression. We investigated its role as a possible prognostic marker in patients with PCA Gleason score ≤7.
PATIENTS AND METHODS: We used a quantitative, methylation-specific PCR to analyze methylation patterns at five gene loci (APC, GSTP1, PTGS2, RARbeta and TIG1) in 84 prostate cancer (PCA) tissues (Gleason Score ≤7). Methylation was correlated with established clinico-pathological parameters (preoperative PSA, pathological Gleason score, extraprostatic extension, seminal vesicle penetration, lymph node involvement, surgical margins and age) and PSA recurrence.
RESULTS: DNA hypermethylation was frequently detected at APC (95.2%), GSTP1 (84.5%), PTGS2 (100%), RAR-beta (81.0%) and TIG1 (95.2%). DNA hypermethylation was correlated with Gleason Score (p=0.027; PTGS2) and lymph node involvement (p=0.024; RARbeta). High methylation levels at RARbeta (p=0.023) was a significant predictor of PSA recurrence following radical prostatectomy.
CONCLUSION: The analysis of DNA hypermethylation provides prognostic information in prognosis of low- and intermediate-grade PCA.

Related: Prostate Cancer

Chen XH, Wu WG, Ding J
Aberrant TIG1 methylation associated with its decreased expression and clinicopathological significance in hepatocellular carcinoma.
Tumour Biol. 2014; 35(2):967-71 [PubMed] Related Publications
Recently, it has been reported that tazarotene-induced gene 1 (TIG1) methylation was frequently detected in a variety of human cancers. However, the relationship between the TIG1 methylation and the characteristics of hepatocellular carcinoma (HCC) remains unknown. The aim of present study was to observe the promoter methylation of TIG1 in HCC tissues and assess its prognostic significance for HCC. Real-time quantitative polymerase chain reaction and methylation-specific polymerase chain reaction were used, respectively, to examine the mRNA expression and methylation status of TIG1 in 91 pairs of HCC and adjacent noncancerous tissues. The mRNA expression level of TIG1 was significantly lower in HCC tissues than in adjacent noncancerous tissues. The rate of TIG1 promoter methylation was significantly higher in HCC tissues than in adjacent noncancerous tissues (P < 0.001). A strong correlation between downregulation and promoter methylation was found in these tumors (P < 0.001). More importantly, TIG1 methylation status was related to tumor size (P = 0.015), histological differentiation (P = 0.004), and tumor stage (P < 0.001). Kaplan-Meier survival analysis showed that TIG1 promoter hypermethylation was associated with a worse outcome in patients with HCC. Further, Cox multivariate analysis indicated that TIG1 methylation status was an independent prognostic factor for the overall survival rate of HCC patients. In conclusion, our data suggested that epigenetic silencing of TIG1 gene expression by promoter hypermethylation may play an important role in HCC.

Related: Liver Cancer

Honda M, Yamashita T, Yamashita T, et al.
Peretinoin, an acyclic retinoid, improves the hepatic gene signature of chronic hepatitis C following curative therapy of hepatocellular carcinoma.
BMC Cancer. 2013; 13:191 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The acyclic retinoid, peretinoin, has been shown to be effective for suppressing hepatocellular carcinoma (HCC) recurrence after definitive treatment in a small-scale randomized clinical trial. However, little has been documented about the mechanism by which peretinoin exerts its inhibitory effects against recurrent HCC in humans in vivo.
METHODS: Twelve hepatitis C virus-positive patients whose HCC had been eradicated through curative resection or ablation underwent liver biopsy at baseline and week 8 of treatment with either a daily dose of 300 or 600 mg peretinoin. RNA isolated from biopsy samples was subjected to gene expression profile analysis.
RESULTS: Peretinoin treatment elevated the expression levels of IGFBP6, RBP1, PRB4, CEBPA, G0S2, TGM2, GPRC5A, CYP26B1, and many other retinoid target genes. Elevated expression was also observed for interferon-, Wnt-, and tumor suppressor-related genes. By contrast, decreased expression levels were found for mTOR- and tumor progression-related genes. Interestingly, gene expression profiles for week 8 of peretinoin treatment could be classified into two groups of recurrence and non-recurrence with a prediction accuracy rate of 79.6% (P<0.05). In the liver of patients with non-recurrence, expression of PDGFC and other angiogenesis genes, cancer stem cell marker genes, and genes related to tumor progression was down-regulated, while expression of genes related to hepatocyte differentiation, tumor suppression genes, and other genes related to apoptosis induction was up-regulated.
CONCLUSIONS: Gene expression profiling at week 8 of peretinoin treatment could successfully predict HCC recurrence within 2 years. This study is the first to show the effect of peretinoin in suppressing HCC recurrence in vivo based on gene expression profiles and provides a molecular basis for understanding the efficacy of peretinoin.

Related: Liver Cancer

Subrungruanga I, Thawornkunob C, Chawalitchewinkoon-Petmitrc P, et al.
Gene expression profiling of intrahepatic cholangiocarcinoma.
Asian Pac J Cancer Prev. 2013; 14(1):557-63 [PubMed] Related Publications
Intrahepatic cholangiocarcinoma (ICC) is ranked as one of the top five causes of cancer-related deaths. ICC in Thai patients is associated with infection with the liver fluke, Opisthorchis viverrini, but the molecular basis for development remains unclear. The present study employed a microarray approach to compare gene expression profiles of ICCs and normal liver tissues from the same patients residing in Northeast Thailand, a region with a high prevalence of liver fluke infection. In ICC samples, 2,821 and 1,361 genes were found to be significantly up- and down-regulated respectively (unpaired t-test, p<0.05; fold-change>2.0). For validation of the microarray results, 7 up-regulated genes (FXYD3, GPRC5A, CEACAM5, MUC13, EPCAM, TMC5, and EHF) and 3 down- regulated genes (CPS1, TAT, and ITIH1) were selected for confirmation using quantitative RT-PCR, resulting in 100% agreement. The metallothionine heavy metal pathway contains the highest percentage of genes with statistically significant changes in expression. This study provides exon-level expression profiles in ICC that should be fruitful in identifying novel genetic markers for classifying and possibly early diagnosis of this highly fatal type of cholangiocarcinoma.

Related: Extra-Hepatic Bile duct cancer (cholangiocarcinoma) Thailand

Hauser S, Kogej M, Fechner G, et al.
Serum DNA hypermethylation in patients with bladder cancer: results of a prospective multicenter study.
Anticancer Res. 2013; 33(3):779-84 [PubMed] Related Publications
BACKGROUND: Cell-free serum DNA levels are increased in patients with cancer, and at least partially, these DNA fragments are derived from cancer cells. A few reports indicated that methylated serum DNA in patients with bladder cancer (BCA) is a useful non-invasive biomarker. The purpose of this prospective multicenter study was to validate earlier studies.
MATERIALS AND METHODS: In total, 227 consecutive participants (non-muscle invasive BCA, n=75; muscle-invasive BCA, n=20; transurethral bladder resection (TURB) without BCA, n=48; benign disease, n=31; healthy individuals, n=53), were recruited for this study. Cell-free serum DNA was isolated and digested with methylation-sensitive restriction-enzymes (Bsh1236I, HpaII and HinP1I) to quantify the amount of methylated (TIMP3, APC, RARB, TIG1, GSTP1, p14, p16, PTGS2 and RASSF1A) DNA fragments.
RESULTS: The amount of methylated DNA was usually small (<10%), and the methylation frequencies varied for different genes (e.g. frequent: TIMP3; moderate: APC, RARB, TIG1; infrequent: p16, PTGS2, p14, RASSF1A, GSTP1). Methylation levels at each gene site and the number of methylated genes were increased in BCA compared to healthy individuals, but were similar in BCA and patients with non-malignant disease. The number of methylated genes allowed for discrimination (62% sensitivity, 89% specificity) of BCA patients from healthy individuals. DNA hypermethylation was not correlated with advanced stage or grade in patients with BCA.
CONCLUSION: The detection of hypermethylated DNA in serum allows for discrimination of patients with BCA and healthy individuals, but there is no difference between patients with BCA and those with non-malignant disease, thereby limiting its value as a non-invasive biomarker.

Related: Bladder Cancer Bladder Cancer - Molecular Biology

Silva G, Cardoso BA, Belo H, Almeida AM
Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.
PLoS One. 2013; 8(1):e53766 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action.
METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1.
CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

Related: Apoptosis Acute Myeloid Leukemia (AML)

Fujimoto J, Kadara H, Garcia MM, et al.
G-protein coupled receptor family C, group 5, member A (GPRC5A) expression is decreased in the adjacent field and normal bronchial epithelia of patients with chronic obstructive pulmonary disease and non-small-cell lung cancer.
J Thorac Oncol. 2012; 7(12):1747-54 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Understanding oncogenes and tumor suppressor genes expression patterns is essential for characterizing lung cancer pathogenesis. We have previously demonstrated that mGprc5a/hGPRC5A is a lung-specific tumor suppressor evidenced by inflammation-mediated tumorigenesis in Gprc5a-knockout mice. The implication of GPRC5A in human lung cancer pathogenesis, including that associated with inflammatory chronic obstructive pulmonary disease (COPD), a risk factor for the malignancy, remains elusive.
METHODS: We sought to examine GPRC5A immunohistochemical expression in histologically normal bronchial epithelia (NBE) from lung disease-free never- and ever-smokers (n = 13 and n = 18, respectively), from COPD patients with (n = 26) and without cancer (n = 24) and in non-small cell lung cancers (NSCLCs) (n = 474). Quantitative assessment of GPRC5A transcript expression in airways (n = 6), adjacent NBEs (n = 29) and corresponding tumors (n = 6) from 6 NSCLC patients was also performed.
RESULTS: GPRC5A immunohistochemical expression was significantly lower in tumors compared to uninvolved NBE (p < 0.0001) and was positively associated with adenocarcinoma histology (p < 0.001). GPRC5A airway expression was highest in lung disease-free NBE, decreased and intermediate in NBE of cancer-free COPD patients (p = 0.004) and further attenuated and lowest in epithelia of COPD patients with adenocarcinoma and SCC (p < 0.0001). Furthermore, GPRC5A mRNA was significantly decreased in NSCLCs and corre sponding NBE compared to uninvolved normal lung (p = 0.03).
CONCLUSIONS: Our findings highlight decreased GPRC5A expression in the field cancerization of NSCLC, including that associated with lung inflammation. Assessment of the use of GPRC5A expression as a risk factor for NSCLC development in COPD patients is warranted.

Related: Non-Small Cell Lung Cancer Lung Cancer

Schwarzenbach H, Eichelser C, Kropidlowski J, et al.
Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression.
Clin Cancer Res. 2012; 18(20):5719-30 [PubMed] Related Publications
PURPOSE: LOH on circulating DNA may provide tumor-specific information on breast cancer. As identification of LOH on cell-free DNA is impeded by the prevalence of wild type DNA in blood of cancer patients, we fractionated plasma DNA, and determined the diagnostic and prognostic value of both fractions.
EXPERIMENTAL DESIGN: Our cohort of 388 patients with primary breast cancer before chemotherapy was selected from a multicenter study (SUCCESS). Postoperative plasma was fractionated in low- and high-molecular weight DNA by two different column systems. In both fractions, LOH was determined by a PCR-based microsatellite analysis using a panel of 8 polymorphic markers. Circulating tumor DNA in plasma from 30 patients after chemotherapy was additionally analyzed. The significance levels were adjusted for multiple comparisons.
RESULTS: More patients (38%) had LOH at all markers in the fraction containing short DNA fragments than in the fraction containing the long DNA molecules (28%, P = 0.0001). In both fractions 32.85% of LOH were concordant. LOH at the markers D3S1605, D10S1765, D12S1725, D13S218, and D17S855 significantly correlated with tumor stage, tumor size, and lymph node metastasis, positive progesterone, and HER2 receptor status. Most importantly, LOH at D12S1725 mapping to cyclin D2 correlated with shorter overall survival (P = 0.004).
CONCLUSIONS: The improved detection of LOH on cell-free DNA provides important information on DNA losses of tumor suppressor genes TIG1, PTEN, cyclin D2, RB1, and BRCA1 in breast cancer. In particular, loss of the cyclin D2 gene might become an important prognostic marker easily detectable in the peripheral blood.

Related: Breast Cancer

Cheng L, Yang S, Yang Y, et al.
Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker.
Cancer Lett. 2012; 326(1):105-13 [PubMed] Related Publications
To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-κB, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis.

Related: Apoptosis Signal Transduction Stomach Cancer Gastric Cancer

Gu S, Tian Y, Chlenski A, et al.
Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma.
Anticancer Drugs. 2012; 23(10):1054-66 [PubMed] Free Access to Full Article Related Publications
Epigenetic aberrations and a CpG island methylator phenotype are associated with poor outcome in children with neuroblastoma (NB). Previously, we have shown that valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, exerts antitumor effects in an NB xenograft model. However, the underlying antitumor molecular mechanisms are largely unknown. In this study, we examined the role of HDAC in cell proliferation, cell cycle progression, gene expression patterns, and epigenome in NB. Cell proliferation, cell cycle progression, caspase activity, RNA and protein expression, quantitative methylation, and global DNA methylation were examined in NBL-W-N and LA1-55n NB cell lines. Our studies showed that inhibition of HDAC decreased NB proliferation, and induced caspase activity and G1 growth arrest. Expression patterns of cancer-related genes were modulated by VPA. The expression of THBS1, CASP8, SPARC, CDKN1A, HIC1, CDKN1B, and HIN1 was upregulated, and that of MYCN and TIG1 was downregulated. HDAC inhibition decreased methylation levels of THBS1 and RASSF1A promoters. Inhibition of HDAC increased acetylation of histone 4 and overall DNA methylation levels. Our studies showed that inhibition of HDAC blocked cell proliferation and cell cycle progression in relation to alteration in cancer-related genes, increased overall DNA methylation, and decreased methylation of tumor suppressor genes. Further studies examining the antitumor effects of VPA in NB are warranted.

Related: Neuroblastoma

Kloth M, Goering W, Ribarska T, et al.
The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer.
Int J Cancer. 2012; 131(6):E897-904 [PubMed] Related Publications
Epigenetic aberrations are frequent in prostate cancer and could be useful for detection and prognostication. However, the underlying mechanisms and the sequence of these changes remain to be fully elucidated. The tumor suppressor gene RARRES1 (TIG1) is frequently hypermethylated in several cancers. Having noted changes in the expression of its paralogous neighbor gene LXN at 3q25.32, we used pyrosequencing to quantify DNA methylation at both genes and determine its relationship with clinicopathological parameters in 86 prostate cancer tissues from radical prostatectomies. Methylation at LXN and RARRES1 was highly correlated. Increasing methylation was associated with worse clinical features, including biochemical recurrence, and decreased expression of both genes. However, expression of three neighboring genes was unaffected. Intriguingly, RARRES1 methylation was influenced by the genotype of the rs6441224 single-nucleotide polymorphism (SNP) in its promoter. We found that this SNP is located within an ETS-family-response element and that the more strongly methylated allele confers lower activity in reporter assays. Concomitant methylation of RARRES1 and LXN in cancerous tissues was also detected in prostate cancer cell lines and was shown to be associated with repressive histone modifications and transcriptional downregulation. In conclusion, we found that genotype-associated hypermethylation of the ETS-family target gene RARRES1 influences methylation at its neighbor gene LXN and could be useful as a prognostic biomarker.

Related: Prostate Cancer

Tsai FM, Wu CC, Shyu RY, et al.
Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth.
J Biomed Sci. 2011; 18:88 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells.
METHODS: HCT116 cells as well as TIG1A and TIG1B stable cells established from HCT116 colon cancer cells using the GeneSwitch system were used. TIG1 isoform expression was induced by mifepristone treatment in stable cells. Cell growth was determined using the WST-1 cell proliferation assay. Activation of β-catenin/TCF and cyclic adenosine monophosphate (cAMP)/CREB signaling pathways were determined using luciferase reporter assays. Expression and subcellular distribution of β-catenin were analyzed using Western blot and confocal microscope. Levels of cAMP were measured using an enzyme immunoassay. RNA interference was used to examine the effects of TIG1- and GRK5-mediated changes.
RESULTS: PGE2-stimulated cell growth was reduced in inducible TIG1A- and TIG1B-stable HCT116 cells. GRK5 expression was upregulated by both TIG1A and TIG1B isoforms, and its expression suppressed PGE2-stimulated HCT116 cell growth. GRK5, TIG1A, and TIG1B expression significantly inhibited PGE2-stimulated β-catenin/TCF and cAMP signaling pathway reporters and cAMP. Also, PGE2-stimulated nuclear localization of β-catenin was inhibited by expression of TIG1A and TIG1B, which was ameliorated by both TIG1 and GRK5 siRNAs.
CONCLUSIONS: TIG1 suppressed PGE2-stimulated Wnt and cAMP signaling pathways in colon cancer cells through GRK5.

Related: Signal Transduction CTNNB1 gene

Vasiljević N, Wu K, Brentnall AR, et al.
Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing.
Dis Markers. 2011; 30(4):151-61 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001).Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential.

Related: Prostate Cancer

Wu CC, Tsai FM, Shyu RY, et al.
G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells.
BMC Cancer. 2011; 11:175 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells.
METHODS: TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses.
RESULTS: Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression.
CONCLUSIONS: Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.

Chen Y, Deng J, Fujimoto J, et al.
Gprc5a deletion enhances the transformed phenotype in normal and malignant lung epithelial cells by eliciting persistent Stat3 signaling induced by autocrine leukemia inhibitory factor.
Cancer Res. 2010; 70(21):8917-26 [PubMed] Free Access to Full Article Related Publications
Signal transducers and activators of transcription 3 (Stat3) is activated by cytokines and growth factors in lung cancers and regulates expression of genes implicated in cell growth, survival, and transformation. Previously, we found that mice with a deletion of the G protein-coupled receptor, family C, group 5, member a (Gprc5a) gene develop lung tumors, indicating that Gprc5a is a tumor suppressor. Herein, we show that epithelial cells from Gprc5a knockout mouse lung (Gprc5a(-/-) cells) survive better in vitro in medium deprived of exogenous growth factors and form more colonies in semisolid medium than their counterparts from wild-type mice (Gprc5a(+/+) cells). Stat3 tyrosine 705 phosphorylation and expression of several Stat3-regulated antiapoptotic genes were higher in Gprc5a(-/-) than in Gprc5a(+/+) cells. Both cell types secreted leukemia inhibitory factor (Lif); however, whereas Stat3 activation was persistent in Gprc5a(-/-) cells, it was transient in Gprc5a(+/+) cells. Lung adenocarcinoma cells isolated from Gprc5a(-/-) mice also exhibited autocrine Lif-mediated Stat3 activation. The level of Socs3, the endogenous Stat3 inhibitory protein, was higher in Gprc5a(+/+) than in Gprc5a(-/-) cells, and expression of the tumor suppressor stabilized Socs3. Inhibition of Stat3 signaling in Gprc5a(-/-) normal and cancer cells by the Janus-activated kinase 2 inhibitor AG490 or by a dominant negative Stat3(Y705F) increased starvation-induced apoptosis and inhibited colony formation. These results show that persistent Stat3 activation is important for the survival and transformation of Gprc5a(-/-) lung cells and suggest that the tumor suppressive effects of Gprc5a are mediated, at least in part, by inhibition of Stat3 signaling through Socs3 stabilization.

Related: Apoptosis Lung Cancer Signal Transduction

Fujimoto J, Kadara H, Men T, et al.
Comparative functional genomics analysis of NNK tobacco-carcinogen induced lung adenocarcinoma development in Gprc5a-knockout mice.
PLoS One. 2010; 5(7):e11847 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Improved understanding of lung cancer development and progression, including insights from studies of animal models, are needed to combat this fatal disease. Previously, we found that mice with a knockout (KO) of G-protein coupled receptor 5A (Gprc5a) develop lung tumors after a long latent period (12 to 24 months).
METHODOLOGY/PRINCIPAL FINDINGS: To determine whether a tobacco carcinogen will enhance tumorigenesis in this model, we administered 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) i.p. to 2-months old Gprc5a-KO mice and sacrificed groups (n=5) of mice at 6, 9, 12, and 18 months later. Compared to control Gprc5a-KO mice, NNK-treated mice developed lung tumors at least 6 months earlier, exhibited 2- to 4-fold increased tumor incidence and multiplicity, and showed a dramatic increase in lesion size. A gene expression signature, NNK-ADC, of differentially expressed genes derived by transcriptome analysis of epithelial cell lines from normal lungs of Gprc5a-KO mice and from NNK-induced adenocarcinoma was highly similar to differential expression patterns observed between normal and tumorigenic human lung cells. The NNK-ADC expression signature also separated both mouse and human adenocarcinomas from adjacent normal lung tissues based on publicly available microarray datasets. A key feature of the signature, up-regulation of Ube2c, Mcm2, and Fen1, was validated in mouse normal lung and adenocarcinoma tissues and cells by immunohistochemistry and western blotting, respectively.
CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that lung tumorigenesis in the Gprc5a-KO mouse model is augmented by NNK and that gene expression changes induced by tobacco carcinogen(s) may be conserved between mouse and human lung epithelial cells. Further experimentation to prove the reliability of the Gprc5a knockout mouse model for the study of tobacco-induced lung carcinogenesis is warranted.

Related: Lung Cancer

Kadara H, Fujimoto J, Men T, et al.
A Gprc5a tumor suppressor loss of expression signature is conserved, prevalent, and associated with survival in human lung adenocarcinomas.
Neoplasia. 2010; 12(6):499-505 [PubMed] Free Access to Full Article Related Publications
Increasing the understanding of the impact of changes in oncogenes and tumor suppressor genes is essential for improving the management of lung cancer. Recently, we identified a new mouse lung-specific tumor suppressor-the G protein-coupled receptor 5A (Gprc5a). Microarray analysis of the transcriptomes of lung epithelial cells cultured from normal tracheas of Gprc5a knockout and wild-type mice defined a loss-of-Gprc5a gene signature, which revealed many aberrations in cancer-associated pathways. To assess the relevance of this mouse tumor suppressor to human lung cancer, the loss-of-Gprc5a signature was cross species compared with and integrated with publicly available gene expression data of human normal lung tissue and non-small cell lung cancers. The loss-of-Gprc5a signature was prevalent in human lung adenocarcinomas compared with squamous cell carcinomas or normal lung. Furthermore, it identified subsets of lung adenocarcinomas with poor outcome. These results demonstrate that gene expression patterns of Gprc5a loss in nontumorigenic mouse lung epithelial cells are evolutionarily conserved and important in human lung adenocarcinomas.

Related: Non-Small Cell Lung Cancer Lung Cancer

Tamura G, So K, Miyoshi H, et al.
Quantitative assessment of gene methylation in neoplastic and non-neoplastic gastric epithelia using methylation-specific DNA microarray.
Pathol Int. 2009; 59(12):895-9 [PubMed] Related Publications
A fiber-type DNA microarray was used to calculate methylation rates (MR) of four tumor suppressor genes, lysyl oxidase (LOX), p16, RUNX3, and tazarotene-induced gene 1 (TIG1). MR were calculated in 26 primary gastric cancers and corresponding non-neoplastic gastric epithelia, and the results were compared to those of conventional methylation-specific polymerase chain reaction (MSP). MR ranged from 0.1% to 69.1% (mean, 18.3%) for LOX, 0.5-74.1% (mean, 15.7%) for p16, 0.2-76.5% (mean, 22.7%) for RUNX3, and 0.6-41.2% (mean, 5.8%) for TIG1 in primary gastric cancers, and from 0.1% to 25.8% (mean, 8.7%) for LOX, 1.0- 23.2% (mean, 10.3%) for p16, 0.7-25.1% (mean, 5.5%) for RUNX3, and 1.8-27.6% (mean, 11.4%) for TIG1 in corresponding non-neoplastic gastric epithelia. Although MR varied significantly across different samples for both neoplastic and non-neoplastic gastric epithelia, high-level methylation (MR >40%) was cancer specific and was observed in 19.2%, 19.2%, 30.8%, and 3.8% of primary gastric cancers for LOX, p16, RUNX3, and TIG1, respectively. All samples with high-level methylation, as well as some samples with low MR (particularly <10%) were judged to be methylation positive on conventional MSP. Quantitative analysis of gene methylation using methylation-specific DNA microarray is a promising method for cancer diagnosis.

Related: Stomach Cancer Gastric Cancer

Son MS, Kang MJ, Park HC, et al.
Expression and mutation analysis of TIG1 (tazarotene-induced gene 1) in human gastric cancer.
Oncol Res. 2009; 17(11-12):571-80 [PubMed] Related Publications
Tazarotene-induced gene 1 (TIG1) has been known to function as a cell adhesion molecule, which leads to better cell to cell contact and reduced proliferation. We investigated expression and mutation status of TIG1 in primary gastric tumors and cell lines to explore the candidacy of the gene as a tumor suppressor. A total of 172 gastric tissue specimes, including 80 primary adenocarcinomas, 12 benign tumors, and 80 adjacent normal mucosa, and 15 gastric cancer cell lines were used. TIG1 expression was analyzed by semiquantitative RT-PCR and immunoblot analysis. To screen for the presence of somatic mutations, RT-PCR-SSCP analysis was carried out. The effect of 5-aza-2'-deoxycytidine treatment was examined to elicit whether TIG1 reduction is associated with abnormal DNA hypermethylation. Compared to noncancerous tissues, a substantial reduction of TIG1 expression was observed in 73.3% (11115) cancer cell lines, and seven of these exhibited nearly undetectable levels of expression. Decreased expression of TIG1 was also found in 62 (77.5%) primary carcinoma tissues compared to adjacent noncancerous tissues, indicating a tumor-specific reduction of TIG1. Expression levels of TIG1 were significantly low in primary carcinomas and cancer cell lines compared to those of normal tissues. Moreover, loss or reduction of TIG1 was significantly high in advanced tumors compared to early tumors and more frequent in poorly differentiated tumors than well or moderately differentiated tumors. TIG1 expression was reactivated or its level was elevated following 5-aza-2'-deoxycytidine treatment, indicating that TIG1 expression is transcriptionally silenced in these cancer cells by abnormal DNA hypermethylation. These data indicate that TIG1 undergoes frequent epigenetic inactivation due to aberrant DNA hypermethylation in gastric cancers, and its altered expression is associated with the malignant progression of tumors.

Related: Azacitidine Chromosome 3 Stomach Cancer Gastric Cancer

Dairkee SH, Sayeed A, Luciani G, et al.
Immutable functional attributes of histologic grade revealed by context-independent gene expression in primary breast cancer cells.
Cancer Res. 2009; 69(19):7826-34 [PubMed] Free Access to Full Article Related Publications
Inherent cancer phenotypes that are independent of fluctuating cross-talk with the surrounding tissue matrix are highly desirable candidates for targeting tumor cells. Our novel study design uses epithelial cell lines derived from low versus high histologic grade primary breast cancer to effectively diminish the breadth of transient variability generated within the tumor microenvironment of the host, revealing a "paracrine-independent expression of grade-associated" (PEGA) gene signature. PEGA members extended beyond "proliferation-driven" signatures commonly associated with aggressive, high-grade breast cancer. The calcium-binding protein S100P was prominent among PEGA genes overexpressed in high-grade tumors. A three-member fingerprint of S100P-correlated genes, consisting of GPRC5A, FXYD3, and PYCARD, conferred poor outcome in multiple breast cancer data sets, irrespective of estrogen receptor status but dependent on tumor size (P < 0.01). S100P silencing markedly diminished coregulated gene transcripts and reversed aggressive tumor behavior. Exposure to pathway-implicated agents, including the calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, phenothiazine, and chlorpromazine, resulted in rapid apoptotic cell death in high-grade tumor cells resistant to the chemotherapeutic drug cisplatin. This is the first comprehensive study describing molecular phenotypes intimately associated with histologic grade whose expression remains relatively fixed despite an unavoidably changing environment to which tumor cells are invariably exposed.

Related: Breast Cancer

Kwok WK, Pang JC, Lo KW, Ng HK
Role of the RARRES1 gene in nasopharyngeal carcinoma.
Cancer Genet Cytogenet. 2009; 194(1):58-64 [PubMed] Related Publications
Nasopharyngeal carcinoma (NPC) is a unique type of head and neck cancer that is most prevalent in southern China. Previous studies have suggested that genetic susceptibility, environmental carcinogens, and Epstein-Barr virus (EBV) infection contribute to the etiology of NPC. Our group has identified the retinoic acid receptor responder (tazarotene induced) 1 gene (RARRES1; alias TIG1) to be transcriptionally silenced by promoter hypermethylation in approximately 90% of NPC cases, suggesting that its inactivation may be important in NPC formation. The aim of this study was to explore the functional role of the RARRES1 protein (alias TIG1) in NPC cells with EBV infection (HK1-EBV) and without (HK1). Cellular proliferation analysis, as measured by 5-bromo-2'-deoxyuridine (BrdU) incorporation, showed that knockdown and overexpression of TIG1 in HK1 led, respectively, to significantly increased (P = 0.005) and reduced (P = 0.027) proportions of BrdU-labeled cells, compared with control cells. In contrast, knockdown or overexpression of TIG1 had no significant effect on cellular proliferation in HK1-EBV cells. Invasion chamber assay showed that TIG1 knockdown in HK1-EBV cells resulted in significant enhancement of invasive capacity of HK1-EBV cells (P = 0.006). HK1 cells were not invasive, regardless of TIG1 status. These findings suggest that TIG1 may play a role in cellular proliferation and invasion in NPC cells and that its function may be dependent on the EBV status.

Related: Nasopharyngeal Cancer

Sun J, Chen Z, Zhu T, et al.
Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in Mainland China.
J Cancer Res Clin Oncol. 2009; 135(12):1717-27 [PubMed] Related Publications
PURPOSE: A 11-gene set by methylation-specific PCR in urine sediments for sensitive/specific detection of bladder cancer has been identified previously. In this study, we have evaluated 10 DNA methylation biomarkers that have been reported informative in western countries for bladder cancer diagnosis for a better set.
MATERIALS AND METHODS: The promoter CpG Islands of the following 10 genes: CDH1, FANCF, LOXL1, LOXL4, p16INK4, SFRP1, SOX9, TIG1, TIMP3, and XAF1 have been subjected to methylation-specific PCR analysis in the DNA of 2 bladder cancer cell lines, 2 normal bladder tissues and urine sediments of 82 bladder cancer patients, 15 non-cancerous urogenital patients and 5 healthy volunteers.
RESULTS: Both XAF1 and LOXL1 genes were heterozygously methylated in the normal bladder tissues, showing no cancer state specificity. While the hypermethylated states were detected in urine sediments of bladder cancer at a frequency not less than 2.4% (2/82 cases), nine genes were also methylated in the patients of the non-cancerous urogenital diseases. The methylated SFRP1 was detected in 36.6% (30/82 cases) of bladder cancer and 6.7% (1/15 cases) of non-cancerous urogenital diseases, showing the bladder cancer specificity.
CONCLUSIONS: Inclusion of the SFRP1 gene into a set of 11 genes has improved the bladder cancer detection. The insufficiency of predicting disease onset in this study with the previously recommended targets in western countries suggests a possible disease disparity between these two populations. Alternatively, the tissue-specific methylation might be mistaken as the cancer specific in the studies where no non-cancerous lesion controls were involved.

Related: Bladder Cancer Bladder Cancer - Molecular Biology SFRP1

Jörissen H, Bektas N, Dahl E, et al.
Production and characterisation of monoclonal antibodies against RAI3 and its expression in human breast cancer.
BMC Cancer. 2009; 9:200 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RAI3 is an orphan G-protein coupled receptor (GPCR) that has been associated with malignancy and may play a role in the proliferation of breast cancer cells. Although its exact function in normal and malignant cells remains unclear and evidence supporting its role in oncogenesis is controversial, its abundant expression on the surface of cancer cells would make it an interesting target for the development of antibody-based therapeutics. To investigate the link with cancer and provide more evidence for its role, we carried out a systematic analysis of RAI3 expression in a large set of human breast cancer specimens.
METHODS: We expressed recombinant human RAI3 in bacteria and reconstituted the purified protein in liposomes to raise monoclonal antibodies using classical hybridoma techniques. The specific binding activity of the antibodies was confirmed by enzyme-linked immunosorbent assay (ELISA), western blot and immunocytochemistry. We carried out a systematic immunohistochemical analysis of RAI3 expression in human invasive breast carcinomas (n = 147) and normal breast tissues (n = 44) using a tissue microarray. In addition, a cDNA dot blot hybridisation assay was used to investigate a set of matched normal and cancerous breast tissue specimens (n = 50) as well as lymph node metastases (n = 3) for RAI3 mRNA expression.
RESULTS: The anti-RAI3 monoclonal antibodies bound to recombinant human RAI3 protein with high specificity and affinity, as shown by ELISA, western blot and ICC. The cDNA dot blot and immunohistochemical experiments showed that both RAI3 mRNA and RAI3 protein were abundantly expressed in human breast carcinoma. However, there was no association between RAI3 protein expression and prognosis based on overall and recurrence-free survival.
CONCLUSION: We have generated a novel, highly-specific monoclonal antibody that detects RAI3 in formaldehyde-fixed paraffin-embedded tissue. This is the first study to report a systematic analysis of RAI3 expression in normal and cancerous human breast tissue at both the mRNA and protein levels.

Related: Monoclonal Antibodies Breast Cancer

Ellinger J, Bastian PJ, Jurgan T, et al.
CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer.
Urology. 2008; 71(1):161-7 [PubMed] Related Publications
OBJECTIVES: CpG island hypermethylation causes gene silencing and could be decisive in prostate carcinogenesis and progression. We investigated its role at multiple gene sites during prostate carcinogenesis.
METHODS: A quantitative, methylation-specific polymerase chain reaction was used to analyze the hypermethylation patterns at nine gene loci (Annexin2, APC, EDNRB, GSTP1, PTGS2, MDR1, RARbeta, Reprimo, and TIG1) in 80 patients with prostate cancer (PCa) and 26 patients with benign prostatic hyperplasia (BPH).
RESULTS: Hypermethylation was more frequent in PCa than in BPH tissues (EDNRB, 100% versus 88%; TIG1, 96% versus 12%; RARbeta, 95% versus 35%; GSTP1, 93% versus 15%; APC, 80% versus 50%; MDR1, 80% versus 31%; PTGS2, 68% versus 15%; Reprimo, 59% versus 19%; and Annexin2, 4% versus 0%). TIG1 and GSTP1 hypermethylation distinguished between PCa and BPH with a specificity of greater than 85% and sensitivity of greater than 93%. Hypermethylation at a single gene locus did not correlate with any clinicopathologic variables. In contrast, hypermethylation at two genes (eg, APC and TIG1, APC and GSTP1, APC and PTGS2, APC or MDR, GSTP1 or PTGS2) correlated significantly with the pathologic stage and/or Gleason score (P = 0.033 to 0.045). Hypermethylation at APC and Reprimo, as well as DNA hypermethylation at more than five genes, correlated significantly with the rate of prostate-specific antigen recurrence after radical prostatectomy (P = 0.0078 and P = 0.0074, respectively).
CONCLUSIONS: Our results have confirmed that the hypermethylation patterns are helpful in the diagnosis and prognosis of PCa. Increases in CpG island hypermethylation at multiple gene sites occur during PCa progression and indicate early biochemical recurrence after radical prostatectomy.

Related: COX2 (PTGS2) GSTP1 Prostate Cancer

Ellinger J, El Kassem N, Heukamp LC, et al.
Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer.
J Urol. 2008; 179(1):346-52 [PubMed] Related Publications
PURPOSE: CpG island hypermethylation is a frequent event in bladder carcinogenesis and progression. We investigated the diagnostic and prognostic value of hypermethylation in cell-free serum DNA of patients with bladder cancer.
MATERIALS AND METHODS: The study cohort consisted of 45 patients with bladder cancer undergoing cystectomy and 45 with histologically confirmed benign prostatic hyperplasia serving as controls. Hypermethylation at APC, DAPK, GSTP1, PTGS2, TIG1 and Reprimo was analyzed using real-time polymerase chain reaction following methylation sensitive restriction endonuclease treatment.
RESULTS: Hypermethylation at the APC and GSTP1 promoter was detected in 59% of cases, whereas TIG1 (32%), PTGS2 (24%) and DAPK (2%) were less frequently hypermethylated. In the benign prostatic hyperplasia group 3 patients also harbored methylated GSTP1 DNA, whereas none of the other gene sites was methylated. Hypermethylation at APC, GSTP1 or TIG1 distinguished patients with bladder cancer and controls most accurately with 80% sensitivity and 93% specificity. Hypermethylation significantly correlated with prognostic unfavorable clinicopathological parameters, including APC with pT stage, GSTP1, or GSTP1 or TIG1 with multifocal bladder cancer and APC, or APC or TIG1 with surgical margin positivity. Bladder cancer specific mortality was significantly increased in patients with APC hypermethylation.
CONCLUSIONS: The detection of hypermethylation in cell-free serum DNA provides valuable diagnostic and prognostic information that can still be improved by combining the results of 3 gene sites (APC, GSTP1 and TIG1). The presence of hypermethylated DNA in the serum of patients with bladder cancer is associated with a worse outcome. Our results suggest that measuring hypermethylation in the serum of patients with bladder cancer is a useful biomarker.

Related: Bladder Cancer Bladder Cancer - Molecular Biology

Ellinger J, Haan K, Heukamp LC, et al.
CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer.
Prostate. 2008; 68(1):42-9 [PubMed] Related Publications
BACKGROUND: One of the earliest and most common epigenetic events in prostate carcinogenesis is DNA CpG island (CGI) hypermethylation. Our aim was to analyze the diagnostic and prognostic possibilities of multigene methylation analysis in cell-free serum DNA of prostate cancer (PCA) patients.
METHODS: We analyzed serum samples from 226 consecutive patients (168 PCA; 42 benign prostatic hyperplasia (BPH); 5 incidental PCA; 11 healthy individuals). Cell-free DNA was digested with methylation-sensitive restriction endonucleases (HpaII and HinP1I). Subsequently, CGI hypermethylation at GSTP1, PTGS2, Reprimo, and TIG1 was assessed using real-time PCR.
RESULTS: CGI hypermethylation at GSTP1, TIG1, PTGS2, and Reprimo was more frequent in PCA (42.3%, 9.5%, 2.4%, and 1.2%, respectively) compared to BPH (7.7%, 0%, 0%, and 0%, respectively) and healthy individuals (all 0%) with a statistical significant difference of GSTP1 (P < 0.0001) and TIG1 (P = 0.038). GSTP1 hypermethylation was also detected in four patients with incidental PCA. Hypermethylation in serum DNA at GSTP1 and hypermethylation at any gene site distinguished between PCA and BPH patients in a highly specific (92%) but less sensitive (42-47%) manner. Neither CGI hypermethylation at a single gene loci nor the combination of multiple gene sites was correlated to the pathological stage, grade or biochemical recurrence following radical prostatectomy.
CONCLUSIONS: The detection of aberrant hypermethylation in cell-free serum DNA allows the highly specific diagnosis of PCA. A test based on GSTP1 hypermethylation in serum samples of patients with suspected PCA may help to identify men with increased risk of harboring PCA despite negative prostate biopsy.

Related: COX2 (PTGS2) GSTP1 Prostate Cancer

Tao Q, Fujimoto J, Men T, et al.
Identification of the retinoic acid-inducible Gprc5a as a new lung tumor suppressor gene.
J Natl Cancer Inst. 2007; 99(22):1668-82 [PubMed] Related Publications
BACKGROUND: Lung cancers develop via multiple genetic and epigenetic changes, including inactivation of tumor suppressor genes. We previously cloned human G protein-coupled receptor family C type 5A (GPRC5A), whose expression is suppressed in some human lung carcinoma cells, and its mouse homolog Gprc5a.
METHODS: We generated Gprc5a knockout mice by homologous recombination and studied their phenotype by macroscopic observation and microscopic histologic analysis of embryos and lungs of 1- to 2-year-old mice. GPRC5A mRNA expression was analyzed by reverse transcription-polymerase chain reaction in surgical specimens of 18 human lung tumors and adjacent normal tissues and by analyzing previously published data from 186 lung tumor tissues of a variety of histologic types and 17 normal lung samples. Human embryonic kidney, human non-small-cell lung cancer, and mouse lung adenocarcinoma cells were transfected with a GPRC5A expression vector or a control vector, and colony formation in semisolid medium was assayed. Statistical tests were two-sided.
RESULTS: Homozygous knockout mice developed many more lung tumors at 1-2 years of age (incidence: 76% adenomas and 17% adenocarcinomas) than heterozygous (11% adenomas) or wild-type (10% adenomas) mice. Human GPRC5A mRNA levels were lower in most (11 of 18 [61%]) human lung tumors than in adjacent normal tissues. The mean GPRC5A mRNA level in adenocarcinoma (n = 139), squamous cell carcinoma (n = 21), small-cell lung cancer (n = 6), and carcinoid (n = 20) tissues was 46.2% (P = .014), 7.5% (P<.001), 5.3% (P<.001), and 1.8% (P<.001), respectively, that in normal lung tissues (n = 17) GPRC5A transfection suppressed colony formation in semisolid medium of immortalized human embryonic kidney, human non-small-cell lung cancer, and mouse lung adenocarcinoma cells by 91%, 91%, and 68%, respectively, compared with vector controls (all P<.001).
CONCLUSIONS: Gprc5a functions as a tumor suppressor in mouse lung, and human GPRC5A may share this property. The Gprc5a-deficient mouse is a novel model to study lung carcinogenesis and chemoprevention.

Related: Non-Small Cell Lung Cancer Lung Cancer

Kim BH, Cho NY, Choi M, et al.
Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas.
Arch Pathol Lab Med. 2007; 131(6):923-30 [PubMed] Related Publications
CONTEXT: CpG island hypermethylation is attracting attention because of its importance as a tumor marker and its potential mechanism for the development of human cancers. Extrahepatic cholangiocarcinoma has been poorly investigated with respect to CpG island hypermethylation, and the number of genes known to be methylated in extrahepatic cholangiocarcinomas is fewer than 20.
OBJECTIVE: To generate methylation profiles of 24 CpG island loci in extrahepatic cholangiocarcinomas, to correlate methylation findings with clinicopathologic findings, and to compare these findings with those of intrahepatic cholangiocarcinomas.
DESIGN: Sixty-three extrahepatic cholangiocarcinomas and 48 intrahepatic cholangiocarcinomas were investigated for hypermethylation in 24 CpG island loci by using methylation-specific polymerase chain reaction.
RESULTS: A total of 61 (96.8%) of 63 extrahepatic cholangiocarcinomas showed hypermethylation in at least one of the examined loci, and a high methylation frequency was seen in HOXA1 (95.2%), HPP1 (69.8%), and NEUROG1 (61.9%). The number of methylated CpG island loci was greater in extrahepatic cholangiocarcinomas with nodal metastasis than in those without nodal metastasis (P = .047), and hypermethylation of TIG1 was closely associated with nodal metastasis of extrahepatic cholangiocarcinomas (P = .007). CDH1 and NEUROG1 were more frequently methylated in extrahepatic cholangiocarcinoma than in intrahepatic cholangiocarcinoma, whereas CHFR, GSTP1, IGF2, MGMT, MINT31, p14, and RBP1 were more frequently methylated in intrahepatic cholangiocarcinoma: the differences was statistically significant (P < .05).
CONCLUSIONS: A close relationship exists between CpG island hypermethylation and nodal metastasis of extrahepatic cholangiocarcinomas. Methylation profiles of extrahepatic cholangiocarcinomas are somewhat similar to but distinct from those of intrahepatic cholangiocarcinomas.

Related: Extra-Hepatic Bile duct cancer (cholangiocarcinoma)


Found this page useful?

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAI3, Cancer Genetics Web: http://www.cancerindex.org/geneweb/RAI3.htm Accessed: date

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 December, 2014     Cancer Genetics Web, Established 1999