SFRP2

Gene Summary

Gene:SFRP2; secreted frizzled related protein 2
Aliases: FRP-2, SARP1, SDF-5
Location:4q31.3
Summary:This gene encodes a member of the SFRP family that contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzled proteins. SFRPs act as soluble modulators of Wnt signaling. Methylation of this gene is a potential marker for the presence of colorectal cancer. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:secreted frizzled-related protein 2
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (65)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SFRP2 (cancer-related)

García-Tobilla P, Solórzano SR, Salido-Guadarrama I, et al.
SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms.
Gene. 2016; 593(2):292-301 [PubMed] Related Publications
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.

Bagci B, Sari M, Karadayi K, et al.
KRAS, BRAF oncogene mutations and tissue specific promoter hypermethylation of tumor suppressor SFRP2, DAPK1, MGMT, HIC1 and p16 genes in colorectal cancer patients.
Cancer Biomark. 2016; 17(2):133-43 [PubMed] Related Publications
BACKGROUND: Colorectal cancer is a serious disease that causes significant morbidity and mortality in developed countries. Genetic changes, such as mutations in proto-oncogenes and DNA repair genes, and loss of function in the tumor suppressor genes cause colorectal cancer development. Abnormal DNA methylation is also known to play a crucial role in colorectal carcinogenesis.
OBJECTIVE: In this study, frequencies of KRAS and BRAF mutations, promoter hypermethylation profiles of SFRP2, DAPK1, MGMT, HIC1 and p16 genes, and possible associations between hypermethylation of these genes and KRAS and BRAF mutations were aimed to find out.
METHODS: Ninety three colorectal cancer tissues and 14 normal colon mucosas were included in the study. Common twelve KRAS gene mutation were investigated with using reverse-hybridization strip assay method. BRAF V600E mutations were investigated with RFLP method. Hypermethylation status of five tumor suppressor genes were detected by using reverse-hybridization strip assay method after bisulfite modification of DNA.
RESULTS: KRAS and BRAF mutation frequencies were determined as 54.84% and 12.9%, respectively. Promoter hypermethylation frequencies of tumor suppressor genes SFRP2, DAPK1, MGMT, HIC1 and p16 were determined as 66.7%, 45.2%, 40.9%, 40.9% and 15.1%, respectively. Statistically significant associations were found between BRAF mutation and SFRP2 and p16 tumor suppressor genes hypermethylation (SFRP2; p= 0.005, p16; p= 0.016). Compared to rectum, SFRP2 (p= 0.017) and MGMT (p= 0.013) genes have statistically significantly higher promoter hypermethylation in colon.
CONCLUSIONS: Results of the current study have confirmed that KRAS mutations and SFRP2 hypermethylation can be used as genetic markers in colorectal cancer.

Naini MA, Mokarram P, Kavousipour S, et al.
Sensitive and Noninvasive Detection of Aberrant SFRP2 and MGMT-B Methylation in Iranian Patients with Colon Polyps.
Asian Pac J Cancer Prev. 2016; 17(4):2185-93 [PubMed] Related Publications
BACKGROUND: The pathogenesis of sporadic colorectal cancer (CRC) is influenced by the patient genetic background and environmental factors. Based on prior understanding, these are classified in two major pathways of genetic instability. Microsatellite instability (MSI) and CPG island methylator phenotype (CIMP) are categorized as features of the hypermethylated prototype, and chromosomal instability (CIN) is known to be indicative of the non-hypermethylated category. Secreted frizzled related protein 2 (SFRP2), APC1A in WNT signaling pathway and the DNA repair gene, O6-methylguanine-DNA methyltransferase (MGMT), are frequently hypermethylated in colorectal cancer. Detection of methylated DNA as a biomarker by easy and inexpensive methods might improve the quality of life of patients with CRC via early detection of cancer or a precancerous condition.
AIM: To evaluate the rate of SFRP2 and MGMT hypermethylation in both polyp tissue and serum of patients in south Iran as compared with matched control normal population corresponding samples.
MATERIALS AND METHODS: Methylation-specific PCR was used to detect hypermethylation in DNA extracted from 48 polypoid tissue samples and 25 healthy individuals.
RESULTS: Of total polyp samples, 89.5% had at least one promoter gene hypermethylation. The most frequent methylated locus was SFRP2 followed by MGMT-B (81.2 and 66.6 percent respectively). Serologic detection of hypermethylation was 95% sensitive as compared with polyp tissue. No hypermethylation was detected in normal tissue and serum and its detection in patients with polyps, especially of serrated type, was specific.
CONCLUSIONS: Serologic investigation for detection of MGMT-B, SFRP2 hypermethylation could facilitate prioritization of high risk patients for colonoscopic polyp detection and excision.

Ma K, Cao B, Guo M
The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma.
Clin Epigenetics. 2016; 8:43 [PubMed] Free Access to Full Article Related Publications
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.

Tilghman J, Schiapparelli P, Lal B, et al.
Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151.
Neoplasia. 2016; 18(3):185-98 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) stem cells (GSCs) represent tumor-propagating cells with stem-like characteristics (stemness) that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing therapeutic strategies for targeting GSC-dependent oncogenic mechanisms. Using GBM-derived neurospheres, we identified the cell surface tetraspanin family member CD151 as a novel regulator of glioma cell stemness, GSC self-renewal capacity, migration, and tumor growth. CD151 was found to be overexpressed in GBM tumors and GBM neurospheres enriched in GSCs. Silencing CD151 inhibited neurosphere forming capacity, neurosphere cell proliferation, and migration and attenuated the expression of markers and transcriptional drivers of the GSC phenotype. Conversely, forced CD151 expression promoted neurosphere self-renewal, cell migration, and expression of stemness-associated transcription factors. CD151 was found to complex with integrins α3, α6, and β1 in neurosphere cells, and blocking CD151 interactions with integrins α3 and α6 inhibited AKT phosphorylation, a downstream effector of integrin signaling, and impaired sphere formation and neurosphere cell migration. Additionally, targeting CD151 in vivo inhibited the growth of GBM neurosphere-derived xenografts. These findings identify CD151 and its interactions with integrins α3 and α6 as potential therapeutic targets for inhibiting stemness-driving mechanisms and stem cell populations in GBM.

Zhang H, Yu C, Chen M, et al.
miR-522 contributes to cell proliferation of hepatocellular carcinoma by targeting DKK1 and SFRP2.
Tumour Biol. 2016; 37(8):11321-9 [PubMed] Related Publications
The morbidity and mortality of hepatocellular carcinoma (HCC) is very high, finding new therapeutic targets are critical for HCC treatment. miR-522 has been demonstrated to be upregulated in HCC tissues, but its role in HCC progression remains to be elucidated. In this report, we found miR-522 was upregulated in HCC cells and tissues, miR-522 overexpression promoted cell proliferation, colony formation, and cell cycle progression, whereas knockdown of miR-522 reduced these effects. We also analyzed the expression of several key cell cycle regulatory proteins and found overexpression of miR-522-inhibited cell cycle inhibitors p21 and p27 expression and enhanced cyclin D1 expression and the level of Rb phosphorylation, vice versa. These suggested miR-522-accelerated G1/S transition. DKK1 (dickkopf-1) and SFRP2 (secreted frizzled-related protein 2) were the targets of miR-522, their expression was inversely with miR-522 in HCC tissues. DKK1 and SFRP2 the antagonists of Wnt signaling, suggesting miR-522-promoted HCC progression through activating Wnt signaling. miR-522 might be a valuable target for HCC therapy.

Du J, Liu X, Wu Y, et al.
Essential role of STX6 in esophageal squamous cell carcinoma growth and migration.
Biochem Biophys Res Commun. 2016; 472(1):60-7 [PubMed] Related Publications
Abnormalities in endosomes, or dysregulation in their trafficking, play an important role directly in many diseases including oncogenesis. Syntaxin-6 (STX6) is involved in diverse cellular functions in a variety of cell types and has been shown to regulate many intracellular membrane trafficking events such as endocytosis, recycling and anterograde and retrograde trafficking. However, its expression pattern and biological functions in esophageal squamous cell carcinoma (ESCC) remained unknown. Here, we have found that the expression of STX6 was up-regulated in ESCC samples, its expression was significantly correlated with tumor size, histological differentiation, lymph node metastasis and depth. On one hand, STX6 silencing inhibited ESCC cells viability and proliferation in a p53-dependent manner. On the other hand, STX6 effect integrin trafficking and regulate ESCC cells migration. Taken together, our study revealed the oncogenic roles of STX6 in the progression of ESCC, and it might be a valuable target for ESCC therapy.

Zhu J, Lu XD, Si F, et al.
Inhibition of LN-308 glioma cell proliferation and migration by retinoic acid amide through activation of Akt pathway.
Int J Clin Exp Pathol. 2015; 8(11):13921-7 [PubMed] Free Access to Full Article Related Publications
The present study was performed to investigate the effect of retinoic acid amide (RAA) on the expression of integrin α3β1, rate of cell proliferation and migration in p53-deficient glioma cell line, LN-308. The results revealed promotion of integrin α3 expression, reduction in proliferation and migration in RAA treated cells compared to the control LN-308 glioma cells. Promotion of RAA induced integrin α3β1 expression led to the enhancement in cyclin-dependent kinase nuclear localization and activation of Akt pathway. In addition, RAA treatment inhibited the expression of nuclear factor-κB, Bcl-2 and epidermal growth factor receptor (EGFR). These factors are responsible for promoting the rate of cell proliferation and survival in the carcinoma cells. Thus RAA treatment inhibits rate of LN-308 glioma cell proliferation and migration through increase in integrin α3β1 expression and activation of Akt pathway. Therefore, RAA can be of therapeutic importance for the treatment of glioma.

Li T, Lai Q, Wang S, et al.
MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer.
J Exp Clin Cancer Res. 2016; 35:21 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Growing evidence suggests that Wnt/β-catenin pathway plays an important role in CRC development, progression and metastasis. Aberrant miR-224 expression has been reported in CRC. However, the mechanism of miR-224 promotes both proliferation and metastatic ability largely remains unclear.
METHODS: Real-time PCR was used to quantify miR-224 expression. Luciferase reporter assays were conducted to confirm the activity of Wnt/β-catenin pathway and target gene associations, and immunofluorescence staining assay was performed to observe the nuclear translocation of β-catenin. Bioinformatics analysis combined with in vivo and vitro functional assays showed the potential target genes, GSK3β and SFRP2, of miR-224. Specimens from forty patients with CRC were analyzed for the expression of miR-224 and the relationship with GSK3β/SFRP2 by real-time PCR and western blot.
RESULTS: Bioinformatics and cell luciferase function studies verified the direct regulation of miR-224 on the 3'-UTR of the GSK3β and SFRP2 genes, which leads to the activation of Wnt/β-catenin signaling and the nuclear translocation of β-catenin. In addition, knockdown of miR-224 significantly recovered the expression of GSK3β and SFRP2 and attenuated Wnt/β-catenin-mediated cell metastasis and proliferation. The ectopic upregulation of miR-224 dramatically inhibited the expression of GSK3β/SFRP2 and enhanced CRC proliferation and invasion.
CONCLUSION: Our research showed mechanistic links between miR-224 and Wnt/β-catenin in the pathogenesis of CRC through modulation of GSK3β and SFRP2.

Borrelli N, Ugolini C, Giannini R, et al.
Role of gene expression profiling in defining indeterminate thyroid nodules in addition to BRAF analysis.
Cancer Cytopathol. 2016; 124(5):340-9 [PubMed] Related Publications
Fine-needle aspiration (FNA) is routinely used in the preoperative evaluation of thyroid nodules. However, 15% to 30% of aspirations yield indeterminate cytologic findings. Because the assessment of BRAF mutations seems to improve the diagnostic accuracy, this study evaluated BRAF mutations with Sanger sequencing and real-time methods in 650 consecutive thyroid aspirates. In addition, the expression of a large number of genes involved in basement membrane remodeling, extracellular matrix proteolysis, and cell adhesion was studied in both benign and malignant nodules to identify new diagnostic tools. In this prospective series, despite the use of a very sensitive BRAF mutational testing method, the frequency of a BRAF alteration being identified in indeterminate FNA samples was 3 of 68. Expression analysis revealed several genes that were differentially expressed between benign and malignant nodules (transforming growth factor, cadherin 1, collagen α1, catenin α1, integrin α3, and fibronectin 1 [FN1]), between follicular adenomas and follicular variant of papillary thyroid carcinoma (FN1, laminin γ1, integrin β2, connective tissue growth factor, catenin δ1, and integrin αV), and between BRAF-wild-type and BRAF-mutated papillary thyroid carcinomas (TIMP metallopeptidase inhibitor 1; catenin α1; secreted phosphoprotein 1; FN1; ADAM metallopeptidase with thrombospondin type 1 motif, 1; and selectin L). These data were partially confirmed with real-time polymerase chain reaction analysis and immunohistochemistry. When the cost/benefit ratio of the procedures was taken into account, BRAF mutational testing failed to increase diagnostic accuracy in cytologically indeterminate nodules. However, the additional analysis of the expression of specific molecular markers could have possible utility as a diagnostic tool, although further evidence based on a large series of samples is needed before definitive conclusions can be drawn. Cancer Cytopathol 2016;124:340-9. © 2015 American Cancer Society.

Yadav A, Gupta A, Yadav S, et al.
Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival.
Tumour Biol. 2016; 37(6):8083-95 [PubMed] Related Publications
Gallbladder cancer (GBC) is the most common malignancy of the biliary tract with adverse prognosis and poor survival. Wnt signaling plays an important role in embryonic development and regeneration of tissues in all the species. Deregulation of expression and mutations in this pathway may lead to disease state such as cancer. In this study, we assessed the association of common germline variants of Wnt pathway genes (SFRP2, SFRP4, DKK2, DKK3, WISP3, APC, β-catenin, AXIN-2, GLI-1) to evaluate their contribution in predisposition to GBC and treatment outcomes. The study included 564 GBC patients and 250 controls. Out of 564, 200 patients were followed up for treatment response and survival. Tumor response (RECIST 1.1) was recorded in 116 patients undergoing non-adjuvant chemotherapy (NACT). Survival was assessed by Kaplan-Meier curve and Cox-proportional hazard regression. Single locus analysis showed significant association of SFRP4 rs1802073G > T [p value = 0.0001], DKK2 rs17037102C > T [p value = 0.0001], DKK3 rs3206824C > T [p value = 0.012], APC rs4595552 A/T [p value = 0.021], APC rs11954856G > T [p value = 0.047], AXIN-2 rs4791171C > T [p value = 0.001], β-catenin rs4135385A > G [p value = 0.031], and GLI-1 rs222826C > G [p value = 0.001] with increased risk of GBC. Gene-gene interaction using GMDR analysis predicted APC rs11954856 and AXIN2 rs4791171 as significant in conferring GBC susceptibility. Cox-proportional hazard model showed GLI-1 rs2228226 CG/GG and AXIN-2 rs4791171 TT genotype higher hazard ratio. In recursive partitioning, AXIN-2 rs4791171 TT genotype showed higher mortality and hazard. Most of studied genetic variants influence GBC susceptibility. APC rs11954856, GLI-1 rs2228226, and AXIN-2 rs4791171 were found to be associated with poor survival in advanced GBC patients.

Linhares MM, Affonso RJ, Viana Lde S, et al.
Genetic and Immunohistochemical Expression of Integrins ITGAV, ITGA6, and ITGA3 As Prognostic Factor for Colorectal Cancer: Models for Global and Disease-Free Survival.
PLoS One. 2015; 10(12):e0144333 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To evaluate the relationship between the expression profiles of 84 extracellular matrix (ECM) genes and the prognosis of patients with colorectal cancer (CRC).
METHODS: This retrospective study included 114 patients with stage I-IV CRC who underwent primary tumour resection. Quantitative real-time PCR and immunohistochemistry assays were conducted using primary tumour samples. Kaplan-Meier survival curves were also generated to identify differences in global survival (GS) and disease-free survival (DFS) for the hypo- or hyperexpression status of each marker. The log-rank test was used to verify whether the differences were significant. Stepwise Cox regression models were also used to identify the risk factors associated with GS and DFS in a multivariate mode, and then were used to score the risk of death associated with each marker, either independently or in association.
RESULTS: In the univariate analyses, significant differences in GS in relation to the expression profiles of ITGAV (p = 0.001), ITGA3 (p = 0.002), ITGA6 (p = 0.001), SPARC (p = 0.036), MMP9 (p = 0.034), and MMP16 (p = 0.038) were observed. For DFS, significant differences were observed in associated with ITGAV (p = 0.004) and ITGA3 (p = 0.001). However, only the ITGAV and ITGA6 gene markers for GS (hazard ratio (HR) = 3.209, 95% confidence interval (CI) = 1.412-7.293, p = 0.005 and HR = 3.105, 95% CI = 1.367-7.055, p = 0.007, respectively), and ITGA3 for DFS (HR = 3.806, 95% CI = 1.573-9.209, p = 0.003), remained in the final Cox regression models. A scoring system was developed to evaluate the risk of patient death based on the number of markers for the components of the final GS model. Scores of 0, 1, or 2 were associated with the following mean survival rates [CI]: 47.162 [44.613-49.711], 39.717 [35.471-43.964], 30.197 [24.030-36.327], respectively.
CONCLUSIONS: Multivariate mathematical models demonstrated an association between hyperexpression of the ITGAV and ITGA6 integrins and GS, and also between the ITGA3 integrin and DFS, in patients with colorectal tumours. A risk scoring system based on detected hyperexpression of 0, 1, or 2 markers (e.g., ITGAV and/or ITGA6) was also found to accurately correlate with the GS curves generated for the present cohort.

Xiao Q, Yang Y, Zhang X, An Q
Enhanced Wnt signaling by methylation-mediated loss of SFRP2 promotes osteosarcoma cell invasion.
Tumour Biol. 2016; 37(5):6315-21 [PubMed] Related Publications
Wnt signaling is essential for the initiation and progression of osteosarcoma (OS) tumors and is suppressed by the secreted frizzled-related proteins (SFRPs). The methylation-induced protein degradation reduces the activity of SFRPs and subsequently increases the activity of Wnt signaling. However, whether the methylation of SFRP2, a member of SFRPs, may be involved in the pathogenesis of OS is not known. Here, we investigated the expression levels of SFRP2 in OS specimens. We found that SFRP2 mRNA was significantly decreased and methylation of SFRP2 gene was significantly increased in malignant OS tumors as compared to the paired adjacent non-tumor tissue. Moreover, SFRP2 expression was significantly decreased in the malignant OS cell lines, SAOS2, MG63, and U2OS, but not in the primary osteoblast cells. The demethylation of SFRP2 gene by 5'-aza-deoxycytidine (5-aza-dCyd) in OS cell lines restored SFRP2 expression, at both mRNA and protein levels, and suppressed cell invasion. Furthermore, the demethylation of SFRP2 gene appeared to inhibit nuclear retention of a key Wnt signaling factor, β-catenin, in OS cell lines. Together, these data suggest that SFRP2 may function as an OS invasion suppressor by interfering with Wnt signaling, and the methylation of SFRP2 gene may promote pathogenesis of OS.

Aly RM, Taalab MM, Abdsalam EM
Prognostic Significance of Secreted Frizzled-Related Protein 2 Expression in Cytogenetically Normal Primary Acute Myeloid Leukemia.
Am J Med Sci. 2015; 350(5):369-73 [PubMed] Related Publications
BACKGROUND: Deregulation of secreted frizzled-related protein 2 (sFRP2) has been found in many types of cancer. However, the pattern of sFRP2 expression in acute myeloid leukemia (AML) is still unclear.
METHODS: This study aimed to validate the prognostic significance of sFRP2 expression in 54 older patients with cytogenetic normal acute myeloid leukemia (CN-AML) using real-time quantitative polymerase chain reaction.
RESULTS: sFRP2 expression was decreased markedly in patients compared with controls (P < 0.001). No correlation was found between sFRP2 gene expression and WBCs, hemoglobin, platelets, FAB type, NMP1 and FLT3/ITD mutations at diagnosis. All patients were treated with standard induction chemotherapy. Patients with high sFRP2 expression had higher incidence of complete remission rate (P = 0.04) and better overall survival (P = 0.026). Multivariate analysis revealed that high sFRP2 expression was a prognostic factor for older patients with CN-AML.
CONCLUSIONS: This study demonstrated that sFRP2 gene expression at diagnosis had an impact on outcome of elderly CN-AML patients.

Kurozumi A, Goto Y, Matsushita R, et al.
Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer.
Cancer Sci. 2016; 107(1):84-94 [PubMed] Free Access to Full Article Related Publications
Analysis of microRNA (miRNA) expression signatures in prostate cancer (PCa) and castration-resistant PCa has revealed that miRNA-223 is significantly downregulated in cancer tissues, suggesting that miR-223 acts as a tumor-suppressive miRNA by targeting oncogenes. The aim of this study was to investigate the functional roles of miR-223 and identify downstream oncogenic targets regulated by miR-223 in PCa cells. Functional studies of miR-223 were carried out to investigate cell proliferation, migration, and invasion using PC3 and PC3M PCa cell lines. Restoration of miR-223 significantly inhibited cancer cell migration and invasion in PCa cells. In silico database and genome-wide gene expression analyses revealed that ITGA3 and ITGB1 were direct targets of miR-223 regulation. Knockdown of ITGA3 and ITGB1 significantly inhibited cancer cell migration and invasion in PCa cells by regulating downstream signaling. Moreover, overexpression of ITGA3 and ITGB1 was observed in PCa clinical specimens. Thus, our data indicated that downregulation of miR-223 enhanced ITGA3/ITGB1 signaling and contributed to cancer cell migration and invasion in PCa cells. Elucidation of the molecular pathways modulated by tumor-suppressive miRNAs provides insights into the mechanisms of PCa progression and metastasis.

Kalmár A, Péterfia B, Hollósi P, et al.
DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer.
BMC Cancer. 2015; 15:736 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence.
METHODS: Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10-10 macrodissected and 5-5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed.
RESULTS: A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were found to be hypermethylated in human CRC tissue samples. Decreasing protein levels of SFRP1 was also observed along the adenoma-carcinoma sequence.
CONCLUSION: Hypermethylation of the selected markers (MAL, PRIMA1, PTGDR and SFRP1) can result in reduced gene expression and may contribute to the formation of colorectal cancer.

Liang J, Kang X, Halifu Y, et al.
Secreted frizzled-related protein promotors are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis.
BMC Cancer. 2015; 15:641 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The Wnt signaling pathway is abnormally activated in many human cancers. Secreted frizzled-related proteins (SFRPs) function as negative regulators of Wnt signaling and play an important role in carcinogenesis. SFRP promoter hypermethylation has often been identified in human cancers; however, the precise role of SFRPs in cutaneous squamous cell carcinoma (SCC) is unclear.
METHODS: The methylation status of the SFRP family was analyzed in an age-and sex-matched case-control study, including 40 cutaneous SCC cases and 40 normal controls, using the MassARRAY EpiTYPER system.
RESULTS: The methylation rate of SFRP1, SFRP2, SFRP4, and SFRP5 promoters was significantly higher in cutaneous SCC tissues than in adjacent tissue and normal skin samples.
DISCUSSION: Our manuscript mainly discussed the average methylation rate of SFRPs (SFRP1, SFRP2, SFRP4, and SFRP5) promoters are significantly high in tumor tissue samples and the average CpG island methylation rate among different pathological levels of cutaneous SCC between these genes are different.
CONCLUSIONS: Our findings suggest that promoter hypermethylation of SFRPs is associated with the development of carcinoma, and could be a useful tumor marker for cutaneous SCC and other types of cancers.

Majchrzak-Celińska A, Słocińska M, Barciszewska AM, et al.
Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival.
J Appl Genet. 2016; 57(2):189-97 [PubMed] Free Access to Full Article Related Publications
The deregulation of Wnt signaling is observed in various cancers, including gliomas, and might be related to the methylation of the genes encoding antagonists of this signaling pathway. The aim of the study was to assess the methylation status of the promoter regions of six Wnt negative regulators and to determine their prognostic value in clinical samples of gliomas of different grades. The methylation of SFRP1, SFRP2, PPP2R2B, DKK1, SOX17, and DACH1 was analyzed in 64 glioma samples using methylation-specific polymerase chain reaction (MSP). The results were analyzed in correlation with clinicopathological data. Promoter methylation in at least one of the analyzed genes was found in 81.3 % of the tumors. All benign tumors [grade I according to the World Health Organization (WHO) classification] lacked the methylation of the studied genes, whereas grade II, III, and IV tumors were, in most cases, methylation-positive. The methylation index correlated with the patient's age. The most frequently methylated genes were SFRP1 and SFRP2 (73.4 % and 46.9 %, respectively), followed by SOX17 (20.3 %) and PPP2R2B (10.9 %); DKK1 and DACH1 were basically unmethylated (1.6 %). SFRP1 methylation negatively correlated with patients' survival time, and was significantly more frequent in older patients and those with higher grade tumors. Overall, the results of this study indicate that aberrant promoter methylation of Wnt pathway antagonists is common in gliomas, which may be the possible cause of up-regulation of this signaling pathway often observed in these tumors. Moreover, SFRP1 promoter methylation can be regarded as a potential indicator of glioma patients' survival.

Patai ÁV, Valcz G, Hollósi P, et al.
Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas.
PLoS One. 2015; 10(8):e0133836 [PubMed] Free Access to Full Article Related Publications
Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.

Kalmár A, Péterfia B, Hollósi P, et al.
Bisulfite-Based DNA Methylation Analysis from Recent and Archived Formalin-Fixed, Paraffin Embedded Colorectal Tissue Samples.
Pathol Oncol Res. 2015; 21(4):1149-56 [PubMed] Related Publications
We aimed to test the applicability of formalin-fixed and paraffin-embedded (FFPE) tissue samples for gene specific DNA methylation analysis after using two commercially available DNA isolation kits. Genomic DNA was isolated from 5 colorectal adenocarcinomas and 5 normal adjacent tissues from "recent", collected within 6 months, and "archived", collected more than 5 years ago, FFPE tissues using either High Pure FFPET DNA Isolation kit or QIAamp DNA FFPE Tissue kit. DNA methylation analysis of MAL, SFRP1 and SFRP2 genes, known to be hypermethylated in CRC, was performed using methylation-sensitive high resolution melting (MS-HRM) analysis and sequencing. QIAamp (Q) method resulted in slightly higher recovery in archived (HP: 1.22 ± 3.18 μg DNA; Q: 3.00 ± 4.04 μg DNA) and significantly (p < 0.05) higher recovery in recent samples compared to High Pure method (HP) (HP: 4.10 ± 2.91 μg DNA; Q: 11.51 ± 7.50 μg DNA). Both OD260/280 and OD260/230 ratios were lower, but still high in the High Pure isolated archived and recent samples compared to those isolated with QIAamp. Identical DNA methylation patterns were detected for all 3 genes tested by MS-HRM with both isolation kits in the recent group. However, despite of higher DNA recovery in QIAamp slightly more reproducible methylation results were obtained from High Pure isolated archived samples. Sequencing confirmed DNA hypermethylation in CRCs. In conclusion, reproducible DNA methylation patterns were obtained from recent samples using both isolation kits. However, long term storage may affect the reliability of the results leading to moderate differences between the efficiency of isolation kits.

Shankar V, Hori H, Kihira K, et al.
Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines.
PLoS One. 2015; 10(3):e0120069 [PubMed] Free Access to Full Article Related Publications
Neuroblastoma accounts for 15% of childhood cancer deaths and presents with metastatic disease of the bone and the bone marrow at diagnosis in 70% of the cases. Previous studies have shown that the Mesenchymal Stromal Cell (MSC) secretome, triggers metastases in several cancer types such as breast and prostate cancer, but the specific role of the MSC factors in neuroblastoma metastasis is unclear. To better understand the effect of MSC secretome on chemokine receptors in neuroblastoma, and its role in metastasis, we studied a panel of 20 neuroblastoma cell lines, and compared their invasive potential towards MSC-conditioned-RPMI (mRPMI) and their cytokine receptor expression profiles. Western blot analysis revealed the expression of multiple CXCR4 isoforms in neuroblastoma cells. Among the five major isoforms, the expression of the 47 kDa isoform showed significant correlation with high invasiveness. Pretreatment with mRPMI up-regulated the expression of the 47 kDa CXCR4 isoform and also increased MMP-9 secretion, expression of integrin α3 and integrin β1, and the invasive potential of the cell; while blocking CXCR4 either with AMD 3100, a CXCR4 antagonist, or with an anti-47 kDa CXCR4 neutralizing antibody decreased the secretion of MMP-9, the expression of integrin α3 and integrin β1, and the invasive potential of the cell. Pretreatment with mRPMI also protected the 47 kDa CXCR4 isoform from ubiquitination and subsequent degradation. Our data suggest a modulatory role of the MSC secretome on the expression of the 47 kDa CXCR4 isoform and invasion potential of the neuroblastoma cells to the bone marrow.

Mokarram P, Kavousipour S, Sarabi MM, et al.
MGMT-B gene promoter hypermethylation in patients with inflammatory bowel disease - a novel finding.
Asian Pac J Cancer Prev. 2015; 16(5):1945-52 [PubMed] Related Publications
Inflammatory bowel disease (IBD) is a disease strongly associated with colorectal cancer (CRC) as a well-known precancerous condition. Alterations in DNA methylation and mutation in K-ras are believed to play an early etiopathogenic role in CRC and may also an initiating event through deregulation of molecular signaling. Epigenetic silencing of APC and SFRP2 in the WNT signaling pathway may also be involved in IBD-CRC. The role of aberrant DNA methylation in precancerous state of colorectal cancer (CRC) is under intensive investigation worldwide. The aim of this study was to investigate the status of promoter methylation of MGMT-B, APC1A and SFRP2 genes, in inflamed and normal colon tissues of patients with IBD compared with control normal tissues. A total of 52 IBD tissues as well as corresponding normal tissues and 30 samples from healthy participants were obtained. We determined promoter methylation status of MGMT-B, SFRP2 and APC1A genes by chemical treatment with sodium bisulfite and subsequent MSP. The most frequently methylated locus was MGMT-B (71%; 34 of 48), followed by SFRP2 (66.6 %; 32 of 48), and APC1A (43.7%; 21 of 48). Our study demonstrated for the first time that hypermethylation of the MGMT-B and the SFRP2 gene promoter regions might be involved in IBD development. Methylation of MGMT-B and SFRP2 in IBD patients may provide a method for early detection of IBD-associated neoplasia.

Zhang X, Song YF, Lu HN, et al.
Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas.
World J Gastroenterol. 2015; 21(9):2629-37 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate GATA5, SFRP2, and ITGA4 methylation in plasma DNA as noninvasive biomarkers for colorectal cancer (CRC) or adenomas.
METHODS: There were 57 CRC patients, 30 adenomas patients, and 47 control patients enrolled in this study. Methylation-specific polymerase chain reaction was used to determine the promoter methylation status of GATA5, SFRP2, and ITGA4 genes in plasma DNA, and their association with clinical outcome in CRC. The predictive ability of GATA5, SFRP2, and ITGA4 methylation, individually or in combination, to detect CRC or adenomas was further analyzed.
RESULTS: Hypermethylated GATA5 was detected in plasma in 61.4% (35/57) of CRC cases, 43.33% (13/30) of adenoma cases, and 21.28% (10/47) of control cases. The hypermethylation of SFRP2 was detected in 54.39% (31/57), 40.00% (12/30), and 27.66% (13/47) in plasma samples from CRC, adenomas, and controls, respectively. ITGA4 methylation was detected in 36.84% (21/57) of plasma samples of CRC patients and in 30.00% (9/30) of plasma samples from patients with colorectal adenomas, and the specificity of this individual biomarker was 80.85% (9/47). Moreover, GATA5 methylation in the plasma was significantly correlated with larger tumor size (P = 0.019), differentiation status (P = 0.038), TNM stage (P = 0.008), and lymph node metastasis (P = 0.008). SFRP2 and ITGA4 methylation in plasma significantly correlated with differentiation status (SFRP2, P = 0.012; ITGA4, P = 0.007), TNM stage (SFRP2, P = 0.034; ITGA4, P = 0.021), and lymph node metastasis (SFRP2, P = 0.034; ITGA4, P = 0.021). From the perspective of predictive power and cost-performance, using GATA5 and SFRP2 together as methylation markers seemed the most favorable predictor for CRC (OR = 8.06; 95%CI: 2.54-25.5; P < 0.01) and adenomas (OR = 3.35; 95%CI: 1.29-8.71; P = 0.012).
CONCLUSION: A combination of GATA5 and SFRP2 methylation could be promising as a marker for the detection and diagnosis of CRC and adenomas.

Taskesen E, Staal FJ, Reinders MJ
An integrated approach of gene expression and DNA-methylation profiles of WNT signaling genes uncovers novel prognostic markers in acute myeloid leukemia.
BMC Bioinformatics. 2015; 16 Suppl 4:S4 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The wingless-Int (WNT) pathway has an essential role in cell regulation of hematopoietic stem cells (HSC). For Acute Myeloid Leukemia (AML), the malignant counterpart of HSC, currently only a selective number of genes of the WNT pathway are analyzed by using either gene expression or DNA-methylation profiles for the identification of prognostic markers and potential candidate targets for drug therapy. It is known that mRNA expression is controlled by DNA-methylation and that specific patterns can infer the ability to differentiate biological differences, thus a combined analysis using all WNT annotated genes could provide more insight in the WNT signaling.
APPROACH: We created a computational approach that integrates gene expression and DNA promoter methylation profiles. The approach represents the continuous gene expression and promoter methylation profiles with nine discrete mutually exclusive scenarios. The scenario representation allows for a refinement of patient groups by a more powerful statistical analysis, and the construction of a co-expression network. We focused on 268 WNT annotated signaling genes that are derived from the molecular signature database.
RESULTS: Using the scenarios we identified seven prognostic markers for overall survival and event-free survival. Three genes are novel prognostic markers; two with favorable outcome (PSMD2, PPARD) and one with unfavorable outcome (XPNPEP). The remaining four genes (LEF1, SFRP2, RUNX1, and AXIN2) were previously identified but we could refine the patient groups. Three AML risk groups were further analyzed and the co-expression network showed that only the good risk group harbors frequent promoter hypermethylation and significantly correlated interactions with proteasome family members.
CONCLUSION: Our results provide novel insights in WNT signaling in AML, we discovered new and previously identified prognostic markers and a refinement of the patient groups.

Vatandoost N, Ghanbari J, Mojaver M, et al.
Early detection of colorectal cancer: from conventional methods to novel biomarkers.
J Cancer Res Clin Oncol. 2016; 142(2):341-51 [PubMed] Related Publications
PURPOSE: Colorectal cancer (CRC) is one of the major health problems worldwide and is often diagnosed at late stage. There is growing body of evidence in early detection of this disease with novel screening modalities to reduce compliance and increase specificity of available methods. The aim of current review is to give an overview on currently available screening methods (e.g., fecal occult blood testing (FOBT), flexible sigmoidoscopy, and colonoscopy), with their own merits and disadvantages, and new genetic/epigenetic/protein markers, as novel screening modalities.
RESULT: There are several serum and fecal biomarkers that can predict CRC and polyps. Overall sensitivities for detection by fecal DNA markers ranged from 53 to 87%, while a panel of serum protein markers provides a sensitivity/specificity up to 85% for CRC. In particular, DNA methylation markers (e.g., SEPT9, SFRP2, and ALX4), circulating microRNAs (e.g., microRNA21), SNPs in microRNAs binding site (e.g., rs4596 located within a target region of the predicted miR-518a-5p and miR-527), protein markers (e.g., carcinoembryonic antigen, N-methyltransferase), or microsatellites instability in tumors with deficient mismatch repair of some genes are among the most interesting and promising biomarkers.
CONCLUSION: Increasing evidence supports the use of combined fecal and serum biomarkers with sigmoidoscopy and colonoscopy screening in order to maximize the benefits and reduce the number of false-positive tests and patients undergoing invasive methods, which in turn could overcome the limitations of the current screening methods for early detection of CRC and adenomas.

Li Z, Guo X, Wu Y, et al.
Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients.
Breast Cancer Res Treat. 2015; 149(3):767-79 [PubMed] Related Publications
Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer.

Niskakoski A, Kaur S, Staff S, et al.
Epigenetic analysis of sporadic and Lynch-associated ovarian cancers reveals histology-specific patterns of DNA methylation.
Epigenetics. 2014; 9(12):1577-87 [PubMed] Free Access to Full Article Related Publications
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to epigenetic inactivation of growth regulatory genes. Gene candidates for epigenetic regulation were identified from the literature and by expression profiling of ovarian and endometrial cancer cell lines treated with demethylating agents. Thirteen genes were chosen for methylation-specific multiplex ligation-dependent probe amplification assays on 104 (85 sporadic and 19 Lynch syndrome-associated) ovarian carcinomas. Increased methylation (i.e., hypermethylation) of variable degree was characteristic of ovarian carcinomas relative to the corresponding normal tissues, and hypermethylation was consistently more prominent in non-serous than serous tumors for individual genes and gene sets investigated. Lynch syndrome-associated clear cell carcinomas showed the highest frequencies of hypermethylation. Among endometrioid ovarian carcinomas, lower levels of promoter methylation of RSK4, SPARC, and HOXA9 were significantly associated with higher tumor grade; thus, the methylation patterns showed a shift to the direction of high-grade serous tumors. In conclusion, we provide evidence of a frequent epigenetic inactivation of RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, SFRP5, OPCML, and MIR34B in the development of non-serous ovarian carcinomas of Lynch and sporadic origin, as compared to serous tumors. Our findings shed light on the role of epigenetic mechanisms in ovarian tumorigenesis and identify potential targets for translational applications.

Schütze DM, Kooter JM, Wilting SM, et al.
Longitudinal assessment of DNA methylation changes during HPVE6E7-induced immortalization of primary keratinocytes.
Epigenetics. 2015; 10(1):73-81 [PubMed] Free Access to Full Article Related Publications
High-risk human papillomavirus (hrHPV)-induced immortalization and malignant transformation are accompanied by DNA methylation of host genes. To determine when methylation is established during cell immortalization and whether it is hrHPV-type dependent, DNA methylation was studied in a large panel of HPVE6E7-immortalized keratinocyte cell lines. These cell lines displayed different growth behaviors, i.e., continuous growth versus crisis period prior to immortalization, reflecting differential immortalization capacities of the 7 HPV-types (16/18/31/33/45/66/70) studied. In this study, cells were monitored for hypermethylation of 14 host genes (APC, CADM1, CYGB, FAM19A4, hTERT, mir124-1, mir124-2, mir124-3, MAL, PHACTR3, PRDM14, RASSF1A, ROBO3, and SFRP2) at 4 different stages during immortalization. A significant increase in overall methylation levels was seen with progression through each stage of immortalization. At stage 1 (pre-immortalization), a significant increase in methylation of hTERT, mir124-2, and PRDM14 was already apparent, which continued over time. Methylation of ROBO3 was significantly increased at stage 2 (early immortal), followed by CYGB (stage 3) and FAM19A4, MAL, PHACTR3, and SFRP2 (stage 4). Methylation patterns were mostly growth behavior independent. Yet, hTERT methylation levels were significantly increased in cells that just escaped from crisis. Bisulfite sequencing of hTERT confirmed increased methylation in immortal cells compared to controls, with the transcription core and known repressor sites remaining largely unmethylated. In conclusion, HPV-induced immortalization is associated with a sequential and progressive increase in promoter methylation of a subset of genes, which is mostly independent of the viral immortalization capacity.

Paluszczak J, Sarbak J, Kostrzewska-Poczekaj M, et al.
The negative regulators of Wnt pathway-DACH1, DKK1, and WIF1 are methylated in oral and oropharyngeal cancer and WIF1 methylation predicts shorter survival.
Tumour Biol. 2015; 36(4):2855-61 [PubMed] Free Access to Full Article Related Publications
The deregulation of Wnt signaling has recently emerged as one of the drivers of head and neck cancers. This is frequently related to the methylation of several antagonists of this pathway. This study aimed at the assessment of the profile of methylation of Wnt pathway antagonists and the determination of the prognostic value of the methylation of selected genes in oral carcinomas. The methylation of DACH1, DKK1, LKB1, PPP2R2B, RUNX3, SFRP2, and WIF-1 was analyzed in 16 oral squamous cell carcinoma cell lines using the methylation-specific polymerase chain reaction. The methylation of selected genes was further analyzed in tumor sections from 43 primary oral carcinoma patients. The analysis of oral carcinoma cell lines showed very frequent methylation of SFRP2 and WIF-1 and also a less frequent methylation of DACH1 and DKK1. On the other hand, RUNX3 was methylated only in one cell line, while LKB1 and PPP2R2B were not methylated in any of the cell lines. The biallelic methylation of DKK1 correlated with the low level of expression of this gene. Further evaluation of the methylation of DACH1, DKK1, and WIF1 in a clinical patient group confirmed the frequent methylation of WIF1 and intermediate or low frequency of methylation of DACH1 or DKK1, respectively. Importantly, the methylation of WIF-1 correlated with shorter survival in oral cancer patients. Overall, the methylation of the antagonists of Wnt pathway is frequently detected in oral squamous cell carcinomas. The methylation of WIF1 may be considered a prognostic marker in oral cancers.

Song X, Zhong H, Zhou J, et al.
Association between polymorphisms of microRNA-binding sites in integrin genes and gastric cancer in Chinese Han population.
Tumour Biol. 2015; 36(4):2785-92 [PubMed] Related Publications
Highly elevated expression of integrin has been observed in a variety of malignant tumors. Single nucleotide polymorphisms (SNPs) in the microRNA-binding sites in the 3' UTR region of target genes may result in the level change of target gene expression and subsequently susceptible to diseases, including cancer. In this study, we aimed to investigate the association between polymorphisms of microRNA-binding sites of integrin genes and gastric cancer (GC) in Chinese Han population. Five SNPs of the microRNA-binding sites in the 3' UTR region of integrin genes (rs1062484 C/T in ITGA3, rs17664 A/G in ITGA6, rs3809865 A/T in ITGB3, rs743554 C/T in ITGB4, and rs2675 A/C in ITGB5) were studied using high resolution melting (HRM) analysis in 1000 GC patients and 1000 unrelated controls. The polymorphism of SNP rs2675 was associated with susceptibility of GC [odds ratio (OR) = 0.52, 95% confidence interval (CI) = 0.28-0.97, P = 0.028]. In addition, genotype AA of rs2675 and genotype GG of rs17664 were associated with a lower chance of GC at stage 1b [OR = 0.39 (0.18-0.85), P = 0.009; and OR = 0.37 (0.17-0.78), P = 0.004, respectively]; also, the frequency of allele G of rs17664 was associated with a lower chance of stage 1b tumor [OR = 0.50 (0.26-0.95), P = 0.021]. Furthermore, the frequency of genotype AA and allele A of rs3809865 were associated with a higher risk of stage 4 GC [OR = 1.85 (1.11-3.09), P = 0.012; and OR = 1.52 (0.99-2.33), P = 0.043, respectively]. For rs17664, GG genotype and allele G appeared to be associated with a higher risk with GC with lymphatic metastasis 3b [OR = 1.76 (1.00-3.11), P = 0.036; and OR = 1.64 (0.98-2.75), P = 0.048, respectively]. Our data suggest that polymorphisms of the microRNA-binding sites in the 3' UTR region of integrin are associated with GC susceptibility (rs2675), tumor stage (rs2675, rs17664, and rs3809865), and lymphatic metastasis (rs17664) in Chinese Han population.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SFRP2, Cancer Genetics Web: http://www.cancer-genetics.org/SFRP2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999