Gene Summary

Gene:SOX17; SRY-box 17
Aliases: VUR3
Summary:This gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors involved in the regulation of embryonic development and in the determination of the cell fate. The encoded protein may act as a transcriptional regulator after forming a protein complex with other proteins. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcription factor SOX-17
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (52)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Sulfites
  • Wnt Proteins
  • Gene Expression Profiling
  • Survival Rate
  • Case-Control Studies
  • Cell Proliferation
  • Western Blotting
  • Messenger RNA
  • Membrane Proteins
  • Chromosome 8
  • Young Adult
  • Signal Transduction
  • Cancer Screening
  • Oligonucleotide Array Sequence Analysis
  • DNA Methylation
  • CpG Islands
  • Transition Temperature
  • Tumor Suppressor Proteins
  • SOXF Transcription Factors
  • Cancer Gene Expression Regulation
  • Immunohistochemistry
  • Breast Cancer
  • Xenopus Proteins
  • Promoter Regions
  • Testicular Cancer
  • Sensitivity and Specificity
  • Epigenetics
  • Wnt Signaling Pathway
  • Neoplasm Proteins
  • Down-Regulation
  • Esophageal Cancer
  • Vascular Endothelial Growth Factor Receptor-2
  • MicroRNAs
  • DNA-Binding Proteins
  • beta Catenin
  • Disease Progression
  • Up-Regulation
  • Biomarkers, Tumor
  • Transcription Factors
  • Cancer DNA
  • Polymerase Chain Reaction
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SOX17 (cancer-related)

Li W, Wu D, Niu Z, et al.
5-Azacytidine suppresses EC9706 cell proliferation and metastasis by upregulating the expression of SOX17 and CDH1.
Int J Mol Med. 2016; 38(4):1047-54 [PubMed] Free Access to Full Article Related Publications
5-Azacytidine is a well-known anticancer drug that is clinically used in the treatment of breast cancer, melanoma and colon cancer. It has been reported that 5-azacytidine suppresses the biological behavior of esophageal cancer cells. However, corresponding mechanisms remain unclear. In this study, using Transwell invasion and cell proliferation assays, we demonstrated that 5-azacytidine significantly inhibited the metastasis and proliferation of EC9706 cells, and upregulated the expression of cadherin 1 (CDH1) and SRY-box containing gene 17 (SOX17). Moreover, the inhibition of the metastasis of the 5-azacytidine-treated EC9706 cells was impaired following transfection with siRNA targeting CDH1 (CDH1 siRNA), and the inhibition of cell proliferation was attenuated following the downregulation of SOX17 by siRNA targeting SOX17 (SOX17 siRNA). Furthermore, 5-azacytidine remarkably reduced the CDH1 and SOX17 promoter methylation levels, suggesting that 5-azacytidine upregulates the expression of SOX17 and CDH1 by inhibiting the methylation of the SOX17 and CDH1 promoter. The findings of our study confirm that 5-azacytidine suppresses the proliferation and metastasis of EC9706 esophageal cancer cells by upregulating the expression of CDH1 and SOX17. The expression levels of CDH1 and SOX17 negatively correlate with the promoter methylation levels. CDH1 and SOX17 are potential indicators of the clinical application of 5-azacytidine.

Parisi C, Mastoraki S, Markou A, et al.
Development and validation of a multiplex methylation specific PCR-coupled liquid bead array for liquid biopsy analysis.
Clin Chim Acta. 2016; 461:156-64 [PubMed] Related Publications
BACKGROUND: Liquid biopsy is based on minimally invasive blood tests and has the potential to characterize the evolution of a solid tumor in real time, by extracting molecular information from circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Epigenetic silencing of tumor and metastasis suppressor genes plays a key role in survival and metastatic potential of cancer cells. Our group was the first to show the presence of epigenetic alterations in CTCs.
METHODS: We present the development and analytical validation of a highly specific and sensitive Multiplex Methylation Specific PCR-coupled liquid bead array (MMSPA) for the simultaneous detection of the methylation status of three tumor and metastasis suppressor genes (CST6, SOX17 and BRMS1) in liquid biopsy material (CTCs, corresponding ctDNA) and paired primary breast tumors.
RESULTS: In the EpCAM-positive CTCs fraction we observed methylation of: a) CST6, in 11/30(37%) and 11/30(37%), b) BRMS1 in 8/30(27%) and 11/30(37%) c) SOX17 in 8/30(27%) and 13/30(43%) early breast cancer patients and patients with verified metastasis respectively. In ctDNA we observed methylation of: a) CST6, in 5/30(17%) and 10/31(32%), b) BRMS1 in 8/30 (27%) and 8/31 (26%) c) SOX17 in 5/30(17%) and 13/31(42%) early breast cancer patients and patients with verified metastasis respectively.
CONCLUSIONS: Our results indicate a high cancerous load at the epigenetic level in EpCAM-positive CTCs fractions and corresponding ctDNA in breast cancer. The main principle of the developed methodology has the potential to be extended in a large number of gene-targets and be applied in many types of cancer.

Li Z, Guo X, Tang L, et al.
Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing.
Tumour Biol. 2016; 37(10):13111-13119 [PubMed] Related Publications
Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

Ma K, Cao B, Guo M
The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma.
Clin Epigenetics. 2016; 8:43 [PubMed] Free Access to Full Article Related Publications
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.

Balgkouranidou I, Chimonidou M, Milaki G, et al.
SOX17 promoter methylation in plasma circulating tumor DNA of patients with non-small cell lung cancer.
Clin Chem Lab Med. 2016; 54(8):1385-93 [PubMed] Related Publications
BACKGROUND: SOX17 belongs to the high-mobility group-box transcription factor superfamily and down-regulates the Wnt pathway. The aim of our study was to evaluate the prognostic significance of SOX17 promoter methylation in circulating tumor DNA (ctDNA) in plasma of non-small cell lung cancer (NSCLC) patients.
METHODS: We examined the methylation status of SOX17 promoter in 57 operable NSCLC primary tumors and paired adjacent non-cancerous tissues and in ctDNA isolated from 48 corresponding plasma samples as well as in plasma from 74 patients with advanced NSCLC and 49 healthy individuals. SOX17 promoter methylation was examined by Methylation Specific PCR (MSP).
RESULTS: In operable NSCLC, SOX17 promoter was fully methylated in primary tumors (57/57, 100%), and in corresponding ctDNA (27/48, 56.2%) while it was detected in only 1/49 (2.0%) healthy individuals. In advanced NSCLC, SOX17 promoter was methylated in ctDNA in 27/74 (36.4%) patients and OS was significantly different in favor of patients with non-methylated SOX17 promoter (p=0.012). Multivariate analysis revealed that SOX17 promoter methylation in ctDNA was an independent prognostic factor associated with OS in patients with advanced but not operable NSCLC.
CONCLUSIONS: Our results show that SOX17 promoter is highly methylated in primary tumors and in corresponding plasma samples both in operable and advanced NSCLC. In the advanced setting, SOX17 promoter methylation in plasma ctDNA has a statistical significant influence on NSCLC patient's survival time. Detection of SOX17 promoter methylation in plasma provides prognostic information and merits to be further evaluated as a circulating tumor biomarker in patients with operable and advanced NSCLC.

Johansson E, Andersson L, Örnros J, et al.
Revising the embryonic origin of thyroid C cells in mice and humans.
Development. 2015; 142(20):3519-28 [PubMed] Free Access to Full Article Related Publications
Current understanding infers a neural crest origin of thyroid C cells, the major source of calcitonin in mammals and ancestors to neuroendocrine thyroid tumors. The concept is primarily based on investigations in quail-chick chimeras involving fate mapping of neural crest cells to the ultimobranchial glands that regulate Ca(2+) homeostasis in birds, reptiles, amphibians and fishes, but whether mammalian C cell development involves a homologous ontogenetic trajectory has not been experimentally verified. With lineage tracing, we now provide direct evidence that Sox17+ anterior endoderm is the only source of differentiated C cells and their progenitors in mice. Like many gut endoderm derivatives, embryonic C cells were found to coexpress pioneer factors forkhead box (Fox) a1 and Foxa2 before neuroendocrine differentiation takes place. In the ultimobranchial body epithelium emerging from pharyngeal pouch endoderm in early organogenesis, differential Foxa1/Foxa2 expression distinguished two spatially separated pools of C cell precursors with different growth properties. A similar expression pattern was recapitulated in medullary thyroid carcinoma cells in vivo, consistent with a growth-promoting role of Foxa1. In contrast to embryonic precursor cells, C cell-derived tumor cells invading the stromal compartment downregulated Foxa2, foregoing epithelial-to-mesenchymal transition designated by loss of E-cadherin; both Foxa2 and E-cadherin were re-expressed at metastatic sites. These findings revise mammalian C cell ontogeny, expand the neuroendocrine repertoire of endoderm and redefine the boundaries of neural crest diversification. The data further underpin distinct functions of Foxa1 and Foxa2 in both embryonic and tumor development.

Majchrzak-Celińska A, Słocińska M, Barciszewska AM, et al.
Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival.
J Appl Genet. 2016; 57(2):189-97 [PubMed] Free Access to Full Article Related Publications
The deregulation of Wnt signaling is observed in various cancers, including gliomas, and might be related to the methylation of the genes encoding antagonists of this signaling pathway. The aim of the study was to assess the methylation status of the promoter regions of six Wnt negative regulators and to determine their prognostic value in clinical samples of gliomas of different grades. The methylation of SFRP1, SFRP2, PPP2R2B, DKK1, SOX17, and DACH1 was analyzed in 64 glioma samples using methylation-specific polymerase chain reaction (MSP). The results were analyzed in correlation with clinicopathological data. Promoter methylation in at least one of the analyzed genes was found in 81.3 % of the tumors. All benign tumors [grade I according to the World Health Organization (WHO) classification] lacked the methylation of the studied genes, whereas grade II, III, and IV tumors were, in most cases, methylation-positive. The methylation index correlated with the patient's age. The most frequently methylated genes were SFRP1 and SFRP2 (73.4 % and 46.9 %, respectively), followed by SOX17 (20.3 %) and PPP2R2B (10.9 %); DKK1 and DACH1 were basically unmethylated (1.6 %). SFRP1 methylation negatively correlated with patients' survival time, and was significantly more frequent in older patients and those with higher grade tumors. Overall, the results of this study indicate that aberrant promoter methylation of Wnt pathway antagonists is common in gliomas, which may be the possible cause of up-regulation of this signaling pathway often observed in these tumors. Moreover, SFRP1 promoter methylation can be regarded as a potential indicator of glioma patients' survival.

Yao L, Shen H, Laird PW, et al.
Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.
Genome Biol. 2015; 16:105 [PubMed] Free Access to Full Article Related Publications
Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes.

Fu DY, Tan HS, Wei JL, et al.
Decreased expression of SOX17 is associated with tumor progression and poor prognosis in breast cancer.
Tumour Biol. 2015; 36(10):8025-34 [PubMed] Related Publications
The SOX17 (SRY-related HMG-box) transcription factor is involved in a variety of biological processes and is related to the tumorigenesis and progression of multiple tumors. However, the clinical application of SOX17 for breast cancer prognosis is currently limited. The aim of this study was to investigate the clinicopathologic and prognostic significance of SOX17 expression in human breast cancer. qPCR and western blot assays were performed to measure the expression of SOX17 in breast cancer cell lines and 30 matched pairs of breast cancer and corresponding noncancerous tissues. A SOX17 overexpression cell model was used to examine changes in cell growth in vitro. Immunohistochemical analyses were performed to retrospectively examine the prognostic impact of SOX17 expression in 187 additional breast cancer patients. Our results showed that SOX17 expression was decreased at both the messenger RNA (mRNA) and protein levels in the breast cancer cell lines and tissues, and that SOX17 overexpression could strongly suppress cell growth in vitro. Furthermore, the lack of SOX17 protein expression was strongly correlated with higher tumor grade (P = 0.002), lymph node metastasis (P < 0.001), and tumor node metastasis (TNM) stage (P = 0.001) and had poorer disease-free survival (DFS) and overall survival (OS) compared to normal SOX17 expression (P = 0.002 and 0.001, respectively). Univariate and multivariate analyses indicated that lower SOX17 expression was an independent prognostic factor for DFS (P = 0.007; HR = 2.854; 95 % CI 1.326-6.147) and OS (P = 0.005; HR = 5.035; 95 % CI 1.648-15.385) for breast cancer. Our findings indicate that SOX17 expression is a useful prognostic biomarker for breast cancer.

Du L, Qian X, Dai C, et al.
Screening the molecular targets of ovarian cancer based on bioinformatics analysis.
Tumori. 2015 Jul-Aug; 101(4):384-9 [PubMed] Related Publications
AIMS AND BACKGROUND: Ovarian cancer (OC) is the most lethal gynecologic malignancy. This study aims to explore the molecular mechanisms of OC and identify potential molecular targets for OC treatment.
METHODS AND STUDY DESIGN: Microarray gene expression data (GSE14407) including 12 normal ovarian surface epithelia samples and 12 OC epithelia samples were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) between 2 kinds of ovarian tissue were identified by using limma package in R language (|log2 fold change| gt;1 and false discovery rate [FDR] lt;0.05). Protein-protein interactions (PPIs) and known OC-related genes were screened from COXPRESdb and GenBank database, respectively. Furthermore, PPI network of top 10 upregulated DEGs and top 10 downregulated DEGs was constructed and visualized through Cytoscape software. Finally, for the genes involved in PPI network, functional enrichment analysis was performed by using DAVID (FDR lt;0.05).
RESULTS: In total, 1136 DEGs were identified, including 544 downregulated and 592 upregulated DEGs. Then, PPI network was constructed, and DEGs CDKN2A, MUC1, OGN, ZIC1, SOX17, and TFAP2A interacted with known OC-related genes CDK4, EGFR/JUN, SRC, CLI1, CTNNB1, and TP53, respectively. Moreover, functions about oxygen transport and embryonic development were enriched by the genes involved in the network of downregulated DEGs.
CONCLUSIONS: We propose that 4 DEGs (OGN, ZIC1, SOX17, and TFAP2A) and 2 functions (oxygen transport and embryonic development) might play a role in the development of OC. These 4 DEGs and known OC-related genes might serve as therapeutic targets for OC. Further studies are required to validate these predictions.

Fortes FP, Kuasne H, Marchi FA, et al.
DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations.
Braz J Med Biol Res. 2015; 48(7):610-5 [PubMed] Free Access to Full Article Related Publications
Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53 mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.

Oudijk L, Neuhofer CM, Lichtenauer UD, et al.
Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations.
Eur J Endocrinol. 2015; 173(1):43-52 [PubMed] Related Publications
OBJECTIVE: Pheochromocytomas (PCCs) are neuroendocrine tumors that occur in the adrenal medulla, whereas paragangliomas (PGLs) arise from paraganglia in the head, neck, thorax, or abdomen. In a variety of tumors, cancer cells with stem cell-like properties seem to form the basis of tumor initiation because of their ability to self-renew and proliferate. Specifically targeting this small cell population may lay the foundation for more effective therapeutic approaches. In the present study, we intended to identify stem cells in PCCs/PGLs.
DESIGN: We examined the immunohistochemical expression of 11 stem cell markers (SOX2, LIN28, NGFR, THY1, PREF1, SOX17, NESTIN, CD117, OCT3/4, NANOG, and CD133) on tissue microarrays containing 208 PCCs/PGLs with different genetic backgrounds from five European centers.
RESULTS: SOX2, LIN28, NGFR, and THY1 were expressed in more than 10% of tumors, and PREF1, SOX17, NESTIN, and CD117 were expressed in <10% of the samples. OCT3/4, NANOG, and CD133 were not detectable at all. Double staining for chromogranin A/SOX2 and S100/SOX2 demonstrated SOX2 immunopositivity in both tumor and adjacent sustentacular cells. The expression of SOX2, SOX17, NGFR, LIN28, PREF1, and THY1 was significantly associated with mutations in one of the succinate dehydrogenase (SDH) genes. In addition, NGFR expression was significantly correlated with metastatic disease.
CONCLUSION: Immunohistochemical expression of stem cell markers was found in a subset of PCCs/PGLs. Further studies are required to validate whether some stem cell-associated markers, such as SOX2, could serve as targets for therapeutic approaches and whether NGFR expression could be utilized as a predictor of malignancy.

Li Y, Lv Z, He G, et al.
The SOX17/miR-371-5p/SOX2 axis inhibits EMT, stem cell properties and metastasis in colorectal cancer.
Oncotarget. 2015; 6(11):9099-112 [PubMed] Free Access to Full Article Related Publications
Cancer stem cells (CSCs) and EMT-type cells, which share molecular characteristics with CSCs, have been believed to play critical roles in tumor metastasis. Although much progress has been garnered in elucidating the molecular pathways that trigger EMT, stemness and metastasis, a number of key mechanistic gaps remain elusive. In the study, miR-371-5p was obviously down-regulated in primary CRC tissues compared with matched adjacent normal mucosa and correlated significantly with differentiation, tumor size, lymphatic and liver metastases. MiR-371-5p could attenuate proliferation, invasion in vitro and metastasis in vivo in CRC cells. It also suppressed EMT by regulating Wnt/β-catenin signaling and strongly decreased the CRC stemness phenotypes. Moreover, demethylation of SOX17 induced miR-371-5p expression and consequently suppressed its direct target SOX2 in CRC cells. MiR-371-5p was necessary for SOX17 mediated cancer-related traits and SOX2 was a functional target of miR-371-5p. A positive relationship between SOX17 and miR-371-5p expression and a negative one between miR-371-5p and SOX2 expression were observed in CRC cell lines and tissues. In conclusion, we identified miR-371-5p as an important "oncosuppressor" in CRC progression and elucidated a novel mechanism of the SOX17/miR-371-5p/SOX2 axis in the regulation of EMT, stemness and metastasis, which may be a potential therapeutic target.

Fu D, Ren C, Tan H, et al.
Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer.
Medicine (Baltimore). 2015; 94(11):e637 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation that leads to the inactivation of tumor suppressor genes is known to play an important role in the development and progression of breast cancer. Methylation status of cancer-related genes is considered to be a promising biomarker for the early diagnosis and prognosis of tumors. This study investigated the methylation status of the Sox17 gene in breast cancer tissue and its corresponding plasma DNA to evaluate the association of methylation levels with clinicopathological parameters and prognosis.The methylation status of the Sox17 gene promoter was evaluated with methylation-specific polymerase chain reaction (MSP) in 155 paired breast cancer tissue and plasma samples and in 60 paired normal breast tissue and plasma samples. Association of Sox17 methylation status with clinicopathological parameters was analyzed by χ tests. Overall and disease-free survival (DFS) curves were calculated using Kaplan-Meier analysis, and the differences between curves were analyzed by log-rank tests.The frequency of Sox17 gene methylation was 72.9% (113/155) in breast cancer tissues and 58.1% (90/155) in plasma DNA. Sox17 gene methylation was not found in normal breast tissues or in their paired plasma DNA. There was a significant correlation of Sox17 methylation between corresponding tumor tissues and paired plasma DNA (r = 0.688, P < 0.001). Aberrant Sox17 methylation in cancer tissues and in plasma DNA was significantly associated with the tumor node metastasis stage (P = 0.035 and P = 0.001, respectively) and with lymph node metastasis (P < 0.001 and P = 0.001, respectively). Kaplan-Meier survival curves showed that aberrant Sox17 promoter methylation in cancer tissues and plasma DNA was associated with poor DFS (P < 0.005) and overall survival (OS) (P < 0.005). Multivariate analysis showed that Sox17 methylation in plasma DNA was an independent prognostic factor in breast cancer for both DFS (P = 0.020; hazard ratio [HR] = 2.142; 95% confidence interval [CI]: 1.128-4.067) and for OS (P = 0.001; HR = 4.737; 95% CI: 2.088-10.747).Sox17 gene promoter methylation may play an important role in breast cancer progression and could be used as a prognostic biomarker to identify patients at risk of developing metastasis or recurrence after mastectomy.

Mastoraki S, Chimonidou M, Dimitrakopoulos L, et al.
A rapid and accurate closed-tube Methylation-Sensitive High Resolution Melting Analysis assay for the semi-quantitative determination of SOX17 promoter methylation in clinical samples.
Clin Chim Acta. 2015; 444:303-9 [PubMed] Related Publications
INTRODUCTION: SOX17 promoter methylation can provide important prognostic information in cancer. We developed a novel semi-quantitative MS-HRMA assay for SOX17 promoter methylation.
METHODS: The assay was optimized by using synthetic control samples and validated by analyzing 165 clinical samples: a) 107 formalin fixed paraffin embedded (FFPEs) samples of patients with early breast cancer, b) 27 FFPE samples of patients with metastatic breast cancer, c) 15 reduction mammoplasty specimens obtained from healthy women and d) 16 genomic DNA samples isolated from healthy blood donors. Comparison with real time MSP was also performed.
RESULTS: The assay is highly specific and sensitive and provides a semi-quantitative estimation of SOX17 promoter methylation. SOX17 promoter was found methylated in 96/134 (71.6%) breast cancer samples, while none of the 31 non-cancerous samples tested was positive (0%). SOX17 promoter methylation levels varied significantly among samples. When 165 clinical samples were analyzed both by MS-HRMA and real time MSP results were significantly comparable (concordance: 146/165, 88.5%).
CONCLUSIONS: This novel MS-HRMA assay for SOX17 promoter methylation is closed-tube, highly sensitive, specific, cost-effective, rapid and easy-to-perform. It gives comparable results to Real-Time MSP in less time, while it offers the advantage of additionally providing an estimation of SOX17 promoter methylation levels.

Li Z, Guo X, Wu Y, et al.
Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients.
Breast Cancer Res Treat. 2015; 149(3):767-79 [PubMed] Related Publications
Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer.

Weissferdt A, Rodriguez-Canales J, Liu H, et al.
Primary mediastinal seminomas: a comprehensive immunohistochemical study with a focus on novel markers.
Hum Pathol. 2015; 46(3):376-83 [PubMed] Related Publications
Primary mediastinal seminomas are unusual tumors that can present in a pure form or as part of a mixed germ cell tumor. Contrary to testicular seminomas, little is known about the expression of novel immunohistochemical markers in mediastinal seminomas. This study investigates the immunohistochemical features of these tumors with a focus on novel markers. Thirty-two cases of primary mediastinal seminomas were reviewed; and representative whole-tissue sections were selected for immunohistochemical studies using antibodies directed against high molecular weight cytokeratin 5/6 (CK5/6), low molecular weight cytokeratin (CAM5.2), octamer-binding transcription factor 3/4 (OCT3/4), spalt-like transcription factor 4 (SALL4), GATA binding protein 3 (GATA-3), sry-related HMG box 2 (SOX2), SOX17, human T cell leukemia/lymphoma 1 (TCL1), glypican 3, melanoma associated antigen C2 (MAGEC2), and paired box gene 8 (Pax8). The percentage of positive tumor cells as well as the intensity of staining was evaluated and scored. Thirty-one cases (97%) expressed SOX17, whereas 29 cases (91%) were positive for OCT3/4 and SALL4, respectively. Twenty-eight cases (88%) expressed MAGEC2 and CAM5.2, respectively. Two cases (6%) were positive for Pax8, and a single case (3%) was positive for TCL1. None of the cases stained with CK5/6, GATA-3, SOX2, or glypican 3. Similar to testicular seminomas, mediastinal seminomas show consistent expression of OCT3/4, SALL4, SOX17, and MAGEC2 and are negative for SOX2, glypican 3, GATA-3, and CK5/6. Pax8 positivity is only inconsistently identified in mediastinal seminomas. Contrary to their testicular counterparts, mediastinal tumors show diffuse expression of low-molecular-weight cytokeratin in up to 90% of cases and are commonly negative for TCL1. Although there is some immunohistochemical overlap between testicular and mediastinal seminomas, considerable differences also exist and should be acknowledged when dealing with these tumors.

Irie N, Weinberger L, Tang WW, et al.
SOX17 is a critical specifier of human primordial germ cell fate.
Cell. 2015; 160(1-2):253-68 [PubMed] Free Access to Full Article Related Publications
Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information.

Silva AL, Dawson SN, Arends MJ, et al.
Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists.
BMC Cancer. 2014; 14:891 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is emerging evidence that Wnt pathway activity may increase during the progression from colorectal adenoma to carcinoma and that this increase is potentially an important step towards the invasive stage. Here, we investigated whether epigenetic silencing of Wnt antagonists is the biological driver for this increased Wnt activity in human tissues and how these methylation changes correlate with MSI (Microsatelite Instability) and CIMP (CpG Island Methylator Phenotype) statuses as well as known mutations in genes driving colorectal neoplasia.
METHODS: We conducted a systematic analysis by pyrosequencing, to determine the promoter methylation of CpG islands associated with 17 Wnt signaling component genes. Methylation levels were correlated with MSI and CIMP statuses and known mutations within the APC, BRAF and KRAS genes in 264 matched samples representing the progression from normal to pre-invasive adenoma to colorectal carcinoma.
RESULTS: We discovered widespread hypermethylation of the Wnt antagonists SFRP1, SFRP2, SFRP5, DKK2, WIF1 and SOX17 in the transition from normal to adenoma with only the Wnt antagonists SFRP1, SFRP2, DKK2 and WIF1 showing further significant increase in methylation from adenoma to carcinoma. We show this to be accompanied by loss of expression of these Wnt antagonists, and by an increase in nuclear Wnt pathway activity. Mixed effects models revealed that mutations in APC, BRAF and KRAS occur at the transition from normal to adenoma stages whilst the hypermethylation of the Wnt antagonists continued to accumulate during the transitions from adenoma to carcinoma stages.
CONCLUSION: Our study provides strong evidence for a correlation between progressive hypermethylation and silencing of several Wnt antagonists with stepping-up in Wnt pathway activity beyond the APC loss associated tumour-initiating Wnt signalling levels.

Lu J, Zhang G, Cheng Y, et al.
Reduced expression of SRY-box containing gene 17 correlates with an unfavorable melanoma patient survival.
Oncol Rep. 2014; 32(6):2571-9 [PubMed] Related Publications
SRY-box containing gene 17 (Sox17), a transcription factor, is considered as an antagonist to canonical Wnt/β‑catenin signaling in several types of malignant tumors. As the influence of Sox17 in the pathogenesis of human melanoma is still unknown, the investigation of Sox17 expression in melanoma is warranted and its prognostic value is of great interest. In the present study, Sox17 expression was examined in 525 cases of melanocytic lesions (33 common acquired nevi, 59 dysplastic nevi, 291 primary melanomas and 142 metastatic melanomas) at different stages by tissue microarray. The correlation of Sox17 expression with melanoma progression and its prognostic value in melanoma patients were examined. We also analyzed the correlation between Sox17 and cyclin-dependent kinase inhibitor p27 expression in 374 melanoma samples. The results showed that Sox17 expression was significantly decreased in primary and metastatic melanoma compared to common acquired nevi and dysplastic nevi (P=2.4x10-17). Furthermore, Sox17 expression was inversely correlated with American Joint Committee on Cancer stage (P=4.6x10-15), thickness (P=0.00004) and ulceration (P=0.03). Notably, reduced Sox17 expression was correlated with a poorer overall and disease-specific 5- and 10-year survival of the patients. Multivariate Cox regression analyses indicated that Sox17 is an independent prognostic marker for melanoma patients. Moreover, we found a significant positive correlation between Sox17 and p27 expression in melanoma biopsies; their concomitant expression was closely correlated with the survival of melanoma patients. Taken together, decreased Sox17 expression is correlated with melanoma progression, an unfavorable survival of melanoma patients and is an independent molecular prognostic factor for melanoma.

Conway K, Edmiston SN, May R, et al.
DNA methylation profiling in the Carolina Breast Cancer Study defines cancer subclasses differing in clinicopathologic characteristics and survival.
Breast Cancer Res. 2014; 16(5):450 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Breast cancer is a heterogeneous disease, with several intrinsic subtypes differing by hormone receptor (HR) status, molecular profiles, and prognosis. However, the role of DNA methylation in breast cancer development and progression and its relationship with the intrinsic tumor subtypes are not fully understood.
METHODS: A microarray targeting promoters of cancer-related genes was used to evaluate DNA methylation at 935 CpG sites in 517 breast tumors from the Carolina Breast Cancer Study, a population-based study of invasive breast cancer.
RESULTS: Consensus clustering using methylation (β) values for the 167 most variant CpG loci defined four clusters differing most distinctly in HR status, intrinsic subtype (luminal versus basal-like), and p53 mutation status. Supervised analyses for HR status, subtype, and p53 status identified 266 differentially methylated CpG loci with considerable overlap. Genes relatively hypermethylated in HR+, luminal A, or p53 wild-type breast cancers included FABP3, FGF2, FZD9, GAS7, HDAC9, HOXA11, MME, PAX6, POMC, PTGS2, RASSF1, RBP1, and SCGB3A1, whereas those more highly methylated in HR-, basal-like, or p53 mutant tumors included BCR, C4B, DAB2IP, MEST, RARA, SEPT5, TFF1, THY1, and SERPINA5. Clustering also defined a hypermethylated luminal-enriched tumor cluster 3 that gene ontology analysis revealed to be enriched for homeobox and other developmental genes (ASCL2, DLK1, EYA4, GAS7, HOXA5, HOXA9, HOXB13, IHH, IPF1, ISL1, PAX6, TBX1, SOX1, and SOX17). Although basal-enriched cluster 2 showed worse short-term survival, the luminal-enriched cluster 3 showed worse long-term survival but was not independently prognostic in multivariate Cox proportional hazard analysis, likely due to the mostly early stage cases in this dataset.
CONCLUSIONS: This study demonstrates that epigenetic patterns are strongly associated with HR status, subtype, and p53 mutation status and may show heterogeneity within tumor subclass. Among HR+ breast tumors, a subset exhibiting a gene signature characterized by hypermethylation of developmental genes and poorer clinicopathologic features may have prognostic value and requires further study. Genes differentially methylated between clinically important tumor subsets have roles in differentiation, development, and tumor growth and may be critical to establishing and maintaining tumor phenotypes and clinical outcomes.

van der Zwan YG, Biermann K, Wolffenbuttel KP, et al.
Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model.
Eur Urol. 2015; 67(4):692-701 [PubMed] Related Publications
CONTEXT: A disturbed process of gonadal formation and maintenance may result in testicular dysgenesis syndrome or disorders of sex development (DSDs), with an increased germ cell cancer (GCC) risk. Early diagnosis and treatment requires the identification of relevant risk factors and initial pathologic stages.
OBJECTIVE: To evaluate current knowledge and novel insights regarding GCC risk in patients with DSDs, with the aim of providing a model for clinical use.
EVIDENCE ACQUISITION: A Medline search was conducted to identify all original and review articles assessing the aetiology of GCC, GCC risk in DSD patients, new predictive markers related to GCC, and possible clinical scenarios related to GCC and DSDs.
EVIDENCE SYNTHESIS: Embryonic development is controlled by orchestrated patterns of gene and subsequent protein expression. Knowledge of these networks is essential to understand the mechanisms of disturbed development including GCC formation. GCCs are subdivided into seminomas and nonseminomas, and they all arise from embryonic germ cells that have failed to mature appropriately. The precursor is known as carcinoma in situ (also referred to as testicular intratubular neoplasia and intratubular germ cell neoplasia unclassified) in a testicular microenvironment and gonadoblastoma in a dysgenetic/ovarian microenvironment. GCCs mimic embryonic development, resulting in the identification of diagnostic markers (eg, OCT3/4, SRY [sex determining region Y]-box 2 [SOX2], and [sex determining region Y]-box 17 [SOX17]). Novel insights indicate a subtle interplay of specific single nucleotide polymorphisms, environmental factors, and epigenetic aberrations in the aetiology of GCCs. A genvironmental model combining these factors is presented, proposed as a guideline for clinical management by an experienced multidisciplinary team. The goal is individualised treatment including preservation of gonadal function (if possible) and prevention of malignant transformation.
CONCLUSIONS: A hypothesis is presented in which combined interactions of epigenetic and environmental parameters affect embryonic gonadal development, resulting in delayed/blocked germ cell maturation that determines the risk for GCC formation. Current and future possibilities for early detection of GCCs in risk populations and follow-up in a clinical setting are discussed.
PATIENT SUMMARY: This review analyses current knowledge about the underlying networks that relate to the development of a germ cell cancer in the context of a disorder of sex development. A combined effect of epigenetic and environmental factors is identified in the pathogenesis, and a model is proposed to apply this knowledge to clinical practice.

Yang T, Li XN, Li L, et al.
Sox17 inhibits hepatocellular carcinoma progression by downregulation of KIF14 expression.
Tumour Biol. 2014; 35(11):11199-207 [PubMed] Related Publications
Sox17, an antagonist of canonical Wnt/β-catenin signaling, inhibits several malignant carcinogenesis and progression. However, little is known about Sox17 in hepatocellular carcinoma (HCC). Here, we found that Sox17 is downregulated in HCC tissue. Furthermore, Sox17 inhibits cell proliferation and migration in HCC. KIF14, a member of kinesin superfamily protein (KIFs), is an oncogene in a variety of malignant tumors including HCC. We demonstrated that Sox17 is negatively related to KIF14 expression in HCC tissue and Sox17 inhibits HCC cell proliferation and migration by transcriptional downregulation of KIF14 expression. Our results may provide a strategy for blocking HCC carcinogenesis and progression.

Tang CY, Lin J, Qian W, et al.
Low SOX17 expression: prognostic significance in de novo acute myeloid leukemia with normal cytogenetics.
Clin Chem Lab Med. 2014; 52(12):1843-50 [PubMed] Related Publications
BACKGROUND: Aberrant expression of SRY-box containing gene 17 (SOX17) has been observed in several solid tumors. However, little is known about SOX17 expression in acute myeloid leukemia (AML). The purpose of this study was to investigate the alteration of SOX17 expression and to explore its clinical significance in AML.
METHODS: Real-time quantitative PCR (RQ-PCR) was performed to analyze the status of SO1X17 expression in 103 patients with de novo AML and 26 normal controls. The clinical relevance of SOX17 expression was analyzed in AML.
RESULTS: SOX17 level in AML was significantly down-regulated compared to controls (p<0.001). Receiver operating characteristic curve (ROC) curve analysis revealed that an area under the ROC curve (AUC) of 0.834 (95% CI 0.765-0.903; p<0.0001) or 0.789 (95% CI 0.690-0.888, p<0.001) in discriminating all patients or cytogenetically normal patients from controls, respectively. The cohort of AML patients was divided into two groups according to the cut-off value of 0.017 (60% sensitivity and 100% specificity, respectively). Cytogenetically normal patients with low SOX17 expression had significantly shorter OS than those with high SOX17 expression (median 4 vs. 25 months, respectively, p=0.035). Multivariate analysis confirmed low SOX17 expression as an independent risk factor.
CONCLUSIONS: Our findings indicated that low SOX17 level may define an important risk factor in AML with normal cyotgenetics.

Kuo IY, Chang JM, Jiang SS, et al.
Prognostic CpG methylation biomarkers identified by methylation array in esophageal squamous cell carcinoma patients.
Int J Med Sci. 2014; 11(8):779-87 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with poor prognosis. We aimed to identify a panel of CpG methylation biomarkers for prognosis prediction of ESCC patients.
METHODS: Illumina's GoldenGate methylation array, supervised principal components, Kaplan-Meier survival analyses and Cox regression model were conducted on dissected tumor tissues from a training cohort of 40 ESCC patients to identify potential CpG methylation biomarkers. Pyrosequencing quantitative methylation assay were performed to validate prognostic CpG methylation biomarkers in 61 ESCC patients. The correlation between DNA methylation and RNA expression of a validated marker, SOX17, was examined in a validation cohort of 61 ESCC patients.
RESULTS: We identified a panel of nine CpG methylation probes located at promoter or exon1 region of eight genes including DDIT3, FES, FLT3, NTRK3, SEPT5, SEPT9, SOX1, and SOX17, for prognosis prediction in ESCC patients. Risk score calculated using the eight-gene panel statistically predicted poor outcome for patients with high risk score. These eight-gene also showed a significantly higher methylation level in tumor tissues than their corresponding normal samples in all patients analyzed. In addition, we also detected an inverse correlation between CpG hypermethylation and the mRNA expression level of SOX17 gene in ESCC patients, indicating that DNA hypermethylation was responsible for decreased expression of SOX17.
CONCLUSIONS: This study established a proof-of-concept CpG methylation biomarker panel for ESCC prognosis that can be further validated by multiple cohort studies. Functional characterization of the eight prognostic methylation genes in our biomarker panel could help to dissect the mechanism of ESCC tumorigenesis.

Lee SH, Lee S, Yang H, et al.
Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis.
Circ Res. 2014; 115(2):215-26 [PubMed] Related Publications
RATIONALE: The Notch pathway stabilizes sprouting angiogenesis by favoring stalk cells over tip cells at the vascular front. Because tip and stalk cells have different properties in morphology and function, their transcriptional regulation remains to be distinguished. Transcription factor Sox17 is specifically expressed in endothelial cells, but its expression and role at the vascular front remain largely unknown.
OBJECTIVE: To specify the role of Sox17 and its relationship with the Notch pathway in sprouting angiogenesis.
METHODS AND RESULTS: Endothelial-specific Sox17 deletion reduces sprouting angiogenesis in mouse embryonic and postnatal vascular development, whereas Sox17 overexpression increases it. Sox17 promotes endothelial migration by destabilizing endothelial junctions and rearranging cytoskeletal structure and upregulates expression of several genes preferentially expressed in tip cells. Interestingly, Sox17 expression is suppressed in stalk cells in which Notch signaling is relatively high. Notch activation by overexpressing Notch intracellular domain reduces Sox17 expression both in primary endothelial cells and in retinal angiogenesis, whereas Notch inhibition by delta-like ligand 4 (Dll4) blockade increases it. The Notch pathway regulates Sox17 expression mainly at the post-transcriptional level. Furthermore, endothelial Sox17 ablation rescues vascular network from excessive tip cell formation and hyperbranching under Notch inhibition in developmental and tumor angiogenesis.
CONCLUSIONS: Our findings demonstrate that the Notch pathway restricts sprouting angiogenesis by reducing the expression of proangiogenic regulator Sox17.

Hansel A, Steinbach D, Greinke C, et al.
A promising DNA methylation signature for the triage of high-risk human papillomavirus DNA-positive women.
PLoS One. 2014; 9(3):e91905 [PubMed] Free Access to Full Article Related Publications
High-risk human papillomavirus (hrHPV)-DNA testing is frequently performed parallel to cytology for the detection of high-grade dysplasia and cervical cancer particularly in women above 30 years of age. Although highly sensitive, hrHPV testing cannot distinguish between HPV-positive women with or without clinically relevant lesions. However, in principle discrimination is possible on the basis of DNA methylation markers. In order to identify novel DNA regions which allow an effective triage of hrHPV-positive cases, hypermethylated DNA enriched from cervical cancers was compared with that from cervical scrapes of HPV16-positive cases with no evidence for disease by CpG island microarray hybridization. The most promising marker regions were validated by quantitative methylation-specific PCR (qMSP) using DNA from archived cervical tissues and cervical scrapes. The performance of these markers was then determined in an independent set of 217 hrHPV-positive cervical scrapes from outpatients with histopathological verification. A methylation signature comprising the 5' regions of the genes DLX1, ITGA4, RXFP3, SOX17 and ZNF671 specific for CIN3 and cervical cancer (termed CIN3+) was identified and validated. A high detection rate of CIN3+ was obtained if at least 2 of the 5 markers were methylated. In the subsequent cross-sectional study all cervical carcinomas (n = 19) and 56% (13/23) of CIN3 were identified by this algorithm. Only 10% (11/105) of hrHPV-positive women without histological evidence of cervical disease were scored positive by the methylation assay. Of note is that the detection rate of CIN3 differed between age groups. Eight of nine CIN3 were detected among women ≥30 years of age but only five of fourteen among <30 year old group (p = 0.03). The specificity for CIN3+ in the older age group was 76.6% (95% CI 65.6-85.5%). Clinical validation studies are required to determine the usefulness of these novel markers for triage after primary hrHPV testing in a cervical cancer screening setting.

Looijenga LH, Stoop H, Biermann K
Testicular cancer: biology and biomarkers.
Virchows Arch. 2014; 464(3):301-13 [PubMed] Related Publications
The term "human germ cell tumors" (GCTs) refers to a heterogeneous group of neoplasms, all with a defined histological appearance. They have specific epidemiological characteristics, clinical behavior, and pathogenesis. Histologically, GCTs contain various tissue elements, which are homologs of normal embryogenesis. We have proposed a subclassification of GCTs in five subtypes, three of which preferentially occur in the testis. These include teratomas and yolk sac tumors of neonates and infants (type I), seminomas and nonseminomas of (predominantly) adolescents and adults (type II), and spermatocytic seminomas of the elderly (type III). Both spontaneous and induced animal models have been reported, of which the relevance for human GCTs is still to be clarified. Multidisciplinary studies have recently shed new light on the (earliest steps in the) pathogenesis of GCTs, mainly in regard of malignant type II GCTs (germ cell cancer (GCC)). This review discusses novel understanding of the pathogenesis of (mainly) GCC, focusing on identification of informative diagnostic markers suitable for application in a clinical setting. These include OCT3/4, SOX9/FOXL2, SOX17/SOX2, as well as embryonic microRNAs. These markers have been identified through studies on normal embryogenesis, specifically related to the gonads, including the germ cell lineage. Their strengths and limitations are discussed as well as the expected future approach to identify the group of individuals at highest risk for development of a GCC. The latter would allow screening of defined populations, early diagnosis, optimal follow-up, and potentially early treatment, preventing long-term side effects of systemic treatment.

Kuo IY, Wu CC, Chang JM, et al.
Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression.
Int J Cancer. 2014; 135(3):563-73 [PubMed] Related Publications
The transcriptional network of the SRY (sex determining region Y)-box 17 (SOX17) and the prognostic impact of SOX17 protein expression in human cancers remain largely unclear. In this study, we evaluated the prognostic effect of low SOX17 protein expression and its dysregulation of transcriptional network in esophageal squamous cell carcinoma (ESCC). Low SOX17 protein expression was found in 47.4% (73 of 154) of ESCC patients with predicted poor prognosis. Re-expression of SOX17 in ESCC cells caused reduced foci formation, cell motility, decreased ESCC xenograft growth and metastasis in animals. Knockdown of SOX17 increased foci formation in ESCC and normal esophageal cells. Notably, 489 significantly differential genes involved in cell growth and motility controls were identified by expression array upon SOX17 overexpression and 47 genes contained putative SRY element in their promoters. Using quantitative chromatin immunoprecipitation-PCR and promoter activity assays, we confirmed that MACC1, MALAT1, NBN, NFAT5, CSNK1A1, FN1 and SERBP1 genes were suppressed by SOX17 via the SRY binding-mediated transcriptional regulation. Overexpression of FN1 and MACC1 abolished SOX17-mediated migration and invasion suppression. The inverse correlation between SOX17 and FN1 protein expression in ESCC clinical samples further strengthened our conclusion that FN1 is a transcriptional repression target gene of SOX17. This study provides compelling clinical evidence that low SOX17 protein expression is a prognostic biomarker and novel cell and animal data of SOX17-mediated suppression of ESCC metastasis. We establish the first transcriptional network and identify new suppressive downstream genes of SOX17 which can be potential therapeutic targets for ESCC.

Voorham QJ, Janssen J, Tijssen M, et al.
Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas.
BMC Cancer. 2013; 13:603 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas.
METHODS: Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples.
RESULTS: Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05).
CONCLUSIONS: Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SOX17, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999