STAT1

Gene Summary

Gene:STAT1; signal transducer and activator of transcription 1
Aliases: CANDF7, IMD31A, IMD31B, IMD31C, ISGF-3, STAT91
Location:2q32.2
Summary:The protein encoded by this gene is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. This protein can be activated by various ligands including interferon-alpha, interferon-gamma, EGF, PDGF and IL6. This protein mediates the expression of a variety of genes, which is thought to be important for cell viability in response to different cell stimuli and pathogens. Two alternatively spliced transcript variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:signal transducer and activator of transcription 1-alpha/beta
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (52)
Pathways:What pathways are this gene/protein implicaed in?
Show (14)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Neoplasm Invasiveness
  • Zinc Finger Protein Gli2
  • STAT Transcription Factors
  • Interferons
  • Breast Cancer
  • Apoptosis
  • Cell Movement
  • Transduction
  • Immunohistochemistry
  • Messenger RNA
  • Biomarkers, Tumor
  • Chromosome 2
  • Neoplasm Proteins
  • Drug Resistance
  • Western Blotting
  • STAT1 Transcription Factor
  • DNA Sequence Analysis
  • Bladder Cancer
  • Promoter Regions
  • Squamous Cell Carcinoma
  • Single Nucleotide Polymorphism
  • Gene Expression
  • DNA Methylation
  • Signal Transduction
  • STAT3 Transcription Factor
  • Interferon-gamma
  • Zidovudine
  • Ultrasonography
  • Oligonucleotide Array Sequence Analysis
  • MicroRNAs
  • Cell Proliferation
  • fas Receptor
  • Down-Regulation
  • Cancer Gene Expression Regulation
  • Gene Regulatory Networks
  • Melanoma
  • Phosphorylation
  • Antineoplastic Agents
  • Mutation
  • Gene Expression Profiling
  • Interferon-alpha
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: STAT1 (cancer-related)

Nakayama Y, Mimura K, Tamaki T, et al.
Phospho‑STAT1 expression as a potential biomarker for anti‑PD‑1/anti‑PD‑L1 immunotherapy for breast cancer.
Int J Oncol. 2019; 54(6):2030-2038 [PubMed] Free Access to Full Article Related Publications
In the present study, we evaluated the mechanisms of programmed death ligand 1 (PD‑L1) expression in the breast cancer microenvironment, focusing on the role of interferon‑γ (IFN‑γ), and the clinical indications for anti‑programmed cell death 1 (PD‑1) /anti‑PD‑L1 immunotherapy. We evaluated PD‑L1 expression in 4 breast cancer cell lines in the presence of 3 types of inhibitors, as well as IFN‑γ. The expression of phosphorylated signal transducer and activator of transcription 1 (p‑STAT1), one of the IFN‑γ signaling pathway molecules, was analyzed using immunohistochemistry (IHC) in relation to PD‑L1 and human leukocyte antigen (HLA) class I expression on cancer cells and tumor‑infiltrating CD8‑positive T cells in 111 patients with stage II/III breast cancer. Using The Cancer Genome Atlas (TCGA) database, the correlation of the IFN‑γ signature with PD‑L1 expression was analyzed in breast invasive carcinoma tissues. As a result, the JAK/STAT pathway via IFN‑γ was mainly involved in PD‑L1 expression in the cell lines examined. IHC analysis revealed that the PD‑L1 and HLA class I expression levels were significantly upregulated in the p‑STAT1‑positive cases. TCGA analysis indicated that the PD‑L1 expression and IFN‑γ signature exhibited a positive correlation. On the whole, these findings suggest that PD‑L1 and HLA class I are co‑expressed in p‑STAT1‑positive breast cancer cells induced by IFN‑γ secreted from tumor infiltrating immune cells, and that p‑STAT1 expression may be a potential biomarker for patient selection for immunotherapy with anti‑PD‑1/anti‑PD‑L1 monoclonal antibodies.

Cai G, Yu W, Song D, et al.
Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors.
Eur J Med Chem. 2019; 174:236-251 [PubMed] Related Publications
STAT3 has been extensively studied as a potential antitumor target. Though studies on regulating STAT3 mainly focus on the inhibition of STAT3 phosphorylation at Tyr705 residue, the phosphorylation at Ser727 residue of STAT3 protein is also closely associated with the mitochondrial import of STAT3 protein. N, N-diethyl-7-aminocoumarin is a fluorescent mitochondria-targeting probe. In this study, a series of STAT3 inhibitors were developed by connecting N, N-diethyl-7-aminocoumarin fluorophore with benzo [b]thiophene 1, 1-dioxide moiety. All designed compounds displayed potent anti-proliferative activity against cancer cells. The representative compound 7a was mainly accumulated in mitochondria visualized by its fluorescence. STAT3 phosphorylation was inhibited by compound 7a at both Tyr705 and Ser727 residues. Compound 7a inhibited STAT3 phosphorylation whereas had no influence on the phosphorylation levels of STAT1, JAK2, Src and Erk1/2, indicating good selectivity of compound 7a. Moreover, compound 7a down-regulated the expression of STAT3 target genes Bcl-2 and Cyclin D1, increased ROS production and remarkably reduced the mitochondrial membrane potential to induce mitochondrial apoptotic pathway. Furthermore, compound 7ain vivo suppressed breast cancer 4T1 implanted tumor growth. Taken together, these results highlighted that compound 7a might be a promising mitochondria-targeting STAT3 inhibitor for cancer therapy.

Hua L, Wang G, Wang Z, et al.
Activation of STAT1 by the FRK tyrosine kinase is associated with human glioma growth.
J Neurooncol. 2019; 143(1):35-47 [PubMed] Related Publications
PURPOSE: Glioma is a highly aggressive and lethal brain tumor. Signal transducers and activators of transcription (STAT) pathway are widely implicated in glioma carcinogenesis. Our previous study found that the Fynrelated kinase (FRK) gene, plays as a tumor suppressor in the development and progression of glioma. This study aimed to investigate the role of FRK in the activation pathway of STATs and its effect on the growth of glioma.
METHODS: The U251 and U87 cells with stable FRK overexpression were generated by lentivirus technique. The effects of FRK on the related proteins of STAT signaling pathway were detected by western blotting. Coimmunoprecipitation was used to detect the association of FRK and STAT1. The effects of STAT1 on the proliferation of glioma cells were detected by CCK8 or Edu cell proliferation assays. The expressions and correlation of FRK and p-STAT1 in glioma tissues were detectd by western blotting or immunohistochemistry. The effect of FRK on the growth of glioma was investigated in vivo mouse model.
RESULTS: The level of p-JAK2 and p-STAT1 increased after FRK overexpression, while they decreased after FRK downregulation both in U251 and U87 cells. However, FRK had no effect on STAT3 phosphorylation. FRK-induced STAT1 activation was not dependent on JAK2. FRK associated with STAT1, induced STAT1 nuclear translocation and regulated the expressions of STAT1-related target genes. STAT1 overexpression suppressed the proliferation of glioma cells. In contrast, STAT1 knockdown by siRNA promoted glioma cell growth. Importantly, down-regulation of STAT1 partially attenuated FRK-induced growth suppression. The clinical sample-based study indicated that the expression of FRK was significantly correlated with the expression of p-STAT1. FRK significantly inhibited glioma tumor growth in vivo.
CONCLUSIONS: Our findings highlighted a critical role of FRK in tumor suppression ability through promoting STAT1 activation, and provided a potential therapeutic target for glioma.

Smolková B, Lunova M, Lynnyk A, et al.
Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines.
Cell Physiol Biochem. 2019; 52(1):119-140 [PubMed] Related Publications
BACKGROUND/AIMS: Alteration of cancer cell redox status has been recognized as a promising therapeutic implication. In recent years, the emerged field of non-thermal plasma (NTP) has shown considerable promise in various biomedical applications, including cancer therapy. However, understanding the molecular mechanisms procuring cellular responses remains incomplete. Thus, the aim of this study was a rigorous biochemical analysis of interactions between NTP and liver cancer cells.
METHODS: The concept was validated using three different cell lines. We provide several distinct lines of evidence to support our findings; we use various methods (epifluorescent and confocal microscopy, clonogenic and cytotoxicity assays, Western blotting, pharmacological inhibition studies, etc.).
RESULTS: We assessed the influence of NTP on three human liver cancer cell lines (Huh7, Alexander and HepG2). NTP treatment resulted in higher anti-proliferative effect against Alexander and Huh7 relative to HepG2. Our data clearly showed that the NTP-mediated alternation of mitochondrial membrane potential and dynamics led to ROS-mediated apoptosis in Huh7 and Alexander cells. Interestingly, plasma treatment resulted in p53 down-regulation in Huh7 cells. High levels of Bcl-2 protein expression in HepG2 resulted in their resistance in response to oxidative stress- mediated by plasma.
CONCLUSION: We show thoroughly time- and dose-dependent kinetics of ROS accumulation in HCC cells. Furthermore, we show nuclear compartmentalization of the superoxide anion triggered by NTP. NTP induced apoptotic death in Huh7 liver cancer cells via simultaneous downregulation of mutated p53, pSTAT1 and STAT1. Contrary, hydrogen peroxide treatment results in autophagic cell death. We disclosed detailed mechanisms of NTP-mediated alteration of redox signalling in liver cancer cells.

Sakahara M, Okamoto T, Oyanagi J, et al.
IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer.
Cancer Sci. 2019; 110(4):1293-1305 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is caused by genetic alterations, and comprehensive sequence analyses have revealed the mutation landscapes. In addition to somatic changes, genetic variations are considered important factors contributing to tumor development; however, our knowledge on this subject is limited. Familial adenomatous polyposis coli (FAP) is an autosomal-dominant inherited disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. FAP patients are classified into two major groups based on clinical manifestations: classical FAP (CFAP) and attenuated FAP (AFAP). In this study, we established 42 organoids from three CFAP patients and two AFAP patients. Comprehensive gene expression analysis demonstrated a close association between IFN/STAT signaling and the phenotypic features of FAP patients. Genetic disruption of Stat1 in the mouse model of FAP reduced tumor formation, demonstrating that the IFN/STAT pathway is causally associated with the tumor-forming potential of APC-deficient tumors. Mechanistically, STAT1 is downstream target of KRAS and is phosphorylated by its activating mutations. We found that enhanced IFN/STAT signaling in CFAP conferred resistance to MEK inhibitors. These findings reveal the crosstalk between RAS signaling and IFN/STAT signaling, which contributes to the tumor-forming potential and drug response. These results offer a rationale for targeting of IFN/STAT signaling and for the stratification of CRC patients.

Park YJ, Ryu H, Choi G, et al.
IL-27 confers a protumorigenic activity of regulatory T cells via CD39.
Proc Natl Acad Sci U S A. 2019; 116(8):3106-3111 [PubMed] Free Access to Full Article Related Publications
Expression of ectonucleotidase CD39 contributes to the suppressive activity of Foxp3

Wu K, Zhao H, Xiu Y, et al.
IL-21-mediated expansion of Vγ9Vδ2 T cells is limited by the Tim-3 pathway.
Int Immunopharmacol. 2019; 69:136-142 [PubMed] Related Publications
Vγ9Vδ2 T cells are the main γδ T subset in the peripheral blood and lymphoid organs. Previous studies have shown that Vγ9Vδ2 T cells could expand in the presence of phosphoantigens and IL-2 and exert antitumor functions. However, their potency was limited because sustained proliferation could not be achieved, possibly due to exhaustion caused by prolonged antigenic stimulation. In this study, we examined the proliferative response of Vγ9Vδ2 T cells to IL-21, a cytokine previously shown to promote NK cell and CD8 T cell cytotoxicity. We found that IL-21 could significantly improve the proliferation of phosphoantigen-stimulated Vγ9Vδ2 T cells in a dose-dependent manner. However, in acute myeloid leukemia (AML) patients, the efficacy of IL-21 was significantly reduced. Vγ9Vδ2 T cells from AML patients exhibited lower expression of IL-21R, and required higher levels of IL-21 for expansion. IL-21-treated Vγ9Vδ2 T cells from AML patients presented lower increase in STAT1 phosphorylation than Vγ9Vδ2 T cells from healthy volunteers. Interestingly, AML Vγ9Vδ2 T cells presented significantly higher Tim-3 expression than healthy Vγ9Vδ2 T cells. IL-21 treatment further induced Tim-3 upregulation. Blocking Tim-3 increased the proliferation and the STAT phosphorylation in Vγ9Vδ2 T cells in response to IL-21. Together, these results demonstrated that IL-21 could significantly expand the Vγ9Vδ2 T cells, but its efficacy was limited since it also increased the expression of checkpoint molecule Tim-3.

Yan J, Zhao Q, Gabrusiewicz K, et al.
FGL2 promotes tumor progression in the CNS by suppressing CD103
Nat Commun. 2019; 10(1):448 [PubMed] Free Access to Full Article Related Publications
Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proliferation in vitro or tumor progression in immunodeficient mice but completely impaired GBM progression in immune-competent mice. This impairment was reversed in mice with a defect in dendritic cells (DCs) or CD103

Ma H, Yan D, Wang Y, et al.
Bazedoxifene exhibits growth suppressive activity by targeting interleukin-6/glycoprotein 130/signal transducer and activator of transcription 3 signaling in hepatocellular carcinoma.
Cancer Sci. 2019; 110(3):950-961 [PubMed] Free Access to Full Article Related Publications
The interleukin (IL)-6/glycoprotein (GP)130/signal transducer and activator of transcription (STAT)3 pathway is emerging as a target for the treatment of hepatocellular carcinoma. IL-6 binds to IL-6R, forming a binary complex, which further combines with GP130 to transduce extracellular signaling by activating STAT3. Therefore, blocking the interaction between IL-6 and GP130 may inhibit the IL-6/GP130/STAT3 signaling pathway and its biological effects. It has been reported that bazedoxifene acetate (BAZ), a selective estrogen receptor modulator approved by the US Food and Drug Administration, could inhibit IL-6/GP130 protein-protein interactions. Western blot, immunofluorescence staining, wound healing and colony formation assays were used to detect the effect of BAZ on liver cancer cells. Cell viability was evaluated by MTT assay. Apoptosis of cells was determined using the Annexin V-FITC detection kit. Mouse xenograft tumor models were utilized to evaluate the effect of BAZ in vivo. Our data showed that BAZ inhibited STAT3 phosphorylation (P-STAT3) and expression of STAT3 downstream genes, inducing apoptosis in liver cancer cells. BAZ inhibited P-STAT3 induced by IL-6, but not by leukemia inhibitory factor. BAZ inhibited P-STAT1 and P-STAT6 less significantly as elicited by interferon-α, interferon-γ and IL-4. In addition, pretreatment of BAZ impeded the translocation of STAT3 to nuclei induced by IL-6. BAZ inhibited cell viability, wound healing and colony formation in vitro. Furthermore, tumor growth in HEPG2 mouse xenografts were significantly inhibited by daily intragastric gavage of BAZ. Our results suggest that BAZ inhibited the growth of hepatocellular carcinoma in vitro and in vivo, indicating another potential strategy for HCC prevention and therapy.

Wang Y, Fan H, Zheng L
Biological information analysis of differentially expressed genes in oral squamous cell carcinoma tissues in GEO database.
J BUON. 2018 Nov-Dec; 23(6):1662-1670 [PubMed] Related Publications
PURPOSE: This study aimed to detect the differentially expressed genes between oral squamous cell carcinoma (OSCC) tissues and adjacent normal tissues, and perform pathway analysis and protein-protein interaction (PPI) analysis on differentially expressed genes (DEGs).
METHODS: Gene Expression Omnibus (GEO) database related to human tumors was selected from the National Center for Biotechnology Information (NCBI), and GSE31056 and GSE3524, two microarrays containing OSCC gene expression data, were extracted from it. Analysis of differentially expressed genes in the two microarrays was performed using "R" software, and the volcanic map was drawn. Then, Venn diagram was used to integrate the differentially expressed genes screened out by the two microarrays, and PPI [Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)] analysis of DEGs after integration was performed using Cytoscape, DAVID, STRING and KOBAS. A total of 207 differentially expressed genes were screened out by the two microarrays. 103 proteins encoded by differentially expressed genes screened out by STRING software had interaction. The expression network of differentially expressed genes was constructed, and some proteins, closely related to other proteins such as STAT1, were screened out by Cytoscape software.
RESULTS: GO analysis and KEGG analysis found that the differentially expressed genes were mainly enriched in "extracellular region", "extracellular region part" and "membrane-bound vesicle", and mainly involved in biological processes such as "Amoebiasis", "Glycerolipid metabolism" and "Arachidonic acid metabolism". In this study, 207 differentially expressed genes were successfully screened out from the two OSCC microarrays. PPI, GO and KEGG pathways of 103 interacting proteins were successfully constructed. Key genes were screened out, annotation and pathway analysis of which were performed.
CONCLUSION: This study was helpful to further study the relationship between OSCC gene directions.

Wang Y, Song X, Zheng Y, et al.
Cancer/testis Antigen MAGEA3 Interacts with STAT1 and Remodels the Tumor Microenvironment.
Int J Med Sci. 2018; 15(14):1702-1712 [PubMed] Free Access to Full Article Related Publications
Cancer-testis antigen MAGEA3, being restrictedly expressed in testis and various kinds of tumors, has long been considered as an ideal target for immunotherapy. In this study, we report that MAGEA3 interacts with STAT1 and regulates the expression of tyrosine phosphorylated STAT1 (pY-STAT1) in tumor cells. We show that pY-STAT1 is significantly up-regulated when MAGEA3 is silenced by MAGEA3-specific siRNA. RNA sequencing analysis identified 274 STAT1-related genes to be significantly altered in expression level in MAGEA3 knockdown cells. Further analysis of these differentially expressed genes with GO enrichment and KEGG pathway revealed that they are mainly enriched in plasma membrane, extracellular region and MHC class I protein complex, and involved in the interferon signaling pathways, immune response, antigen presentation and cell chemotaxis. The differentially expressed genes associated with chemokines, antigen presentation and vasculogenic mimicry formation were validated by biological experiments. Matrigel matrix-based tube formation assay showed that silencing MAGEA3 in tumor cells impairs tumor vasculogenic mimicry formation. These data indicate that MAGEA3 expression in tumor cells is associated with immune cells infiltration into tumor microenvironment and anti-tumor immune responses, implying that it may play an important role in tumor immune escape. Our findings reveal the potential impact of MAGEA3 on the immunosuppressive tumor microenvironment and will provide promising strategies for improving the efficacy of MAGEA3-targeted immunotherapy.

Pang C, Gu Y, Ding Y, et al.
Several genes involved in the JAK-STAT pathway may act as prognostic markers in pancreatic cancer identified by microarray data analysis.
Medicine (Baltimore). 2018; 97(50):e13297 [PubMed] Free Access to Full Article Related Publications
PURPOSE: This study aimed to identify the underlying mechanisms in pancreatic cancer (PC) carcinogenesis and those as potential prognostic biomarkers, which can also be served as new therapeutic targets of PC.
METHODS: Differentially expressed genes (DEGs) were identified between PC tumor tissues and adjacent normal tissue samples from a public GSE62452 dataset, followed by functional and pathway enrichment analysis. Then, protein-protein interaction (PPI) network was constructed and prognosis-related genes were screened based on genes in the PPI network, before which prognostic gene-related miRNA regulatory network was constructed. Functions of the prognostic gene in the network were enriched before which Kaplan-Meier plots were calculated for significant genes. Moreover, we predicted related drug molecules based on target genes in the miRNA regulatory network. Furthermore, another independent GSE60979 dataset was downloaded to validate the potentially significant genes.
RESULTS: In the GSE62452 dataset, 1017 significant DEGs were identified. Twenty-six important prognostic-related genes were found using multivariate Cox regression analysis. Through pathway enrichment analysis and miRNA regulatory analysis, we found that the 5 genes, such as Interleukin 22 Receptor Subunit Alpha 1 (IL22RA1), BCL2 Like 1 (BCL2L1), STAT1, MYC Proto-Oncogene (MYC), and Signal Transducer And Activator Of Transcription 2 (STAT2), involved in the Jak-STAT signaling pathway were significantly associated with prognosis. Moreover, the expression change of these 5 genes was further validated using another microarray dataset. Additionally, we identified camptothecin as an effective drug for PC.
CONCLUSION: IL22RA1, BCL2L1, STAT1, MYC, and STAT2 involved in the Jak-STAT signaling pathway may be significantly associated with prognosis of PC.

Deng R, Zhang P, Liu W, et al.
HDAC is indispensable for IFN-γ-induced B7-H1 expression in gastric cancer.
Clin Epigenetics. 2018; 10(1):153 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: B7 homolog 1 (B7-H1) overexpression on tumor cells is an important mechanism of immune evasion in gastric cancer (GC). Elucidation of the regulation of B7-H1 expression is urgently required to guide B7-H1-targeted cancer therapy. Interferon gamma (IFN-γ) is thought to be the main driving force behind B7-H1 expression, and epigenetic factors including histone acetylation are recently linked to the process. Here, we investigated the potential role of histone deacetylase (HDAC) in IFN-γ-induced B7-H1 expression in GC. The effect of Vorinostat (SAHA), a small molecular inhibitor of HDAC, on tumor growth and B7-H1 expression in a mouse GC model was also evaluated.
RESULTS: RNA-seq data from The Cancer Genome Atlas revealed that expression of B7-H1, HDAC1-3, 6-8, and 10 and SIRT1, 3, 5, and 6 was higher, and expression of HDAC5 and SIRT4 was lower in GC compared to that in normal gastric tissues; that HDAC3 and HDAC1 expression level significantly correlated with B7-H1 in GC with a respective r value of 0.42 (p < 0.001) and 0.21 (p < 0.001). HDAC inhibitor (Trichostatin A, SAHA, and sodium butyrate) pretreatment suppressed IFN-γ-induced B7-H1 expression on HGC-27 cells. HDAC1 and HDAC3 gene knockdown had the same effect. SAHA pretreatment or HDAC knockdown resulted in impaired IFN-γ signaling, demonstrated by the reduction of JAK2, p-JAK1, p-JAK2, and p-STAT1 expression and inefficient STAT1 nuclear translocation. Furthermore, SAHA pretreatment compromised IFN-γ-induced upregulation of histone H3 lysine 9 acetylation level in B7-H1 gene promoter. In the grafted mouse GC model, SAHA treatment suppressed tumor growth, inhibited B7-H1 expression, and elevated the percentage of tumor-infiltrating CD8+ T cells.
CONCLUSION: HDAC is indispensable for IFN-γ-induced B7-H1 in GC. The study suggests the possibility of targeting B7-H1 using small molecular HDAC inhibitors for cancer treatment.

Li Y, Sun W, Han N, et al.
Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway.
BMC Cancer. 2018; 18(1):1230 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Curcumin, a primary active ingredient extracted from the Curcuma longa, has been recently identified as a potential anti-tumor agent in multiple kinds of cancers. However, the effect of curcumin on retinoblastoma (Rb) is still unclear. Therefore, we attempted to reveal the functional impacts and the underlying mechanisms of curcumin in Rb cells.
METHODS: Two Rb cell lines SO-Rb50 and Y79 were pre-treated with various doses of curcumin, and then cell proliferation, apoptosis, migration, and invasion were assessed, respectively. Further, regulatory effects of curcumin on miR-99a expression, as well as the activation of JAK/STAT pathway were studied.
RESULTS: Data showed that curcumin significantly inhibited the viability, colony formation capacity, migration and invasion, while induced apoptosis of SO-Rb50 and Y79 cells. Up-regulation of miR-99a was observed in curcumin-treated cells. Curcumin suppressed the phosphorylation levels of JAK1, STAT1, and STAT3, while curcumin did not inhibit the activation of JAK/STAT pathway when miR-99a was knocked down.
CONCLUSION: Curcumin inhibited proliferation, migration, invasion, but promoted apoptosis of Rb cells. The anti-tumor activities of curcumin on Rb cells appeared to be via up-regulation of miR-99a, and thereby inhibition of JAK/STAT pathway.

Knuth AK, Rösler S, Schenk B, et al.
Interferons Transcriptionally Up-Regulate MLKL Expression in Cancer Cells.
Neoplasia. 2019; 21(1):74-81 [PubMed] Free Access to Full Article Related Publications
Interferons (IFNs) are key players in the tumor immune response and act by inducing the expression of IFN-stimulated genes (ISGs). Here, we identify the mixed-lineage kinase domain-like pseudokinase (MLKL) as an ISG in various cancer cell lines. Both type I and type II IFNs increase the expression of MLKL indicating that MLKL up-regulation is a general feature of IFN signaling. IFNγ up-regulates mRNA as well as protein levels of MLKL demonstrating that IFNγ transcriptionally regulates MLKL. This notion is further supported by Actinomycin D chase experiments showing that IFNγ-stimulated up-regulation of MLKL is prevented in the presence of the transcriptional inhibitor Actinomycin D. Also, knockdown of the transcription factor IFN-regulatory factor 1 (IRF1) and signal transducer and activator of transcription (STAT) 1 as well as knockout of IRF1 significantly attenuate IFNγ-mediated induction of MLKL mRNA levels. Up-regulation of MLKL by IFNγ provides a valuable tool to sensitize cells towards necroptotic cell death and to overcome apoptosis resistance of cancer cells.

Kawahara T, Ishiguro Y, Ohtake S, et al.
PD-1 and PD-L1 are more highly expressed in high-grade bladder cancer than in low-grade cases: PD-L1 might function as a mediator of stage progression in bladder cancer.
BMC Urol. 2018; 18(1):97 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Bladder cancers have been characterized as a tumor group in which the immunological response is relatively well preserved. Programmed death ligand 1 (PD-L1, B7-H1, CD274) has been shown to be expressed in several malignancies, including bladder cancer. However, the clinicopathological impact of this biomarker has not yet been established. In the present study, a quantitative real-time polymerase chain reaction (qPCR) was performed using paired normal and cancerous bladder cancer tissue to investigate PD-1/PD-L1 gene expression.
METHODS: We examined the mRNA expression of PD-1/PD-L1 by a qPCR using 58 pairs of normal and cancerous human bladder tissue specimens. We also examined the correlation with the expressions of the STAT1 and NFAT genes, which are thought to be upstream and downstream of the PD-L1 pathway, respectively.
RESULTS: There were no significant differences between normal and cancerous tissue in the expression of the PD-1 and PD-L1 genes (p = 0.724 and p = 0.102, respectively). However, PD-1 and PD-L1 were both more highly expressed in high-grade bladder cancer than in low-grade bladder cancer (p < 0.050 and p < 0.010). PD-L1 was positively correlated with the expressions of both the STAT1 (r = 0.681, p < 0.001) and the NFATc1 genes (r = 0.444. p < 0.001).
CONCLUSIONS: PD-1 and PD-L1 might be a new biomarker that correlates with the pathological grade of bladder cancer. PD-L1 might function as a mediator of stage progression in bladder cancer and STAT1-NFAT pathway might associate this function.

Cerezo M, Guemiri R, Druillennec S, et al.
Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma.
Nat Med. 2018; 24(12):1877-1886 [PubMed] Related Publications
Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5' cap of mRNAs, regulates the surface expression of interferon-γ-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.

Xu L, Zhang Y, Tian K, et al.
Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects.
J Exp Clin Cancer Res. 2018; 37(1):261 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The PD-L1/PD-1 pathway blockade-mediated immune therapy has shown promising efficacy in the treatment of multiple cancers including melanoma. The present study investigated the effects of the flavonoid apigenin on the PD-L1 expression and the tumorigenesis of melanoma.
METHODS: The influence of flavonoids on melanoma cell growth and apoptosis was investigated using cell proliferation and flow cytometric analyses. The differential IFN-γ-induced PD-L1 expression and STAT1 activation were examined in curcumin and apigenin-treated melanoma cells using immunoblotting or immunofluorescence assays. The effects of flavonoid treatment on melanoma sensitivity towards T cells were investigated using Jurkat cell killing, cytotoxicity, cell viability, and IL-2 secretion assays. Melanoma xenograft mouse model was used to assess the impact of flavonoids on tumorigenesis in vivo. Human peripheral blood mononuclear cells were used to examine the influence of flavonoids on PD-L1 expression in dendritic cells and cytotoxicity of cocultured cytokine-induced killer cells by cell killing assays.
RESULTS: Curcumin and apigenin showed growth-suppressive and pro-apoptotic effects on melanoma cells. The IFN-γ-induced PD-L1 upregulation was significantly inhibited by flavonoids, especially apigenin, with correlated reductions in STAT1 phosphorylation. Apigenin-treated A375 cells exhibited increased sensitivity towards T cell-mediated killing. Apigenin also strongly inhibited A375 melanoma xenograft growth in vivo, with enhanced T cell infiltration into tumor tissues. PD-L1 expression in dendritic cells was reduced by apigenin, which potentiated the cytotoxicity of cocultured cytokine-induced killer cells against melanoma cells.
CONCLUSIONS: Apigenin restricted melanoma growth through multiple mechanisms, among which its suppression of PD-L1 expression exerted a dual effect via regulating both tumor and antigen presenting cells. Our findings provide novel insights into the anticancer effects of apigenin and might have potential clinical implications.

Ishibashi K, Koguchi T, Matsuoka K, et al.
Interleukin-6 induces drug resistance in renal cell carcinoma.
Fukushima J Med Sci. 2018; 64(3):103-110 [PubMed] Free Access to Full Article Related Publications
Metastatic renal cell carcinoma (mRCC) is a tumor entity with poor prognosis due to limited therapy options. Tyrosine kinase inhibitors (TKIs), the novel targeted agents have been used for the treatment of mRCC and have shown efficacy. Interferon (IFN)-α is also one of the most frequently used agents in immunotherapy. However, drug resistance needs to be overcome to achieve a sufficiently positive effect. Interleukin-6 (IL-6), which induce suppressor of cytokine signaling-3 (SOCS3) expression, is one of the factors associated with poor prognosis of patients with renal cell carcinoma (RCC). To analyze the influence of IL-6 in drug resistance of RCC, anti-IL-6 receptor antibody was used in combination with IFN or TKIs. The SOCS3 mRNA expression level was significantly increased by IFN-α stimulation in 786-O RCC cells which were resistant to IFN, but not in ACHN cells that were sensitive to IFN. The overexpression of SOCS3 by gene transfection in ACHN significantly inhibited the growth-inhibitory effect of IFN-α. An in vivo study demonstrated that co-administration of SOCS3-targeted siRNA promoted INF-α-induced cell death and growth suppression in 786-O cell xenograft. SOCS3 could be a key component in the resistance to interferon treatment of renal cell carcinoma. Because SOCS3 is rapidly up-regulated by IL-6 and a negative regulator of cytokine signaling, IL-6 expression on RCC cells was also analyzed and the 786-O cells showed the high level of IL-6 mRNA expression under the condition of interferon stimulation. IL-6R antibody, tocilizumab, significantly suppressed cell proliferation in 786-O cells by interferon stimulation accompanied with phosphorylation of STAT1 and inhibited SOCS3 expression. The in vivo effects of combination therapy with tocilizumab and interferon showed significant suppression of 786-O tumor growth in a xenograft model. We also hypothesized that TKI resistance and IL-6 secretion are causally connected. And we found that 786-O RCC cells secrete high IL-6 levels after low dose stimulation with the TKIs sorafenib, sunitinib and pazopanib, inducing activation of AKT-mTOR pathway, NFκB, HIF-2α and VEGF expression. Tocilizumab neutralizes the AKT-mTOR pathway activation and results in reduced proliferation. A combination therapy with tocilizumab and TKI suppresses 786-O tumor growth and inhibits angiogenesis in vivo more efficient than TKI alone. Our findings suggest that IL-6 could induce drug resistance on RCC, and combination therapy of IL-6R inhibitors and IFN/TKIs may represent a novel therapeutic approach for RCC treatment.

Hao S, Chen X, Wang F, et al.
Breast cancer cell-derived IL-35 promotes tumor progression via induction of IL-35-producing induced regulatory T cells.
Carcinogenesis. 2018; 39(12):1488-1496 [PubMed] Related Publications
Interleukin 35 (IL-35) is a potent immunosuppressive cytokine, consisting of an Epstein-Barr virus-induced gene 3 (EBI3) subunit and a p35 subunit. IL-35 is mainly produced by regulatory T and regulatory B cells, and plays a crucial role in the development and prevention of infectious and autoimmune diseases. However, the effect of IL-35 in malignant disease is not well understood. In this study, we demonstrated that breast cancer cells (BCCs) also expressed and secreted IL-35 and higher level of IL-35 in BCCs was closely associated with poor prognosis of patients and was an independent unfavorable prognostic factor for breast cancer. Subsequent study revealed that BCC-derived IL-35 inhibited conventional T (Tconv) cell proliferation and further induced suppressed Tconv cells into IL-35-producing induced regulatory T (iTr35) cells. Furthermore, BCC-derived IL-35 promoted the secretion of inhibitory cytokine IL-10 and obviously decreased the secretion of Th1-type cytokine IFN-γ and Th17-type cytokine IL-17 in Tconv cells. Meanwhile, the expression of inhibitory receptor CD73 was also elevated on the surface of Tconv cells following the BCCs' supernatant treatment. Mechanistically, BCC-derived IL-35 exhausted Tconv cells and induced iTr35 by activating transcription factor STAT1/STAT3. Hence, our results indicate functions of BCC-derived IL-35 in promoting tumor progression through proliferation inhibition of tumor-infiltrating Tconv cells and induction of iTr35 cells in tumor microenvironment. This study highlights that IL-35 produced by BCCs are a potential therapeutic target for breast cancer.

Li S, Han X, Lyu N, et al.
Mechanism and prognostic value of indoleamine 2,3-dioxygenase 1 expressed in hepatocellular carcinoma.
Cancer Sci. 2018; 109(12):3726-3736 [PubMed] Free Access to Full Article Related Publications
Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan-metabolizing enzyme that is widely distributed in normal or malignant tissues and contributes to immunologic tolerance and immune escape. However, in hepatocellular carcinoma (HCC), the characteristics and mechanism of IDO1 expression have not been well defined. In this study, IDO1 expression in tumor cells (T-IDO1) was frequently detected (109/112) by immunohistochemistry in formalin-fixed paraffin-embedded specimens from HCC patients, and the expression patterns were mostly focal (102/109). Expression of T-IDO1 was significantly associated with the infiltration of CD8+ T cells (P = .043), as well as younger age (<50 years old, P = .02). It was also found that IDO1 had diffuse expression in inflammatory cells in all specimens, which were defined as antigen-presenting cells. Significant correlations among IDO1, IFNG, and CD8A transcriptional levels were observed in freshly resected HCC specimens; moreover, no constitutive IDO1 expression was detected in HCC cell lines until stimulated by interferon-γ through the JAK2-STAT1 signaling pathway, but not type I interferon. Survival analyses showed that increased T-IDO1 and CD8+ T cell infiltration were significantly associated with superior overall survival (OS) (T-IDO1, P = .003; CD8+ T cells, P = .004), and T-IDO1 expression is an independent prognosis factor in both OS and disease-free survival (OS, P = .007; disease-free survival, P = .044). These findings indicated that T-IDO1 expression in HCC is common and is dominantly driven by the host antitumor immune response, which is a favorable prognostic factor in HCC.

Wang Y, Xu H, Zhu B, et al.
Systematic identification of the key candidate genes in breast cancer stroma.
Cell Mol Biol Lett. 2018; 23:44 [PubMed] Free Access to Full Article Related Publications
Background: Tumor microenvironment, in particular the stroma, plays an important role in breast cancer cell invasion and metastasis. Investigation of the molecular characteristics of breast cancer stroma may reveal targets for future study.
Methods: The transcriptome profiles of breast cancer stroma and normal breast stroma were compared to identify differentially expressed genes (DEGs). The method was analysis of GSE26910 and GSE10797 datasets. Common DEGs were identified and then analyses of enriched pathways and hub genes were performed.
Results: A total of 146 DEGs were common to GSE26910 and GSE10797. The enriched pathways were associated with "extracellular matrix (ECM) organization", "ECM-receptor interaction" and "focal adhesion". Network analysis identified six key genes, including
Conclusions: We found that several conserved tumor stromal genes might regulate breast cancer invasion through ECM remodeling. The clinical outcome analyses of

Kaowinn S, Kaewpiboon C, Koh SS, et al.
STAT1‑HDAC4 signaling induces epithelial‑mesenchymal transition and sphere formation of cancer cells overexpressing the oncogene, CUG2.
Oncol Rep. 2018; 40(5):2619-2627 [PubMed] Free Access to Full Article Related Publications
Our previous studies have shown that the novel oncogene, cancer upregulated gene 2 (CUG2), activates STAT1, which is linked to anticancer drug resistance, induces epithelial‑mesenchymal transition (EMT) and cancer stem cell‑like phenotypes as determined by MTT, migration and sphere formation assays. We thus aimed to ascertain whether the activation of STAT1 by CUG2 is involved in these malignant phenotypes besides drug resistance. Here, we showed that STAT1 suppression decreased the expression of N‑cadherin and vimentin, biomarkers of EMT, which led to inhibition of the migration and invasion of human lung A549 cancer cells stably expressing CUG2, but did not recover E‑cadherin expression. STAT1 siRNA also diminished CUG2‑induced TGF‑β signaling, which is critical in EMT, and TGF‑β transcriptional activity. Conversely, inhibition of TGF‑β signaling reduced phosphorylation of STAT1, indicating a crosstalk between STAT1 and TGF‑β signaling. Furthermore, STAT1 silencing diminished sphere formation, which was supported by downregulation of stemness‑related factors such as Sox2, Oct4, and Nanog. Constitutive suppression of STAT1 also inhibited cell migration, invasion and sphere formation. As STAT1 acetylation counteracts STAT1 phosphorylation, acetylation of STAT1 by treatment with trichostatin A, an inhibitor of histone deacetylases (HDACs), reduced cell migration, invasion, and sphere formation. As HDAC4 is known to target STAT1, its role was investigated under CUG2 overexpression. HDAC4 suppression resulted in inhibition of cell migration, invasion, and sphere formation as HDAC4 silencing hindered TGF‑β signaling and decreased expression of Sox2 and Nanog. Taken together, we suggest that STAT1‑HDAC4 signaling induces malignant tumor features such as EMT and sphere formation in CUG2‑overexpressing cancer cells.

Huang D, Chen J, Yang L, et al.
NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death.
Nat Immunol. 2018; 19(10):1112-1125 [PubMed] Related Publications
Activation-induced cell death (AICD) of T lymphocytes can be exploited by cancers to escape immunological destruction. We demonstrated that tumor-specific cytotoxic T lymphocytes (CTLs) and type 1 helper T (T

Prutsch N, Gurnhofer E, Suske T, et al.
Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma.
Leukemia. 2019; 33(3):696-709 [PubMed] Related Publications
TYK2 is a member of the JAK family of tyrosine kinases that is involved in chromosomal translocation-induced fusion proteins found in anaplastic large cell lymphomas (ALCL) that lack rearrangements activating the anaplastic lymphoma kinase (ALK). Here we demonstrate that TYK2 is highly expressed in all cases of human ALCL, and that in a mouse model of NPM-ALK-induced lymphoma, genetic disruption of Tyk2 delays the onset of tumors and prolongs survival of the mice. Lymphomas in this model lacking Tyk2 have reduced STAT1 and STAT3 phosphorylation and reduced expression of Mcl1, a pro-survival member of the BCL2 family. These findings in mice are mirrored in human ALCL cell lines, in which TYK2 is activated by autocrine production of IL-10 and IL-22 and by interaction with specific receptors expressed by the cells. Activated TYK2 leads to STAT1 and STAT3 phosphorylation, activated expression of MCL1 and aberrant ALCL cell survival. Moreover, TYK2 inhibitors are able to induce apoptosis in ALCL cells, regardless of the presence or absence of an ALK-fusion. Thus, TYK2 is a dependency that is required for ALCL cell survival through activation of MCL1 expression. TYK2 represents an attractive drug target due to its essential enzymatic domain, and TYK2-specific inhibitors show promise as novel targeted inhibitors for ALCL.

Henrich IC, Young R, Quick L, et al.
USP6 Confers Sensitivity to IFN-Mediated Apoptosis through Modulation of TRAIL Signaling in Ewing Sarcoma.
Mol Cancer Res. 2018; 16(12):1834-1843 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Ewing sarcoma is the second most common sarcoma of the bone, afflicting predominantly the pediatric population. Although patients with localized disease exhibit favorable survival rates, patients with metastatic disease suffer a dismal 5-year rate of approximately 25%. Thus, there is a great need to develop treatments to combat the disseminated disease. Ubiquitin-specific protease 6 (USP6/TRE17) has been implicated as the key etiologic factor in several benign mesenchymal tumors, including nodular fasciitis and aneurysmal bone cyst (ABC). However, the role of USP6 in the biology of malignant entities remains unexplored. Previously, it was observed that USP6 is sufficient to drive formation of tumors mimicking ABC and nodular fasciitis, and that it functions through JAK1/STAT3 signaling. However, in the context of Ewing sarcoma, USP6 does not enhance the transformation, but rather triggers an IFN response signature, both in cultured Ewing sarcoma cells

Rawangkan A, Wongsirisin P, Namiki K, et al.
Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth.
Molecules. 2018; 23(8) [PubMed] Article available free on PMC after 01/12/2019 Related Publications
The anticancer activity of immune checkpoint inhibitors is attracting attention in various clinical sites. Since green tea catechin has cancer-preventive activity in humans, whether green tea catechin supports the role of immune checkpoint inhibitors was studied. We here report that (-)-epigallocatechin gallate (EGCG) inhibited programmed cell death ligand 1 (PD-L1) expression in non⁻small-cell lung cancer cells, induced by both interferon (IFN)-γ and epidermal growth factor (EGF). The mRNA and protein levels of IFN-γ⁻induced PD-L1 were reduced 40⁻80% after pretreatment with EGCG and green tea extract (GTE) in A549 cells, via inhibition of JAK2/STAT1 signaling. Similarly, EGF-induced PD-L1 expression was reduced about 37⁻50% in EGCG-pretreated Lu99 cells through inhibition of EGF receptor/Akt signaling. Furthermore, 0.3% GTE in drinking water reduced the average number of tumors per mouse from 4.1 ± 0.5 to 2.6 ± 0.4 and the percentage of PD-L1 positive cells from 9.6% to 2.9%, a decrease of 70%, in lung tumors of A/J mice given a single intraperitoneal injection of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In co-culture experiments using F10-OVA melanoma cells and tumor-specific CD3+ T cells, EGCG reduced

Rolvering C, Zimmer AD, Ginolhac A, et al.
The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies.
J Leukoc Biol. 2018; 104(5):969-985 [PubMed] Related Publications
Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other T

Cañadas I, Thummalapalli R, Kim JW, et al.
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Nat Med. 2018; 24(8):1143-1150 [PubMed] Article available free on PMC after 01/12/2019 Related Publications
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance

Cheng CC, Lin HC, Tsai KJ, et al.
Epidermal growth factor induces STAT1 expression to exacerbate the IFNr-mediated PD-L1 axis in epidermal growth factor receptor-positive cancers.
Mol Carcinog. 2018; 57(11):1588-1598 [PubMed] Related Publications
The epidermal growth factor (EGF) receptor (EGFR) overexpressed in many cancers, including lung and head and neck cancers, and is involved in cancer cell progression and survival. PD-L1, increases in tumor cells to evade and inhibit CD8+ T cells, is a clinical immunotherapeutic target. This study investigated the molecular mechanism of EGF on regulating PD-L1 in EGFR-positive cancers and determined potential agents to reduce PD-L1 expression. RNA sequencing (RNAseq) and bioinformatics analysis were performed to determine potential driver genes that regulate PD-L1 in tumor cells-derived tumorspheres which mimicking cancer stem cells. Then, the specific inhibitors targeting EGFR were applied to reduce the expression of PD-L1 in vitro and in vivo. We validated that EGF could induce PD-L1 expression in the selected EGFR-positive cancers. RNAseq results revealed that STAT1 increased as a driver gene in KOSC-3-derived tumorspheres; these data were analyzed using PANTHER followed by NetworkAnalyst. The blockade of EGFR by afatinib resulted in decreased STAT1 and IRF-1 levels, both are transcriptional factors of PD-L1, and disabled the IFNr-STAT1-mediated PD-L1 axis in vitro and in vivo. Moreover, STAT1 knockdown significantly reduced EGF-mediated PD-L1 expression, and ruxolitinib, a JAK1/JAK2 inhibitor, significantly inhibited STAT1 phosphorylation to reduce the IFNr-mediated PD-L1 axis. These results indicate that EGF exacerbates PD-L1 by increasing the protein levels of STAT1 to enforce the IFNr-JAK1/2-mediated signaling axis in selected EGFR-positive cancers. The inhibition of EGFR by afatinib significantly reduced PD-L1 and may be a potential strategy for enhancing immunotherapeutic efficacy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. STAT1, Cancer Genetics Web: http://www.cancer-genetics.org/STAT1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999