TFPT

Gene Summary

Gene:TFPT; TCF3 fusion partner
Aliases: FB1, amida, INO80F
Location:19q13.42
Summary:-
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:TCF3 fusion partner
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (11)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA-Binding Proteins
  • DNA, Complementary
  • Oncogene Fusion Proteins
  • Messenger RNA
  • KMT2A
  • Oncogene Proteins
  • Papillary Carcinoma
  • ran GTP-Binding Protein
  • Vincristine
  • Transcription Factors
  • Repressor Proteins
  • Chromosome 19
  • Whole Exome Sequencing
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
  • Translocation
  • Immunophenotyping
  • Exome
  • Molecular Sequence Data
  • Proto-Oncogene Proteins
  • Chromosomes, Artificial, Yeast
  • Amino Acid Sequence
  • Childhood Cancer
  • Transfection
  • Adolescents
  • Chromosome Mapping
  • Thyroid Cancer, Papillary
  • Mutation
  • Proto-Oncogenes
  • Prednisone
  • Cloning, Molecular
  • Sequence Homology
  • Base Sequence
  • Cytogenetic Analysis
  • Genes, Reporter
  • KMT2A protein, human
  • Basic Helix-Loop-Helix Transcription Factors
  • High-Throughput Nucleotide Sequencing
  • Disease-Free Survival
  • Acute Lymphocytic Leukaemia
  • TFPT
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TFPT (cancer-related)

Chang CC, Chang YS, Huang HY, et al.
Determination of the mutational landscape in Taiwanese patients with papillary thyroid cancer by whole-exome sequencing.
Hum Pathol. 2018; 78:151-158 [PubMed] Related Publications
Among women in Taiwan, thyroid cancer is the fifth most common malignant neoplasia. However, genomic profiling of papillary thyroid cancer (PTC) cases from Taiwan has not been attempted previously. We used whole-exome sequencing to identify mutations in a cohort of 19 PTC patients. Sequencing was performed using the Illumina system; Sanger sequencing was used to validate all identified mutations. We identified new somatic mutations in APC, DICER1, LRRC8D and NDRG1. We also found somatic mutations in ARID5A, CREB3L2, MDM4, PPP2R5A and TFPT; mutations in these genes had been found previously in other tumors, but had not been described previously in PTC. We also investigated the pathway deregulation in BRAF-mutated PTC compared with wild-type BRAF PTC. In checking our gene mutations against The Cancer Genome Atlas (TCGA) database, we identified aberrations in one pathway that are specific to BRAF-mutated PTC: maturity-onset diabetes of the young. In addition, the caffeine metabolism pathway showed aberrations that are specific to wild-type BRAF PTC. For this study, we performed a comprehensive exome-wide analysis of the mutational spectra of Taiwanese patients with PTC. We identified novel genes that are potentially associated with PTC tumorigenesis, as well as aberrations in pathways that led to the distinct pathogeneses of BRAF-mutated PTC and wild-type BRAF PTC, which may provide a new target for PTC therapy.

Khan RB, Phulukdaree A, Chuturgoon AA
Fumonisin B
Toxicon. 2018; 141:104-111 [PubMed] Related Publications
Fumonisin B

Romo-Bucheli D, Janowczyk A, Gilmore H, et al.
A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers.
Cytometry A. 2017; 91(6):566-573 [PubMed] Free Access to Full Article Related Publications
The treatment and management of early stage estrogen receptor positive (ER+) breast cancer is hindered by the difficulty in identifying patients who require adjuvant chemotherapy in contrast to those that will respond to hormonal therapy. To distinguish between the more and less aggressive breast tumors, which is a fundamental criterion for the selection of an appropriate treatment plan, Oncotype DX (ODX) and other gene expression tests are typically employed. While informative, these gene expression tests are expensive, tissue destructive, and require specialized facilities. Bloom-Richardson (BR) grade, the common scheme employed in breast cancer grading, has been shown to be correlated with the Oncotype DX risk score. Unfortunately, studies have also shown that the BR grade determined experiences notable inter-observer variability. One of the constituent categories in BR grading is the mitotic index. The goal of this study was to develop a deep learning (DL) classifier to identify mitotic figures from whole slides images of ER+ breast cancer, the hypothesis being that the number of mitoses identified by the DL classifier would correlate with the corresponding Oncotype DX risk categories. The mitosis detector yielded an average F-score of 0.556 in the AMIDA mitosis dataset using a 6-fold validation setup. For a cohort of 174 whole slide images with early stage ER+ breast cancer for which the corresponding Oncotype DX score was available, the distributions of the number of mitoses identified by the DL classifier was found to be significantly different between the high vs low Oncotype DX risk groups (P < 0.01). Comparisons of other risk groups, using both ODX score and histological grade, were also found to present significantly different automated mitoses distributions. Additionally, a support vector machine classifier trained to separate low/high Oncotype DX risk categories using the mitotic count determined by the DL classifier yielded a 83.19% classification accuracy. © 2017 International Society for Advancement of Cytometry.

Fernández-Blanco C, Frizzell C, Shannon M, et al.
An in vitro investigation on the cytotoxic and nuclear receptor transcriptional activity of the mycotoxins fumonisin B1 and beauvericin.
Toxicol Lett. 2016; 257:1-10 [PubMed] Related Publications
Fumonisin B1 (FB1) and beauvericin (BEA) are secondary metabolites of filamentous fungi, which under appropriate temperature and humidity conditions may develop on various foods and feeds. To date few studies have been performed to evaluate the toxicological and endocrine disrupting effects of FB1 and BEA. The present study makes use of various in vitro bioassays including; oestrogen, androgen, progestagen and glucocorticoid reporter gene assays (RGAs) for the study of nuclear receptor transcriptional activity, the thiazolyl blue tetrazolium bromide (MTT) assay to monitor cytotoxicity and high content analysis (HCA) for the detection of pre-lethal toxicity in the RGA and Caco-2 human colon adenocarcinoma cells. At the receptor level, 0.001-10μM BEA or FB1 did not induce any agonist responses in the RGAs. However at non-cytotoxic concentrations, an antagonistic effect was exhibited by FB1 on the androgen nuclear receptor transcriptional activity at 10μM and BEA on the progestagen and glucocorticoid receptors at 1μM. MTT analysis showed no decrease in cell viability at any concentration of FB1, whereas BEA showed a significant decrease in viability at 10μM. HCA analysis confirmed that the reduction in the progestagen receptor transcriptional activity at 1μM BEA was not due to pre-lethal toxicity. In addition, BEA (10μM) induced significant toxicity in both the TM-Luc (progestagen responsive) and Caco-2 cells.

Greer AH, Yong T, Fennell K, et al.
Knockdown of core binding factorβ alters sphingolipid metabolism.
J Cell Physiol. 2013; 228(12):2350-64 [PubMed] Related Publications
Core binding factor (CBF) is a heterodimeric transcription factor containing one of three DNA-binding proteins of the Runt-related transcription factor family (RUNX1-3) and the non-DNA-binding protein, CBFβ. RUNX1 and CBFβ are the most common targets of chromosomal rearrangements in leukemia. CBF has been implicated in other cancer types; for example RUNX1 and RUNX2 are implicated in cancers of epithelial origin, including prostate, breast, and ovarian cancers. In these tumors, CBF is involved in maintaining the malignant phenotype and, when highly over-expressed, contributes to metastatic growth in bone. Herein, lentiviral delivery of CBFβ-specific shRNAs was used to achieve a 95% reduction of CBFβ in an ovarian cancer cell line. This drastic reduction in CBFβ expression resulted in growth inhibition that was not associated with a cell cycle block or an increase in apoptosis. However, CBFβ silencing resulted in increased autophagy and production of reactive oxygen species (ROS). Since sphingolipid and ceramide metabolism regulates non-apoptotic cell death, autophagy, and ROS production, fumonsin B1 (FB1), an inhibitor of ceramide synthase, was used to alter ceramide production in the CBFβ-silenced cells. FB1 treatment inhibited the CBFβ-dependent increase in autophagy and provided a modest increase in cell survival. To document alterations to sphingolipids in the CBFβ-silenced cells, ceramide, and lactosylceramide levels were directly examined by mass spectrometry. Substantial increases in ceramide species and decreases in lactosylceramides were identified. Altogether, this report provides evidence that CBF transcriptional pathways control cellular survival, at least in part, through sphingolipid metabolism.

Patel D, Chaudhary J
Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis.
Biochem Biophys Res Commun. 2012; 422(1):146-51 [PubMed] Free Access to Full Article Related Publications
E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

Sauane M, Su ZZ, Dash R, et al.
Ceramide plays a prominent role in MDA-7/IL-24-induced cancer-specific apoptosis.
J Cell Physiol. 2010; 222(3):546-55 [PubMed] Related Publications
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) uniquely displays broad cancer-specific apoptosis-inducing activity through induction of endoplasmic reticulum (ER) stress. We hypothesize that ceramide, a promoter of apoptosis, might contribute to mda-7/IL-24 induction of apoptosis. Ad.mda-7-infected tumor cells, but not normal cells, showed increased ceramide accumulation. Infection with Ad.mda-7 induced a marked increase in various ceramides (C16, C24, C24:1) selectively in prostate cancer cells. Inhibiting the enzyme serine palmitoyltransferase (SPT) using the potent SPT inhibitor myriocin (ISP1), impaired mda-7/IL-24-induced apoptosis and ceramide production, suggesting that ceramide formation caused by Ad.mda-7 occurs through de novo synthesis of ceramide and that ceramide is required for mda-7/IL-24-induced cell death. Fumonisin B1 (FB1) elevated ceramide formation as well as apoptosis induced by Ad.mda-7, suggesting that ceramide formation may also occur through the salvage pathway. Additionally, Ad.mda-7 infection enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin in cancer cells. ASMase silencing by RNA interference inhibited the decreased cell viability and ceramide formation after Ad.mda-7 infection. Ad.mda-7 activated protein phosphatase 2A (PP2A) and promoted dephosphorylation of the anti-apoptotic molecule BCL-2, a downstream ceramide-mediated pathway of mda-7/IL-24 action. Pretreatment of cells with FB1 or ISP-1 abolished the induction of ER stress markers (BiP/GRP78, GADD153 and pospho-eIF2alpha) triggered by Ad.mda-7 infection indicating that ceramide mediates ER stress induction by Ad.mda-7. Additionally, recombinant MDA-7/IL-24 protein induced cancer-specific production of ceramide. These studies define ceramide as a key mediator of an ER stress pathway that may underlie mda-7/IL-24 induction of cancer-specific killing.

Solini A, Cuccato S, Ferrari D, et al.
Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease?
Endocrinology. 2008; 149(1):389-96 [PubMed] Related Publications
Nucleotides are increasingly recognized as nonredundant extracellular signals for chemotaxis, cell growth, and cytokine release. Effects of extracellular nucleotides are mediated by P2 receptors, among which the P2X(7) subtype is attracting increasing attention for its involvement in apoptosis, cell growth, and cytokine release. Recent studies showed that P2X(7) is overexpressed in chronic lymphocytic leukemia and breast and prostate cancer. The aim of the present study was to better understand the clinical significance of P2X(7) receptor expression in normal and cancer human thyroid tissues. P2X(7) receptor message and protein expression and functional activity were tested in two cell lines (FB1 and FB2) established from either anaplastic or papillary primary thyroid cancer and in several histological samples of human papillary cancer. We show here that human thyroid papillary carcinoma, whether of the classical or follicular variant, expresses the P2X(7) receptor (P2X(7)R) to a much higher level than normal thyroid tissue. The P2X(7)R was similarly up-regulated in FB1 and FB2 cell lines. In contrast to normal thyroid cells, both cell lines responded to extracellular nucleotide stimulation with a large increase in intracellular Ca(2+) and secretion of IL-6. Ca(2+) increase was attenuated and release of IL-6 was fully blocked by P2X(7)R inhibitors. Finally, the thyroid carcinoma cell lines had at least a 3-fold higher intracellular ATP concentration and maintained at least a 3-fold higher extracellular ATP level, compared with control cells. These data suggest that an enhanced P2X(7)R function might be a feature of human thyroid cancer.

Schaffrik M, Mack B, Matthias C, et al.
Molecular characterization of the tumor-associated antigen AAA-TOB3.
Cell Mol Life Sci. 2006; 63(18):2162-74 [PubMed] Related Publications
In search for new valuable tumor-associated antigens using the AMIDA technique, we identified the KIAA 1273-AAA-TOB3 protein. KIAA 1273 and AAA-TOB3 were considered synonyms for the atad3B gene product. We show that the atad3b gene encodes two distinct proteins, both overexpressed in head and neck carcinomas and required for correct cell division. Both products differ within the N terminus, are generated upon distinct transcription initiation sites, and have been termed AAA-TOB3s and AAA-TOB3l. Both isoforms are early targets of c-myc and are located in mitochondria. A previous report suggested pro-apoptotic properties of the murine homolog of AAA-TOB3l. Here, we did not observe any pro-apoptotic effects in human cell lines, overexpressing h-AAA-TOB3s or h-AAA-TOB3l. By contrast, the specific knock-down of both mRNAs resulted in polynuclear cells and decreased proliferation, along with dysfunctional cell division followed by increased apoptosis. Thus, the present data suggest a role for AAA-TOB3s/l in tumor progression.

Motti ML, Califano D, Baldassarre G, et al.
Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas.
Carcinogenesis. 2005; 26(6):1021-34 [PubMed] Related Publications
In the present study, we have characterized several human thyroid cancer cell lines of different histotypes for their responsiveness to contact inhibition. We found that cells derived from differentiated carcinoma (TPC-1, WRO) arrest in G(1) phase at confluence, whereas cells derived from anaplastic carcinoma (ARO, FRO and FB1) continue to grow after reaching confluence. Furthermore, we provide experimental evidence that the axis, E-cadherin/beta-catenin/p27(Kip1), represents an integral part of the regulatory mechanism that controls proliferation at a high cell density, whose disruption may play a key role in determining the clinical behaviour of thyroid cancer. This conclusion derives from the finding that: (i) the expression of p27(Kip1) is enhanced at high cell density only in cells responsive to contact inhibition (TPC-1, WRO), but not in contact-inhibition resistant cells (ARO, FRO or FB1 cells); (ii) the increase in p27(Kip1) also resulted in increased levels of p27(Kip1) bound to cyclin E-Cdk2 complex, a reduction in cyclin E-Cdk2 activity and dephosphorylation of the retinoblastoma protein; (iii) antisense inhibition of p27(Kip1) upregulation at high cell density in confluent-sensitive cells completely prevents the confluence-induced growth arrest; (iv) proper expression and/or membrane localization of E-cadherin is observed only in cells responsive to contact inhibition (TPC-1, NPA, WRO) but not in unresponsive cells (ARO, FRO or FB1); (v) disruption of E-cadherin-mediated cell-cell contacts at high cell density induced by an anti-E-cadherin neutralizing antibody, inhibits the induction of p27(kip1) and restores proliferation in contact-inhibited cells; (vi) re-expression of E-cadherin into cells unresponsive to contact inhibition (ARO, FB1) induces a p27(kip1) expression and growth arrest. In summary, our data indicate that the altered response to contact inhibition exhibited by thyroid anaplastic cancer cells is due to the failure to upregulate p27(Kip1) in response to cell-cell interactions.

van der Burg M, Poulsen TS, Hunger SP, et al.
Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia.
Leukemia. 2004; 18(5):895-908 [PubMed] Related Publications
Chromosome aberrations are frequently observed in precursor-B-acute lymphoblastic leukemias (ALL) and T-cell acute lymphoblastic leukemias (T-ALL). These translocations can form leukemia-specific chimeric fusion proteins or they can deregulate expression of an (onco)gene, resulting in aberrant expression or overexpression. Detection of chromosome aberrations is an important tool for risk classification. We developed rapid and sensitive split-signal fluorescent in situ hybridization (FISH) assays for six of the most frequent chromosome aberrations in precursor-B-ALL and T-ALL. The split-signal FISH approach uses two differentially labeled probes, located in one gene at opposite sites of the breakpoint region. Probe sets were developed for the genes TCF3 (E2A) at 19p13, MLL at 11q23, ETV6 at 12p13, BCR at 22q11, SIL-TAL1 at 1q32 and TLX3 (HOX11L2) at 5q35. In normal karyotypes, two colocalized green/red signals are visible, but a translocation results in a split of one of the colocalized signals. Split-signal FISH has three main advantages over the classical fusion-signal FISH approach, which uses two labeled probes located in two genes. First, the detection of a chromosome aberration is independent of the involved partner gene. Second, split-signal FISH allows the identification of the partner gene or chromosome region if metaphase spreads are present, and finally it reduces false-positivity.

Olstad OK, Gautvik VT, Reppe S, et al.
Molecular heterogeneity in human osteosarcoma demonstrated by enriched mRNAs isolated by directional tag PCR subtraction cloning.
Anticancer Res. 2003 May-Jun; 23(3B):2201-16 [PubMed] Related Publications
Directional tag PCR subtractive hybridization was applied to construct a cDNA library generated from three different human osteosarcoma (OS) target cell lines (OHS, SaOS-2 and KPDXM) from which normal osteoblast (NO) sequences were subtracted. After two consecutive subtractive steps more than 98% of the common mRNAs species were depleted, leading to effective enrichment of the remaining target sequences. After differential screening of 960 clones, 81 candidates were further studied by Northern blot analysis and 73 represented separate mRNA species. Fifty-three of these showed enriched mRNA levels, of which 36 represented known and 17 not previously published cDNAs or EST sequences. The mRNAs showed a 1.4- to 504-fold enrichment compared to the mRNA levels in NO cells. The known mRNAs are: Ribosomal protein S11, KSP-37, Tethering factor SEC34, FXYD6, Alpha enolase, G-s-alpha, GPR85, DAF, RPL35A, GIF, TAPA-1, ANAPC11, DCI, hsp27, MRPS7 homolog, eIF p110 subunit, DPH2L, HMG-14, FB1 protein, chondroitin-6-sulphonase, calgizzarin, RNA polymerase II subunit, RPL13A, DHS, gp96, HHP2, acidic ribosomal phosphoprotein P2, ANT-2, ARF1, AFG3L2, SKD3, phosphoglucoisomerase, GST pi, CKI gamma 2, DNA polymerase delta small subunit and TRAP delta. Sections of human osteosarcoma biopsies and a xenograft were studied by in situ analysis. Seven cDNAs highly expressed in Northern blot analysis were tested. Their in situ expression differed between the xenograft and human sections as did that of collagen I. In the xenograft made from one of the target cell lines (OHS), a fair to strong representation of 3 cloned mRNAs was observed while collagen I mRNA was not detectable. We conclude that the molecular heterogeneity of these tumors is considerable. These results ought to have implications for future work to describe phenotypic subtypes with the aim of improving the diagnosis of human osteosarcomas.

Brambillasca F, Mosna G, Ballabio E, et al.
Promoter analysis of TFPT (FB1), a molecular partner of TCF3 (E2A) in childhood acute lymphoblastic leukemia.
Biochem Biophys Res Commun. 2001; 288(5):1250-7 [PubMed] Related Publications
We previously identified the TFPT (FB1) gene as a molecular partner of TCF3 (E2A) in childhood pre-B cell acute lymphoblastic leukemia (ALL). TFPT (FB1) alignment in man, mouse and rat displays a very high degree of identity, indicating that it may play a basic role in mammalian cells. To get insights into this role, we have identified and studied the TFPT (FB1) promoter and its responsiveness to hematopoietic transcriptional factors. We found that the TFPT (FB1) 5' flanking sequence displays the features of a TATA-less promoter with weak homology to Inr (Initiator) elements. Starvation experiments suggested that TFPT (FB1) expression might be constitutive. Nevertheless, the TFPT (FB1) promoter, tested by transactivation assays, was found to be responsive to Ikaros 2 and, mainly, to PU.1, a transcription factor belonging to the Ets family. Thus, these hematopoietic factors, known to play critical roles during the early stages of B cell differentiation and to be involved in leukemia, might modulate TFPT (FB1) expression during hematopoiesis and/or leukemia development.

Brambillasca F, Mosna G, Colombo M, et al.
Identification of a novel molecular partner of the E2A gene in childhood leukemia.
Leukemia. 1999; 13(3):369-75 [PubMed] Related Publications
The 'promiscuous' E2A gene, at 19p13.3, is fused with two different molecular partners, PBX1 and HLF, following two chromosome translocations recurrent in childhood pre-B ALL. We have identified a novel gene, FB1, by virtue of its fusion with E2A and by a combination of molecular techniques. FB1 was localized on 19q13.4, suggesting that the novel chimera originated by a cryptic rearrangement of chromosome 19. Two FB1 transcripts, of 1.2 kb and 1.1 kb, are differentially expressed at low level in a variety of human tissues, including hemopoietic cell lines from different lineages. Accordingly, FB1 cDNA displays high homology with a number of cDNA clones from different human tissues. High homology was found also with cDNA clones from mouse and rat, suggesting that the sequence might be conserved at least among mammals. The function of the putative FB1 protein, however, is currently unknown as database sequence comparisons have failed to reveal strong homology with known proteins. The E2A/FB1 fusion appears to be a recurrent feature of pre-B ALLs, suggesting that it might have a role in the development and/or progression of leukemogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TFPT, Cancer Genetics Web: http://www.cancer-genetics.org/TFPT.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999