Gene Summary

Gene:AQP3; aquaporin 3 (Gill blood group)
Aliases: GIL, AQP-3
Summary:This gene encodes the water channel protein aquaporin 3. Aquaporins are a family of small integral membrane proteins related to the major intrinsic protein, also known as aquaporin 0. Aquaporin 3 is localized at the basal lateral membranes of collecting duct cells in the kidney. In addition to its water channel function, aquaporin 3 has been found to facilitate the transport of nonionic small solutes such as urea and glycerol, but to a smaller degree. It has been suggested that water channels can be functionally heterogeneous and possess water and solute permeation mechanisms. Alternative splicing of this gene results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Dec 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (20)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Latest Publications: AQP3 (cancer-related)

Ryu SH, Heo SH, Park EY, et al.
Selumetinib Inhibits Melanoma Metastasis to Mouse Liver via Suppression of EMT-targeted Genes.
Anticancer Res. 2017; 37(2):607-614 [PubMed] Related Publications
AIM: We investigated the therapeutic effects of a mitogen-activated protein (MEK) inhibitor, selumetinib, in a hepatic melanoma metastasis model and studied its possible mechanism of action.
MATERIALS AND METHODS: Melanoma cell lines were exposed to selumetinib under different experimental conditions. We established a mouse model of liver metastasis and treated mice orally with vehicle or selumetinib and then evaluated metastasis progress.
RESULTS: Growth inhibition was observed in melanoma cells as a consequence of G1-phase cell-cycle arrest and the subsequent induction of apoptosis in a dose- and time-dependent manner. Mice with established liver metastases that were treated with selumetinib exhibited significantly less tumor progression than vehicle-treated mice. c-Myc expression in metastasized liver tissues were suppressed by selumetinib. Moreover, oral treatment with selumetinib modulated expression of epithelial-to-mesenchymal transition- and metastasis-related genes, including integrin alpha-5 (ITGA5), jagged 1 (JAG1), zinc finger E-box-binding homeobox 1 (ZEB1), NOTCH, and serpin peptidase inhibitor clade E (SERPINE1).
CONCLUSION: We established a mouse model of hepatic metastasis using a human melanoma cell line, such models are essential in elucidating the therapeutic effects of anti-metastatic drugs. Our data suggest the possibility that selumetinib presents a new strategy to treat liver metastasis in patients with melanoma by suppressing epithelial-to-mesenchymal transition-related genes.

Kim R, Park SI, Lee CY, et al.
Alternative new mesenchymal stem cell source exerts tumor tropism through ALCAM and N-cadherin via regulation of microRNA-192 and -218.
Mol Cell Biochem. 2017; 427(1-2):177-185 [PubMed] Free Access to Full Article Related Publications
Gliomas are the most common type of malignant primary brain tumors. Some treatments of gliomas exist, but they are rarely curative. Mesenchymal stem cells (MSCs) are emerging as potential modes of targeted cancer therapy owing to their capacity for homing toward tumor sites. It has been proposed that MSCs derived from various sources, such as bone marrow, adipose tissue and umbilical cord blood, can be used as cell-based therapy for brain tumors. Here, MSCs obtained from the synovial fluid of osteoarthritis or rheumatoid arthritis patients were investigated as therapeutic candidates. Specifically, we compared migratory and adhesive abilities, as well as expression levels of related genes and microRNA in bone marrow derived-MSCs (BMMSCs), adipose derived-MSCs (ADMSCs), and synovial fluid derived-MSCs (SFMSCs) after treatment with conditioned medium from gliomas. Migration and adhesion of SFMSCs increased through upregulation of the activated lymphocyte cell adhesion molecule (ALCAM) and N-cadherin by microRNA-192 and -218 downregulation, similar to BMMSCs and ADMSCs. Migratory capacities of all types of MSCs were evaluated in vivo, and SFMSCs migrated intensively toward gliomas. These results suggest that SFMSCs have potential for use in cell-based antitumor therapies.

Hua Y, Ma X, Liu X, et al.
Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma.
APMIS. 2017; 125(2):93-100 [PubMed] Related Publications
Rectal cancer is a common malignant tumor of the digestive tract, with a high incidence and high mortality. This study aimed to identify the potential biomarkers and therapeutic targets for rectal adenocarcinoma (RAC) metastasis. The expression profiling of RAC patients with metastasis and RAC patients without metastasis was downloaded from The Cancer Genome Atlas (TCGA) database. The datasets were used to identify the genes associated with RAC metastasis. Fifty up-regulated genes and seventeen down-regulated genes were identified in the primary tumor loci of RAC metastasis compared with non-metastasis. Sixty-seven dysregulated gens were conducted to construct the protein-protein network, and CCND3 was the hub protein. The dysregulated genes were significantly enriched in pancreatic secretion, cell adhesion molecules pathways, response to vitamin D of biological process, and retinoid binding of molecular function. Quantitative real-time polymerase chain reaction results demonstrated that CCND3, AQP3, PEG10, and RAB27B had the up-regulated tendency in RAC metastasis; ADCY1 had the down-regulated tendency in RAC metastasis. CCND3, AQP3, PEG10, RAB27B, and ADCY1 might play essential roles in the metastasis process of RAC through pancreatic secretion and cell adhesion molecules pathways. The five genes could be potential diagnosis biomarkers or therapeutic targets for RAC metastasis.

Son KH, Hong JH, Lee JW
Carbon nanotubes as cancer therapeutic carriers and mediators.
Int J Nanomedicine. 2016; 11:5163-5185 [PubMed] Free Access to Full Article Related Publications
Carbon nanotubes (CNTs) have received increasing attention in biomedical fields because of their unique structures and properties, including high aspect ratios, large surface areas, rich surface chemical functionalities, and size stability on the nanoscale. Particularly, they are attractive as carriers and mediators for cancer therapy. Through appropriate functionalization, CNTs have been used as nanocarriers for anticancer drugs including doxorubicin, camptothecin, carboplatin, cisplatin, paclitaxel, Pt(II), and Pt(IV), and genes including plasmid DNA, small-interfering RNA, oligonucleotides, and RNA/DNA aptamers. CNTs can also deliver proteins and immunotherapy components. Using combinations of light energy, they have also been applied as mediators for photothermal therapy and photodynamic therapy to directly destroy cancer cells without severely damaging normal tissue. If limitations such as a long-term cytotoxicity in the body, lack of size uniformity during the synthetic process, loading deviations for drug-CNT complexes, and release controllability at the target point are overcome, CNTs will become one of the strongest tools that are available for various other biomedical fields as well as for cancer therapy.

Gil D, Ciołczyk-Wierzbicka D, Dulińska-Litewka J, Laidler P
Integrin-linked kinase regulates cadherin switch in bladder cancer.
Tumour Biol. 2016; 37(11):15185-15191 [PubMed] Free Access to Full Article Related Publications
Cadherin switch is specific of epithelial-mesenchymal transition (EMT) and is closely related to tumor cell invasion. However, the molecular mechanism that promotes the phenotypic changes remains unclear and elusive. We found that integrin-linked kinase (ILK) is a key factor involved in cadherin switch. The expression and activity of ILK are elevated in a variety of cancers but its mechanisms are not exactly understood. In this report, we studied the role and mechanism of ILK in EMT of human bladder cancer. We showed that silencing of ILK expression by small interfering RNA (siRNA) significantly abolished the nuclear translocation or the presence of markers associated with EMT like Snail, Twist, Zeb, and beta-catenin. ILK knockdown by siRNA suppressed N-cadherin expression and increased re-expression of E-cadherin in bladder cancer cells. We suggest that ILK is a major signaling factor involved in EMT. It is essential to understand the molecular mechanism of EMT in aim to possibly use it in search for new therapeutic targets.

Choi HJ, Jang S, Ryu JE, et al.
Significance of EZH2 expression in canine mammary tumors.
BMC Vet Res. 2016; 12(1):164 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Current studies report that aberrations in epigenetic regulators or chromatin modifications are related to tumor development and maintenance. EZH2 (Enhancer of zeste homolog 2) is one of the catalytic subunits of Polycomb repressive complex 2, a crucial epigenetic regulator. EZH2 has a master regulatory function in such processes as cell proliferation, stem cell differentiation, and early embryogenesis. In humans, EZH2 is linked to oncogenic function in several carcinomas, including breast cancer, and dysregulation of EZH2 has been particularly associated with loss of differentiation and the development of poorly differentiated breast cancer. In our present study, we were interested in determining whether EZH2 is increased in canine mammary tumors, which show similarities to human breast cancer.
RESULTS: Investigation of the expression of EZH2 in canine mammary tumors revealed that EZH2 protein was overexpressed in canine mammary carcinomas, as in human breast cancer. In addition, the immunohistochemical expression level of EZH2 was associated with the degree of malignancy in canine mammary carcinoma. This is the first report to describe EZH2 expression in canine mammary tumors.
CONCLUSIONS: Because the expression of EZH2 was similar in canine mammary carcinoma and human breast cancer, spontaneous canine mammary tumors may be a suitable model for studying EZH2 and treatment development.

Gong EY, Shin YJ, Hwang IY, et al.
Combined treatment with vitamin C and sulindac synergistically induces p53- and ROS-dependent apoptosis in human colon cancer cells.
Toxicol Lett. 2016; 258:126-33 [PubMed] Related Publications
Sulindac has anti-neoplastic properties against colorectal cancers; however, its use as a chemopreventive agent has been limited due to toxicity and efficacy concerns. Combinatorial treatment of colorectal cancers has been attempted to maximize anti-cancer efficacy with minimal side effects by administrating NSAIDs in combination with other inhibitory compounds or drugs such as l-ascorbic acid (vitamin C), which is known to exhibit cytotoxicity towards various cancer cells at high concentrations. In this study, we evaluated a combinatorial strategy utilizing sulindac and vitamin C. The death of HCT116 cells upon combination therapy occurred via a p53-mediated mechanism. The combination therapeutic resistance developed in isogenic p53 null HCT116 cells and siRNA-mediated p53 knockdown HCT116 cells, but the exogenous expression of p53 in p53 null isogenic cells resulted in the induction of cell death. In addition, we investigated an increased level of intracellular ROS (reactive oxygen species), which was preceded by p53 activation. The expression level of PUMA (p53-upregulated modulator of apoptosis), but not Bim, was significantly increased in HCT116 cells in response to the combination treatment. Taken together, our results demonstrate that combination therapy with sulindac and vitamin C could be a novel anti-cancer therapeutic strategy for p53 wild type colon cancers.

Byun JM, Kim YJ, Yoon HJ, et al.
Cytogenetic profiles of 2806 patients with acute myeloid leukemia-a retrospective multicenter nationwide study.
Ann Hematol. 2016; 95(8):1223-32 [PubMed] Related Publications
The cytogenetic and molecular data is recognized as the most valuable prognostic factor in acute myeloid leukemia (AML). Our aim was to systemically analyze the cytogenetics of Korean AML patients and to compare the cytogenetic profiles of various races to identify possible geographic heterogeneity. We retrospectively reviewed medical records of 2806 AML patients diagnosed at 11 tertiary teaching hospitals in Korea between January 2007 and December 2011. The most common recurrent chromosomal abnormality was t(8;21) (8.8 %, 238/2717), but t(15;17) showed an almost same number (8.6 %,235/2717). Among de novo AML, the most frequent aberrations were t(15;17), observed in 229 (10.7 %). The most common French-American-British (FAB) classification type was M2 (32.2 %), and recurrent cytogenetic abnormalities correlated with the FAB subtypes. Among 283 secondary AML cases, myelodysplastic syndrome was the most common predisposing factor. About 67.1 % of the secondary AML cases were associated with chromosomal aberrations, and chromosome 7 abnormalities (n = 45, 15.9 %) were most common. The incidence of FLT3 internal tandem duplication mutation was relatively low at 15 %. Our study reports certain similarities and differences in comparison to previous reports. Such discrepancies call for extensive epidemiological studies to clarify the role of genetic as well as geographic heterogeneity in the pathogenesis of AML.

Nik-Zainal S, Davies H, Staaf J, et al.
Landscape of somatic mutations in 560 breast cancer whole-genome sequences.
Nature. 2016; 534(7605):47-54 [PubMed] Free Access to Full Article Related Publications
We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.

Chen XF, Li CF, Lü L, Mei ZC
Expression and clinical significance of aquaglyceroporins in human hepatocellular carcinoma.
Mol Med Rep. 2016; 13(6):5283-9 [PubMed] Related Publications
Aquaglyceroporins (AQPs) are a subset of the aquaporin family, and are permeable to water and glycerol. The aim of the present study was to determine the expression and clinical significance of three AQPs, AQP3, 7 and 9 in hepatocellular carcinoma (HCC). Fresh HCC and adjacent non‑tumorous liver tissues were collected from 68 patients diagnosed with HCC. The expression levels of AQP3, 7 and 9 were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical analysis. The association between the expression of AQPs and clinicopathological parameters of HCC were investigated. Compared with non‑tumorous liver tissue, HCC tissues exhibited a significant (P<0.05) increase in the expression of AQP3 and a concomitant reduction in the expression levels of AQP7 and AQP9, at both the mRNA and protein levels. Immunohistochemistry revealed that AQP9 was dominantly localized on the plasma membrane of hepatocytes, while AQP3 and AQP7 exhibited a predominantly cytoplasmic and nuclear distribution. High expression of AQP3 was significantly (P<0.05) associated with low expression levels of AQP7 and AQP9. High expression of AQP3 was correlated with tumor grade (P=0.017), tumor stage (P=0.010) and lymphatic metastasis (P=0.031). Low expression of AQP7 was correlated with tumor grade (P=0.043). AQP3 was upregulated, and AQP7 and AQP9 were downregulated in HCC. A high expression of AQP3 and low expression of AQP7 was significantly associated with the aggressive features of HCC.

Yoo JO, Kwak SY, An HJ, et al.
miR-181b-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG.
Biochim Biophys Acta. 2016; 1863(7 Pt A):1601-11 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) is essential for increased invasion and metastasis during cancer progression. Among the candidate EMT-regulating microRNAs that we previously identified, miR-181b-3p was found to induce EMT in MCF7 breast cancer cells, as indicated by an EMT-characteristic morphological change, increased invasiveness, and altered expression of an EMT marker. Transfection with a miR-181b-3p inhibitor reduced the expression of mesenchymal markers and the migration and invasion of highly invasive breast cancer cells. miR-181b-3p induced the upregulation of Snail, a master EMT inducer and transcriptional repressor of E-cadherin, through protein stabilization. YWHAG was identified as a direct target of miR-181b-3p, downregulation of which induced Snail stabilization and EMT phenotypes. Ectopic expression of YWHAG abrogated the effect of miR-181b-3p, including Snail stabilization and the promotion of invasion. In situ hybridization and immunohistochemical analyses indicated that YWHAG expression was inversely correlated with the expression of miR-181b-3p and Snail in human breast cancer tissues. Furthermore, transfection with miR-181b-3p increased the frequency of metastatic nodule formation in the lungs of mice in experimental metastasis assays using MDA-MB-231 cells. Taken together, our data suggest that miR-181b-3p functions as a metastasis activator by promoting Snail-induced EMT, and may therefore be a therapeutic target in metastatic cancers.

Kim YA, Lee HJ, Heo SH, et al.
MxA expression is associated with tumor-infiltrating lymphocytes and is a prognostic factor in triple-negative breast cancer.
Breast Cancer Res Treat. 2016; 156(3):597-606 [PubMed] Related Publications
Interferons (IFNs) play an important role in tumor-immune system interactions. As one of the main mediators of IFNs, myxovirus resistance A (MxA) is upregulated in various cancers. However, the exact role of MxA in breast cancer is not fully understood. As part of the immune response to tumors, tumor-infiltrating lymphocytes (TILs) have prognostic significance in breast cancer. The aim of our present study was to examine the relationship between MxA and immune system components, including the amount of TILs and human leukocyte antigen (HLA) expression, in breast cancer. TILs, MxA expression, HLA intensity, and clinicopathological factors were retrospectively analyzed in 688 patients with primary breast cancer between 1993 and 1998 and in 705 patients with triple-negative breast cancer (TNBC) between 2004 and 2011. MxA expression was higher in TNBC tumors than in other subtypes. High MxA levels were associated with a higher histologic grade, abundant TILs, and stronger HLA-ABC expression in both the TNBC subtype within the consecutive breast cancer cohort and the validation TNBC cohort. MxA expression showed a significant positive correlation with TILs, the number of CD8(+) cells, and the number of CD69(+) cells in the validation TNBC cohort. High MxA levels and abundant TILs were found to be independent prognostic factors for disease-free survival in patients with TNBC. These results indicate that MxA expression is closely related to TILs in TNBC and, along with TILs, provides prognostic information after chemotherapy in patients with TNBC.

Yoon RG, Kim HS, Paik W, et al.
Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation.
Eur Radiol. 2017; 27(1):255-266 [PubMed] Related Publications
OBJECTIVES: The aim of this study was to determine whether diffusion and perfusion imaging parameters demonstrate different diagnostic values for predicting pseudoprogression between glioblastoma subgroups stratified by O(6)-mythylguanine-DNA methyltransferase (MGMT) promoter methylation status.
METHODS: We enrolled seventy-five glioblastoma patients that had presented with enlarged contrast-enhanced lesions on magnetic resonance imaging (MRI) one month after completing concurrent chemoradiotherapy and undergoing MGMT promoter methylation testing. The imaging parameters included 10 or 90 % histogram cutoffs of apparent diffusion coefficient (ADC10), normalized cerebral blood volume (nCBV90), and initial area under the time signal-intensity curve (IAUC90). The results of the areas under the receiver operating characteristic curve (AUCs) with cross-validation were compared between MGMT methylation and unmethylation groups.
RESULTS: MR imaging parameters demonstrated a trend toward higher accuracy in the MGMT promoter methylation group than in the unmethylation group (cross-validated AUCs = 0.70-0.95 and 0.56-0.87, respectively). The combination of MGMT methylation status with imaging parameters improved the AUCs from 0.70 to 0.75-0.90 for both readers in comparison with MGMT methylation status alone. The probability of pseudoprogression was highest (95.7 %) when nCBV90 was below 4.02 in the MGMT promoter methylation group.
CONCLUSIONS: MR imaging parameters could be stronger predictors of pseudoprogression in glioblastoma patients with the methylated MGMT promoter than in patients with the unmethylated MGMT promoter.
KEY POINTS: • The glioblastoma subgroup was stratified according to MGMT promoter methylation status. • Diagnostic values of diffusion and perfusion parameters for predicting pseudoprogression were compared. • Imaging parameters showed higher diagnostic accuracy in the MGMT promoter methylation group. • Imaging parameters were independent to MGMT promoter methylation status for predicting pseudoprogression. • Imaging biomarkers might demonstrate different diagnostic values according to MGMT promoter methylation.

Jo S, Lee YL, Kim S, et al.
PCGF2 negatively regulates arsenic trioxide-induced PML-RARA protein degradation via UBE2I inhibition in NB4 cells.
Biochim Biophys Acta. 2016; 1863(7 Pt A):1499-509 [PubMed] Related Publications
Arsenic trioxide (ATO) is a therapeutic agent for acute promyelocytic leukemia (APL) which induces PML-RARA protein degradation via enhanced UBE2I-mediated sumoylation. PCGF2, a Polycomb group protein, has been suggested as an anti-SUMO E3 protein by inhibiting the sumoylation of UBE2I substrates, HSF2 and RANGAP1, via direct interaction. Thus, we hypothesized that PCGF2 might play a role in ATO-induced PML-RARA degradation by interacting with UBE2I. PCGF2 protein was down-regulated upon ATO treatment in human APL cell line, NB4. Knockdown of PCGF2 in NB4 cells, in the absence of ATO treatment, was sufficient to induce sumoylation-, ubiquitylation- and PML nuclear body-mediated degradation of PML-RARA protein. Moreover, overexpression of PCGF2 protected ATO-mediated degradation of ectopic and endogenous PML-RARA in 293T and NB4 cells, respectively. In 293T cells, UBE2I-mediated PML-RARA degradation was reduced upon PCGF2 co-expression. In addition, UBE2I-mediated sumoylation of PML-RARA was reduced upon PCGF2 co-expression and PCGF2-UBE2I interaction was confirmed by co-immunoprecipitation. Likewise, endogenous PCGF2-UBE2I interaction was detected by co-immunoprecipitation and immunofluorescence assays in NB4 cells. Intriguingly, upon ATO-treatment, such interaction was disrupted and UBE2I was co-immunoprecipitated or co-localized with its SUMO substrate, PML-RARA. Taken together, our results suggested a novel role of PCGF2 in ATO-mediated degradation of PML-RARA that PCGF2 might act as a negative regulator of UBE2I via direct interaction.

Peng R, Zhao GX, Li J, et al.
Auphen and dibutyryl cAMP suppress growth of hepatocellular carcinoma by regulating expression of aquaporins 3 and 9 in vivo.
World J Gastroenterol. 2016; 22(12):3341-54 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate whether the regulation of aquaporin 3 (AQP3) and AQP9 induced by Auphen and dibutyryl cAMP (dbcAMP) inhibits hepatic tumorigenesis.
METHODS: Expression of AQP3 and AQP9 was detected by Western blot, immunohistochemistry (IHC), and RT-PCR in HCC samples and paired non-cancerous liver tissue samples from 30 hepatocellular carcinoma (HCC) patients. A xenograft tumor model was used in vivo. Nine nude mice were divided into control, Auphen-treated, and dbcAMP-treated groups (n = 3 for each group). AQP3 and AQP9 protein expression after induction of xenograft tumors was detected by IHC and mRNA by RT-PCR analysis. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and histological evaluation were used to detect apoptosis of tumor cells, and the concentration of serum α-fetoprotein (AFP) was measured using RT-PCR and an ELISA kit.
RESULTS: The volumes and weights of tumors decreased significantly in the Auphen- and dbcAMP-treated mice compared with the control mice (P < 0.01). The levels of AQP3 were significantly lower in the Auphen treatment group, and levels of AQP9 were significantly higher in thedbcAMP treatment mice than in the control mice (P < 0.01). The reduction of AQP3 by Auphen and increase of AQP9 by dbcAMP in nude mice suppressed tumor growth of HCC, which resulted in reduced AFP levels in serum and tissues, and apoptosis of tumor cells in the Auphen- and dbcAMP-treated mice, when compared with control mice (P < 0.01). Compared with para-carcinoma tissues, AQP3 expression increased in tumor tissues whereas the expression of AQP9 decreased. By correlating clinicopathological and expression levels, we demonstrated that the expression of AQP3 and AQP9 was correlated with clinical progression of HCC and disease outcomes.
CONCLUSION: AQP3 increases in HCC while AQP9 decreases. Regulation of AQP3 and AQP9 expression by Auphen and dbcAMP inhibits the development and growth of HCC.

Dong HJ, Jang GB, Lee HY, et al.
The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells.
Sci Rep. 2016; 6:22966 [PubMed] Free Access to Full Article Related Publications
Hypoxia, a feature common to most solid tumors, is known to regulate many aspects of tumorigenesis. Recently, it was suggested that hypoxia increased the size of the cancer stem-cell (CSC) subpopulations and promoted the acquisition of a CSC-like phenotype. However, candidate hypoxia-regulated mediators specifically relevant to the stemness-related functions of colorectal CSCs have not been examined in detail. In the present study, we showed that hypoxia specifically promoted the self-renewal potential of CSCs. Through various in vitro studies, we found that hypoxia-induced Wnt/β-catenin signaling increased the occurrence of CSC-like phenotypes and the level of Id2 expression in colorectal-cancer cells. Importantly, the levels of hypoxia-induced CSC-sphere formation and Id2 expression were successfully attenuated by treatment with a Wnt/β-catenin-signaling inhibitor. We further demonstrated, for the first time, that the degree of hypoxia-induced CSC-sphere formation (CD44(+) subpopulation) in vitro and of tumor metastasis/dissemination in vivo were markedly suppressed by knocking down Id2 expression. Taken together, these data suggested that Wnt/β-catenin signaling mediated the hypoxia-induced self-renewal potential of colorectal-cancer CSCs through reactivating Id2 expression.

Legendre CR, Demeure MJ, Whitsett TG, et al.
Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer.
PLoS One. 2016; 11(3):e0150629 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options.
OBJECTIVE: Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC.
DESIGN: In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors.
RESULTS: This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC.
CONCLUSIONS: DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors.

Cho HJ, Lim do Y, Kwon GT, et al.
Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest.
Int J Mol Sci. 2016; 17(2):264 [PubMed] Free Access to Full Article Related Publications
Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC.

Hara-Chikuma M, Watanabe S, Satooka H
Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells.
Biochem Biophys Res Commun. 2016; 471(4):603-9 [PubMed] Related Publications
Aquaporin 3 (AQP3), a water/glycerol channel protein, is capable of transporting hydrogen peroxide (H2O2). Here, we show that AQP3-mediated intracellular H2O2 is involved in epidermal growth factor (EGF)-induced cell signaling and its dependent cell function in the EGF receptor (EGFR)-positive cancer cell lines A431 and H1666. AQP3 knockdown suppressed the transport into the cells of extracellular H2O2 produced in response to EGF in A431 and H1666 cells. EGF-induced Erk and Akt activation, which occurred through SHP2 and/or PTEN modulation, was impaired by AQP3 knockdown. Cell growth and migration induced by EGF stimulation were attenuated in AQP3 knockdown cells compared with those in control cells. Coincidentally, tumor growth of A431 cell xenografts in immunodeficient mice was decreased by AQP3 knockdown. Accordingly, a xenograft with AQP3 knockdown A431 cells significantly enhanced the survival of recipient mice compared with the transplantation with control cells. In addition, AQP3 associated with EGFR and NADPH oxidase 2, which we propose is linked to AQP3 producing a localized increase in intracellular H2O2 to function as a second messenger during EGFR cell signaling. Therefore, our findings suggest that AQP3 is required for EGF-EGFR cell signaling in cancer cells and is a therapeutic target for cancer progression.

Yun BH, Chon SJ, Choi YS, et al.
Pathophysiology of Endometriosis: Role of High Mobility Group Box-1 and Toll-Like Receptor 4 Developing Inflammation in Endometrium.
PLoS One. 2016; 11(2):e0148165 [PubMed] Free Access to Full Article Related Publications
Oxidative stress has been proposed as a potential factor associated with the establishment and progression of endometriosis. Although a few studies have shown possible mechanisms which may play roles in development, progression of endometriosis, few are known in regards of initiation of the disease, especially in the relationship with endometrium. The aim of our study was to investigate whether normal endometrium may be changed by Damage-associated molecular patterns (DAMPs), which may contribute developing pathologic endometrium to induce endometriosis. Endometrial tissues were obtained from 10 patients with fibroids undergoing hysterectomy at a university hospital. High mobility group box-1 (HMGB-1), which is a representative DAMP, has been chosen that may induce alteration in endometrium. In preceding immunohistochemistry experiments using paraffin-block sections from endometriosis (N = 33) and control (N = 27) group, retrospectively, HMGB-1 expression was shown in both epithelial and stromal cell. HMGB-1 expression was significantly increased in secretory phase of endometriosis group, comparing to the controls. To examine the alteration of endometrial stromal cell (HESC) by oxidative stress in terms of HMGB-1, cell proliferation and expression of its receptor, TLR4 was measured according to recombinant HMGB-1 use. Cell proliferation was assessed by CCK-8 assay; real-time PCR and western blotting were used to quantify Toll like receptor 4 (TLR4) mRNA and protein expression respectively. A TLR4 antagonist (LPS-RS) and an inhibitor of the NF-κB pathway (TPCA-1, an IKK-2 inhibitor) were used to confirm the relationships between HMGB-1, TLR4, and the NF-κB pathway. Passive release of HMGB-1 was significantly proportional to the increase in cell death (P<0.05). HESCs showed significant proliferation following treatment with rHMGB-1 (P<0.05), and increased TLR4 expression was observed following rHMGB-1 treatment (P<0.05) in a concentration-dependent manner. Treatment with a TLR4 antagonist and an NF-κB inhibitor resulted in suppression of rHMGB-1-induced HESC proliferation (P<0.05). Levels of IL-6 were significantly decreased following treatment with an NF-κB inhibitor (P<0.05). Our results support the development of altered, pathological endometrium resulted from oxidative stress in normal endometrium. These findings may provide important insights into the changes in endometrium linking the development and progression of endometriosis.

Jeong JH, Ahn JY, Park PW, et al.
A t(11;14)(p13;q11.2) in myelofibrosis following polycythemia vera.
Cancer Genet. 2016; 209(3):112-6 [PubMed] Related Publications
Chromosomal abnormalities at 14q11, which encodes the T-cell receptor α and δ chain genes, are generally specific for T-cell malignancies, and are rarely reported in other malignancies. We report a novel t(11;14)(p13;q11.2) in a patient with myelofibrosis (MF) following polycythemia vera (PV). This 55-year-old male developed post-PV MF 12 years after the initial diagnosis of PV. He had a normal karyotype at polycythemic disease stage, t(11;14)(p13;q11.2) was newly detected at the time of fibrotic transformation. Therefore, it is likely that this clonal chromosomal abnormality was associated with progression of disease.

Zhang H, Deng Z, Yang L, et al.
The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.
Int J Biochem Cell Biol. 2016; 72:89-99 [PubMed] Related Publications
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.

Gil M, Kim YK, Kim KE, et al.
Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity.
Biochem Biophys Res Commun. 2016; 470(1):213-9 [PubMed] Related Publications
Function of cellular prion protein (PrP(c)) in cancer progression has not been elucidated yet. Ectopic expression of PrP(c) increases the invasion and migration of breast cancer cell line, MCF-7 cells. Overexpressed PrP(c) increases matrix metalloprotease-9 (MMP-9) expression by enhancing association of NF-κB in promoter of MMP-9 gene and ERK signaling in MCF-7 cells. Whereas, silencing of PrP(c) by siRNA suppresses ERK activation and MMP-9 expression resulting the down-regulation of MD-MB231 cell migration and invasion. Overall, these results suggest that PrP(c) contribute the breast cancer invasion and migration via MMP-9.

Lee JY, Qing X, Xiumin W, et al.
Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02).
Oncotarget. 2016; 7(6):6984-93 [PubMed] Free Access to Full Article Related Publications
We hypothesized that plasma-based EGFR mutation analysis for NSCLC may be feasible for monitoring treatment response to EGFR TKIs and also predict drug resistance.Clinically relevant mutations including exon 19 deletion (ex19del), L858R and T790M were analyzed using droplet digital PCR (ddPCR) in longitudinally collected plasma samples (n = 367) from 81 NSCLC patients treated with EGFR TKI. Of a total 58 baseline cell-free DNA (cfDNA) samples available for ddPCR analysis, 43 (74.1%) had the same mutation in the matched tumors (clinical sensitivity: 70.8% [17/24] for L858R and 76.5% [26/34] for ex19del). The concordance rates of plasma with tissue-based results of EGFR mutations were 87.9% for L858R and 86.2% for ex19del. All 40 patients who were detected EGFR mutations at baseline showed a dramatic decrease of mutant copies (>50%) in plasma during the first two months after treatment. Median progression-free survival (PFS) was 10.1 months for patients with undetectable EGFR v 6.3 months for detectable EGFR mutations in blood after two-month treatment (HR 3.88, 95% CI 1.48-10.19, P = 0.006). We observed emerging resistance with early detection of T790M as a secondary mutation in 14 (28.6%) of 49 patients. Plasma-based EGFR mutation analysis using ddPCR can monitor treatment response to EGFR TKIs and can lead to early detection of EGFR TKIs resistance. Further studies confirming clinical implications of EGFR mutation in plasma are warranted to guide optimal therapeutic strategies upon knowledge of treatment response and resistance.

Bayliss R, Choi J, Fennell DA, et al.
Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs.
Cell Mol Life Sci. 2016; 73(6):1209-24 [PubMed] Free Access to Full Article Related Publications
A fusion between the EML4 (echinoderm microtubule-associated protein-like) and ALK (anaplastic lymphoma kinase) genes was identified in non-small cell lung cancer (NSCLC) in 2007 and there has been rapid progress in applying this knowledge to the benefit of patients. However, we have a poor understanding of EML4 and ALK biology and there are many challenges to devising the optimal strategy for treating EML4-ALK NSCLC patients. In this review, we describe the biology of EML4 and ALK, explain the main features of EML4-ALK fusion proteins and outline the therapies that target EML4-ALK. In particular, we highlight the recent advances in our understanding of the structures of EML proteins, describe the molecular mechanisms of resistance to ALK inhibitors and assess current thinking about combinations of ALK drugs with inhibitors that target other kinases or Hsp90.

Binenbaum Y, Na'ara S, Gil Z
Gemcitabine resistance in pancreatic ductal adenocarcinoma.
Drug Resist Updat. 2015; 23:55-68 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDA) ranks fourth among cancer related deaths. The disappointing 5-year survival rate of below 5% stems from drug resistance to all known therapies, as well as from disease presentation at a late stage when PDA is already metastatic. Gemcitabine has been the cornerstone of PDA treatment in all stages of the disease for the last two decades, but gemcitabine resistance develops within weeks of chemotherapy initiation. From a mechanistic perspective, gemcitabine resistance may result from alterations in drug metabolism until the point that the cytidine analog is incorporated into the DNA, or from mitigation of gemcitabine-induced apoptosis. Both of these drug resistance modalities can be either intrinsic to the cancer cell, or influenced by the cancer microenvironment. Mechanisms of intrinsic gemcitabine resistance are difficult to tackle, as many of the genes that drive the carcinogenic process itself also interfere with gemcitabine-induced apoptosis. In this regard, recent understanding of the involvement of microRNAs in gemcitabine resistance may offer new opportunities to overcome intrinsic gemcitabine resistance. The characteristically fibrotic and immune infiltrated stroma of PDA that accompanies tumor inception and expansion is a lush ground for treatments aimed at targeting tumor microenvironment-mediated drug resistance. In the last couple of years, drugs interfering with tumor microenvironment have matured to clinical trials. Although drugs inducing 'stromal depletion' have yet failed to improve survival, they have greatly increased our understanding of tumor microenvironment-mediated drug resistance. In this review we summarize the current knowledge on intrinsic and environment-mediated gemcitabine resistance, and discuss the impact of these pathways on patient screening, and on future treatments aimed to potentiate gemcitabine activity.

Kim MS, Lee WS, Jin W
TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression.
Mol Cells. 2016; 39(3):258-65 [PubMed] Free Access to Full Article Related Publications
In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.

Yun SM, Woo SH, Oh ST, et al.
Melatonin enhances arsenic trioxide-induced cell death via sustained upregulation of Redd1 expression in breast cancer cells.
Mol Cell Endocrinol. 2016; 422:64-73 [PubMed] Related Publications
Melatonin is implicated in various physiological functions, including anticancer activity. However, the mechanism(s) of its anticancer activity is not well understood. In the present study, we investigated the combined effects of melatonin and arsenic trioxide (ATO) on cell death in human breast cancer cells. Melatonin enhanced the ATO-induced apoptotic cell death via changes in the protein levels of Survivin, Bcl-2, and Bax, thus affecting cytochrome c release from the mitochondria to the cytosol. Interestingly, we found that the cell death induced by co-treatment with melatonin and ATO was mediated by sustained upregulation of Redd1, which was associated with increased production of reactive oxygen species (ROS). Combined treatment with melatonin and ATO induced the phosphorylation of JNK and p38 MAP kinase downstream from Redd1 expression. Rapamycin and S6K1 siRNA enhanced, while activation of mTORC1 by transfection with TSC2 siRNA suppressed the cell death induced by melatonin and ATO treatment. Taken together, our findings suggest that melatonin enhances ATO-induced apoptotic cell death via sustained upregulation of Redd1 expression and inhibition of mTORC1 upstream of the activation of the p38/JNK pathways in human breast cancer cells.

Esposito MT, Zhao L, Fung TK, et al.
Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors.
Nat Med. 2015; 21(12):1481-90 [PubMed] Related Publications
Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small-molecule inhibitor approaches. Here we demonstrate that AML driven by repressive transcription factors, including AML1-ETO (encoded by the fusion oncogene RUNX1-RUNX1T1) and PML-RARα fusion oncoproteins (encoded by PML-RARA) are extremely sensitive to poly (ADP-ribose) polymerase (PARP) inhibition, in part owing to their suppressed expression of key homologous recombination (HR)-associated genes and their compromised DNA-damage response (DDR). In contrast, leukemia driven by mixed-lineage leukemia (MLL, encoded by KMT2A) fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguingly, genetic or pharmacological inhibition of an MLL downstream target, HOXA9, which activates expression of various HR-associated genes, impairs DDR and sensitizes MLL leukemia to PARP inhibitors (PARPis). Conversely, HOXA9 overexpression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML.

Kastrinos F, Ojha RP, Leenen C, et al.
Comparison of Prediction Models for Lynch Syndrome Among Individuals With Colorectal Cancer.
J Natl Cancer Inst. 2016; 108(2) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recent guidelines recommend the Lynch Syndrome prediction models MMRPredict, MMRPro, and PREMM1,2,6 for the identification of MMR gene mutation carriers. We compared the predictive performance and clinical usefulness of these prediction models to identify mutation carriers.
METHODS: Pedigree data from CRC patients in 11 North American, European, and Australian cohorts (6 clinic- and 5 population-based sites) were used to calculate predicted probabilities of pathogenic MLH1, MSH2, or MSH6 gene mutations by each model and gene-specific predictions by MMRPro and PREMM1,2,6. We examined discrimination with area under the receiver operating characteristic curve (AUC), calibration with observed to expected (O/E) ratio, and clinical usefulness using decision curve analysis to select patients for further evaluation. All statistical tests were two-sided.
RESULTS: Mutations were detected in 539 of 2304 (23%) individuals from the clinic-based cohorts (237 MLH1, 251 MSH2, 51 MSH6) and 150 of 3451 (4.4%) individuals from the population-based cohorts (47 MLH1, 71 MSH2, 32 MSH6). Discrimination was similar for clinic- and population-based cohorts: AUCs of 0.76 vs 0.77 for MMRPredict, 0.82 vs 0.85 for MMRPro, and 0.85 vs 0.88 for PREMM1,2,6. For clinic- and population-based cohorts, O/E deviated from 1 for MMRPredict (0.38 and 0.31, respectively) and MMRPro (0.62 and 0.36) but were more satisfactory for PREMM1,2,6 (1.0 and 0.70). MMRPro or PREMM1,2,6 predictions were clinically useful at thresholds of 5% or greater and in particular at greater than 15%.
CONCLUSIONS: MMRPro and PREMM1,2,6 can well be used to select CRC patients from genetics clinics or population-based settings for tumor and/or germline testing at a 5% or higher risk. If no MMR deficiency is detected and risk exceeds 15%, we suggest considering additional genetic etiologies for the cause of cancer in the family.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. AQP3, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999