ATG7

Gene Summary

Gene:ATG7; autophagy related 7
Aliases: GSA7, APG7L, APG7-LIKE
Location:3p25.3
Summary:This gene was identified based on homology to Pichia pastoris GSA7 and Saccharomyces cerevisiae APG7. In the yeast, the protein appears to be required for fusion of peroxisomal and vacuolar membranes. The protein shows homology to the ATP-binding and catalytic sites of the E1 ubiquitin activating enzymes. [provided by RefSeq, Jan 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:ubiquitin-like modifier-activating enzyme ATG7
HPRD
Source:NCBIAccessed: 25 June, 2015

Ontology:

What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ATG7 (cancer-related)

Lu GD, Ang YH, Zhou J, et al.
CCAAT/enhancer binding protein α predicts poorer prognosis and prevents energy starvation-induced cell death in hepatocellular carcinoma.
Hepatology. 2015; 61(3):965-78 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P=0.017) and multivariate Cox regression (P=0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.
CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Zogovic N, Tovilovic-Kovacevic G, Misirkic-Marjanovic M, et al.
Coordinated activation of AMP-activated protein kinase, extracellular signal-regulated kinase, and autophagy regulates phorbol myristate acetate-induced differentiation of SH-SY5Y neuroblastoma cells.
J Neurochem. 2015; 133(2):223-32 [PubMed] Related Publications
We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering the autophagic response that counteracts differentiation process.

Sun R, Luo Y, Li J, et al.
Ammonium chloride inhibits autophagy of hepatocellular carcinoma cells through SMAD2 signaling.
Tumour Biol. 2015; 36(2):1173-7 [PubMed] Related Publications
Autophagy is a cellular degradation process for the clearance of damaged or superfluous proteins and organelles, the recycling of which serves as an alternative energy source during periods of metabolic stress to maintain cell homeostasis and viability. The anti-necrotic function of autophagy is critical for tumorigenesis of many tumor cells, including hepatocellular carcinoma (HCC). However, the underlying mechanism is not clarified yet. Ammonium chloride (NH4Cl) is a well-known autophagy inhibitor, whereas its interaction with SMAD2 signaling pathway has not been reported previously. Here, we show that NH4Cl significantly inhibited rapamycin-induced autophagy in HCC cells through decreasing the levels of Beclin-1, autophagy-related protein 7 (ATG7), p62, and autophagosome marker LC3 and significantly decreased the level of phosphorylated SMAD2 in rapamycin-treated HCC cells. In order to find out whether NH4Cl may inhibit the autophagy in rapamycin-treated HCC cells through inhibition of SMAD2 signaling, we used transforming growth factor β1 (TGFβ1) to induce phosphorylation of SMAD2 in HCC cells. We found that induction of SMAD2 in HCC cells completely abolished the inhibitory effect of NH4Cl on rapamycin-induced autophagy in HCC cells, suggesting that NH4Cl inhibits autophagy of HCC cells through inhibiting SMAD2 signaling.

Wang J, Gu S, Huang J, et al.
Inhibition of autophagy potentiates the efficacy of Gli inhibitor GANT-61 in MYCN-amplified neuroblastoma cells.
BMC Cancer. 2014; 14:768 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant Hedgehog (Hh) signaling is often associated with neuroblastoma (NB), a childhood malignancy with varying clinical outcomes due to different molecular characteristics. Inhibition of Hh signaling with small molecule inhibitors, particularly with GANT-61, significantly suppresses NB growth. However, NB with MYCN amplification is less sensitive to GANT-61 than those without MYCN amplification.
METHODS: Autophagic process was examined in two MYCN amplified and two MYCN non-amplified NB cells treated with GANT-61. Subsequently, chemical and genetic approaches were applied with GANT-61 together to evaluate the role of autophagy in GANT-61 induced cell death.
RESULTS: Here we show that GANT-61 enhanced autophagy in MYCN amplified NB cells. Both an autophagic inhibitor 3-methyladenine (3-MA) and genetic disruption of ATG5 or ATG7 expression suppressed GANT-61 induced autophagy and significantly increased apoptotic cell death, whereas pre-treatment with an apoptotic inhibitor, Z-VAD-FMK, rescued GANT-61 induced cell death and had no effect on the autophagic process. In the other hand, GANT-61 barely induced autophagy in MYCN non-amplified NB cells, but overexpression of MYCN in MYCN non-amplified NB cells recapitulated GANT-61 induced autophagy seen in MYCN amplified NB cells, suggesting that the level of GANT-61 induced autophagy in NB cells is related to MYCN expression level in cells.
CONCLUSION: Aberrant Hh signaling activation as an oncogenic driver in NB renders inhibition of Hh signaling an effective measure to suppress NB growth. However, our data suggest that enhanced autophagy concomitant with Hh signaling inhibition acts as a pro-survival factor to maintain cell viability, which reduces GANT-61 efficacy. Besides, MYCN amplification is likely involved in the induction of the pro-survival autophagy. Overall, simultaneous inhibition of both Hh signaling and autophagy could be a better way to treat MYCN amplified NB.

Kim JH, Hong SK, Wu PK, et al.
Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels.
Exp Cell Res. 2014; 327(2):340-52 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
While cellular LC3B and SQSTM1 levels serve as key autophagy markers, their regulation by different signaling pathways requires better understanding. Here, we report the mechanisms by which the Raf/MEK/ERK pathway regulates cellular LC3B and SQSTM1 levels. In different cell types, ΔRaf-1:ER- or B-Raf(V600E)-mediated MEK/ERK activation increased LC3B-I, LC3B-II, and SQSTM1/p62 levels, which was accompanied by increased BiP/GRP78 expression. Use of the autophagy inhibitors chloroquine and bafilomycin A1, or RNA interference of ATG7, suggested that these increases in LC3B and SQSTM1 levels were in part attributed to altered autophagic flux. However, intriguingly, these increases were also attributed to their increased expression. Upon Raf/MEK/ERK activation, mRNA levels of LC3B and SQSTM1 were also increased, and subsequent luciferase reporter analyses suggested that SQSTM1 upregulation was mediated at transcription level. Under this condition, transcription of BiP/GRP78 was also increased, which was necessary for Raf/MEK/ERK to regulate LC3B at the protein, but not mRNA, level. This suggests that BiP has a role in regulating autophagy machinery when Raf/MEK/ERK is activated. In conclusion, these results suggest that, under a Raf/MEK/ERK-activated condition, the steady-state cellular levels of LC3B and SQSTM1 can also be determined by their altered expression wherein BiP is utilized as an effector of the signaling.

Wei MF, Chen MW, Chen KC, et al.
Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells.
Autophagy. 2014; 10(7):1179-92 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133(+) cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133(+) cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.

Liu Q, Shi X, Zhou X, et al.
Effect of autophagy inhibition on cell viability and cell cycle progression in MDA‑MB‑231 human breast cancer cells.
Mol Med Rep. 2014; 10(2):625-30 [PubMed] Related Publications
Atg7 is an autophagy‑related gene, and is involved in two ubiquitin‑like conjugation systems in the process of autophagy. It is well established that 3‑methyladenine (3Ma) is an autophagy inhibitor. The present study aimed to investigate the effect of autophagy inhibition on the cell viability and cell cycle progression of human breast cancer cells. MDA‑MB‑231 human breast cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with high glucose, then divided into six groups. The six groups included the three fundamental groups as follows: The control group (untreated); the starvation group (high‑glucose DMEM replaced with glucose‑free minimal essential medium); and the starvation 3Ma group (maintained in glucose‑free culture medium and treated with the autophagy inhibitor 3Ma). The three fundamental groups were further divided into Atg7 siRNA‑transfected and non‑transfected groups. The cell viability and apoptosis of each group was determined by MTT assay and flow cytometry. The results of the current study demonstrated that Atg7 deficiency alone had no statically significant effect on the cell viability of MDA‑MB‑231 human breast cancer cells, while 3Ma reduced the cell viability and its effect was potentiated by Atg7 deficiency. Atg7 deficiency was more intense than 3Ma in the promotion of apoptosis and cell arrest in G0/G1‑phase in the absence of glucose and its effect was reduced by 3Ma. In conclusion, 3Ma and Atg7 may be involved in different pathways in the process of autophagy. Inhibition of autophagy may influence the cell viability and cell cycle through different pathways in MDA‑MB‑231 human breast cancer cells.

Hsieh MT, Chen HP, Lu CC, et al.
The novel pterostilbene derivative ANK-199 induces autophagic cell death through regulating PI3 kinase class III/beclin 1/Atg‑related proteins in cisplatin‑resistant CAR human oral cancer cells.
Int J Oncol. 2014; 45(2):782-94 [PubMed] Related Publications
Pterostilbene is an effective chemopreventive agent against multiple types of cancer cells. A novel pterostilbene derivative, ANK-199, was designed and synthesized by our group. Its antitumor activity and mechanism in cisplatin-resistant CAR human oral cancer cells were investigated in this study. Our results show that ANK-199 has an extremely low toxicity in normal oral cell lines. The formation of autophagic vacuoles and acidic vesicular organelles (AVOs) was observed in the ANK-199-treated CAR cells by monodansylcadaverine (MDC) and acridine orange (AO) staining, suggesting that ANK-199 is able to induce autophagic cell death in CAR cells. Neither DNA fragmentation nor DNA condensation was observed, which means that ANK-199-induced cell death is not triggered by apoptosis. In accordance with morphological observation, 3-MA, a specific inhibitor of PI3K kinase class III, can inhibit the autophagic vesicle formation induced by ANK-199. In addition, ANK-199 is also able to enhance the protein levels of autophagic proteins, Atg complex, beclin 1, PI3K class III and LC3-II, and mRNA expression of autophagic genes Atg7, Atg12, beclin 1 and LC3-II in the ANK-199-treated CAR cells. A molecular signaling pathway induced by ANK-199 was therefore summarized. Results presented in this study show that ANK-199 may become a novel therapeutic reagent for the treatment of oral cancer in the near future (patent pending).

Karsli-Uzunbas G, Guo JY, Price S, et al.
Autophagy is required for glucose homeostasis and lung tumor maintenance.
Cancer Discov. 2014; 4(8):914-27 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
UNLABELLED: Macroautophagy (autophagy hereafter) recycles intracellular components to sustain mitochondrial metabolism that promotes the growth, stress tolerance, and malignancy of lung cancers, suggesting that autophagy inhibition may have antitumor activity. To assess the functional significance of autophagy in both normal and tumor tissue, we conditionally deleted the essential autophagy gene, autophagy related 7 (Atg7), throughout adult mice. Here, we report that systemic ATG7 ablation caused susceptibility to infection and neurodegeneration that limited survival to 2 to 3 months. Moreover, upon fasting, autophagy-deficient mice suffered fatal hypoglycemia. Prior autophagy ablation did not alter the efficiency of non-small cell lung cancer (NSCLC) initiation by activation of oncogenic Kras(G12D) and deletion of the Trp53 tumor suppressor. Acute autophagy ablation in mice with preexisting NSCLC, however, blocked tumor growth, promoted tumor cell death, and generated more benign disease (oncocytomas). This antitumor activity occurred before destruction of normal tissues, suggesting that acute autophagy inhibition may be therapeutically beneficial in cancer.
SIGNIFICANCE: We systemically ablated cellular self-cannibalization by autophagy in adult mice and determined that it is dispensable for short-term survival, but required to prevent fatal hypoglycemia and cachexia during fasting, delineating a new role for autophagy in metabolism. Importantly, acute, systemic autophagy ablation was selectively destructive to established tumors compared with normal tissues, thereby providing the preclinical evidence that strategies to inhibit autophagy may be therapeutically advantageous for RAS-driven cancers.

Liou JS, Wu YC, Yen WY, et al.
Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest.
Toxicol Appl Pharmacol. 2014; 278(3):249-58 [PubMed] Related Publications
DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest.

Bosnjak M, Ristic B, Arsikin K, et al.
Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.
PLoS One. 2014; 9(4):e94374 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.

Palumbo S, Tini P, Toscano M, et al.
Combined EGFR and autophagy modulation impairs cell migration and enhances radiosensitivity in human glioblastoma cells.
J Cell Physiol. 2014; 229(11):1863-73 [PubMed] Related Publications
Glioblastoma (GBM) remains the most aggressive and lethal brain tumor due to its molecular heterogeneity and high motility and invasion capabilities of its cells, resulting in high resistance to current standard treatments (surgery, followed by ionizing radiation combined with Temozolomide chemotherapy administration). Locus amplification, gene overexpression, and genetic mutations of epidermal growth factor receptor (EGFR) are hallmarks of GBM that can ectopically activate downstream signaling oncogenic cascades such as PI3K/Akt/mTOR pathway. Importantly, alteration of this pathway, involved also in the regulation of autophagy process, can improve radioresistance in GBM cells, thus promoting the aggressive phenotype of this tumor. In this work, the endogenous EGFR expression profile and autophagy were modulated to increase radiosensitivity behavior of human T98G and U373MG GBM cells. Our results primarily indicated that EGFR interfering induced radiosensitivity according to a decrease of the clonogenic capability of the investigated cells, and an effective reduction of the in vitro migratory features. Moreover, EGFR interfering resulted in an increase of Temozolomide (TMZ) cytotoxicity in T98G TMZ-resistant cells. In order to elucidate the involvement of the autophagy process as pro-death or pro-survival role in cells subjected to EGFR interfering, the key autophagic gene ATG7 was silenced, thereby producing a transient block of the autophagy process. This autophagy inhibition rescued clonogenic capability of irradiated and EGFR-silenced T98G cells, suggesting a pro-death autophagy contribution. To further confirm the functional interplay between EGFR and autophagy pathways, Rapamycin-mediated autophagy induction during EGFR modulation promoted further impairment of irradiated cells, in terms of clonogenic and migration capabilities. Taken together, these results might suggest a novel combined EGFR-autophagy modulation strategy, to overcome intrinsic GBM radioresistance, thus improving the efficacy of standard treatments. J. Cell. Physiol. 229: 1863-1873, 2014. © 2014 Wiley Periodicals, Inc.

Gonzalez Y, Aryal B, Chehab L, Rao VA
Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress.
Oncotarget. 2014; 5(6):1526-37 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ.

Marchesi N, Osera C, Fassina L, et al.
Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields.
J Cell Physiol. 2014; 229(11):1776-86 [PubMed] Related Publications
In neurogenerative diseases, comprising Alzheimer's (AD), functional alteration in autophagy is considered one of the pathological hallmarks and a promising therapeutic target. Epidemiological investigations on the possible causes undergoing these diseases have suggested that electromagnetic fields (EMF) exposition can contribute to their etiology. On the other hand, EMF have therapeutic implications in reactivating neuronal functionality. To partly clarify this dualism, the effect of low-frequency EMF (LF-EMF) on the modulation of autophagy was investigated in human neuroblastoma SH-SY5Y cells, which were also subsequently exposed to Aβ peptides, key players in AD. The results primarily point that LF-EMF induce a significant reduction of microRNA 30a (miR-30a) expression with a concomitant increase of Beclin1 transcript (BECN1) and its corresponding protein. Furthermore, LF-EMF counteract the induced miR-30a up-regulation in the same cells transfected with miR-30a mimic precursor molecules and, on the other side, rescue Beclin1 expression after BECN1 siRNA treatment. The expression of autophagy-related markers (ATG7 and LC3B-II) as well as the dynamics of autophagosome formation were also visualized after LF-EMF exposition. Finally, different protocols of repeated LF-EMF treatments were assayed to contrast the effects of Aβ peptides in vitro administration. Overall, this research demonstrates, for the first time, that specific LF-EMF treatments can modulate in vitro the expression of a microRNA sequence, which in turn affects autophagy via Beclin1 expression. Taking into account the pivotal role of autophagy in the clearance of protein aggregates within the cells, our results indicate a potential cytoprotective effect exerted by LF-EMF in neurodegenerative diseases such as AD. J. Cell. Physiol. 229: 1776-1786, 2014. © 2014 Wiley Periodicals, Inc.

Ahmed NS, Elgendy M, Laufer S, Abadi AH
Discovery of a novel series of tetrahydro-β-carbolines inducing autophagic cell death in human metastatic melanoma.
Arch Pharm (Weinheim). 2014; 347(6):398-406 [PubMed] Related Publications
Herein, we report the synthesis of novel tetrahydro-β-carbolines that induce cell death via the autophagic pathway. Five of the new compounds induced cell death in a panel of patient-derived human metastatic melanoma cells. The autophagic pathway was confirmed using LC3 autophagosome markers; the involvement of ATG7 and Beclin 1 autophagy regulating genes was confirmed using infection with short hairpin RNA (shRNA) to silence Beclin 1 and ATG7. Compound VIII (IC50  = 2.34-5.15 μM) displayed activities greater than cisplatin against a panel of patient-derived human metastatic melanoma cell lines. The structure-activity relationship (SAR) of this class and the role of the absolute stereochemistry and geometrical isomerism are evaluated.

Ding YP, Yang XD, Wu Y, Xing CG
Autophagy promotes the survival and development of tumors by participating in the formation of vasculogenic mimicry.
Oncol Rep. 2014; 31(5):2321-7 [PubMed] Related Publications
Autophagy, type II nonapoptotic cell death, is characterized by the formation of double-membrane cytosolic vesicles, the recycling of damaged cytoplasmic content and the maintenance of genetic stability and cellular homeostasis, under conditions of nutrient starvation, hypoxia or other therapeutic stress. In the present study, we comprehensively discuss its indispensable role in the formation of vasculogenic mimicry (VM), capillary-like tubes consisting of cells from the tumor itself instead of vascular endothelial cells. A short hairpin RNA (shRNA) to silence beclin1, an autophagy-specific gene, was designed, synthesized and subcloned into a vector to establish an autophagy-inhibited group, while negative control and blank groups were also established using human gastric cancer SGC7901 cells. We then investigated the VM formation ability of these three groups and detected changes in gene expression, survival and invasion correspondingly. The results showed that, following the formation of VM, the expression of pluripotent genes (c-myc, oct3/4, sox-2) and autophagy-specific genes (beclin1, ATG5, ATG7) were increased, which was consistent with the negative control cell group. However, the autophagy inhibited cell group did not form VM, and the expression of pluripotent genes was decreased. Moreover, the inhibition of autophagy reduced the survival and invasive ability of cancer cells under stress. We suggest that during the formation of VM, the stable expression of genes and the maintenance of survival and invasion are indispensable. Under a stress environment, autophagy is activated to maintain the stability of gene expression, maintain survival and invasive ability and facilitate VM formation, which can provide nutrients, oxygen and invasive channels to tumors, facilitating survival and development under stress.

Nihira K, Miki Y, Ono K, et al.
An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells.
Cancer Sci. 2014; 105(5):568-75 [PubMed] Related Publications
p62/SQSTM1 (p62) is a multifunctional protein implicated in several signal transduction pathways and selectively degraded by autophagy, a process for lysosomal degradation of both protein and organelle. p62 was also recently reported to be overexpressed in various malignancies and its inhibition to suppress carcinoma cell proliferation. However, its correlation with autophagy in carcinoma cells has remained largely unknown. Therefore, in this study, we examined the effects of p62 inhibition on the regulation of autophagy and cell survival in p62-positive carcinoma cells. p62-silencing dramatically suppressed cell proliferation and induced autophagy in p62 expressing PC9 and A549 cells. Electron microscopical analysis revealed the formation of autophagosomes with multilayer membranes caused by p62-silencing. p62 silencing-mediated reduced cell viability was restored by both genomic and pharmacological inhibition of autophagy but not that of apoptosis. These findings were also detected in several types of carcinoma cell lines including adenocarcinomas and squamous cell carcinomas. Results of our present study revealed that an inhibition of p62 resulted in the formation of mis-regulated autophagosomes with multilayer membranes and an autophagic cell death, and p62 can therefore be an attractive target for the development of anti-neoplastic agents.

Kuo WL, Sharifi MN, Lingen MW, et al.
p62/SQSTM1 accumulation in squamous cell carcinoma of head and neck predicts sensitivity to phosphatidylinositol 3-kinase pathway inhibitors.
PLoS One. 2014; 9(3):e90171 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
The phosphoinositol-3 kinase (PI3K) pathway is highly dysregulated in squamous cell carcinoma of the head and neck (SCCHN). While inhibitors of the PI3K/AKT pathway are being developed in cancer, their efficacy does not appear to be related to the presence of mutations or amplification in pathway genes. The PI3K pathway is a major regulator of macro-autophagy, an evolutionarily conserved catabolic process that degrades cellular materials to promote cellular homeostasis and survival under stress. Employing a panel of SCCHN cell lines, we observed a significant correlation between the activity of PI3K/AKT inhibitors and their ability to induce autophagy. More specifically, resistance to these inhibitors was associated with accumulation of p62/SQSTM1, a pleotropic protein that is consumed during autophagy, while loss of autophagy was, for the first time, found to be due to silencing of an essential autophagy gene, ATG7. Moreover, modulating ATG7 and p62/SQSTM1 could regulate sensitivity to PI3K/AKT inhibitors, underscoring a mechanistic link between autophagy and drug sensitivity. Analysis of human tissues revealed progressive accumulation of p62/SQSTM1 in a significant proportion of cancer samples compared to normal tissue, suggesting that defective autophagy has relevance to SCCHN. These findings are further validated by analysis of TCGA data confirming homozygous deletion and mRNA down-regulation of ATG7 in 10.0% of SCCHN samples. Taken together, these data indicate that p62/SQSTM1 levels modulate sensitivity to PI3K/AKT inhibitors; cancers vary in their capacity to undergo autophagy through epigenetic modification and, when deficient, accumulate p62/SQSTM1; and expression of autophagy-related proteins may serve as markers for resistance to PI3K/AKT inhibitors in SCCHN.

Strohecker AM, White E
Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism.
Autophagy. 2014; 10(2):384-5 [PubMed] Related Publications
The role of autophagy in cancer is complex and context-dependent. Here we describe work with genetically engineered mouse models of non-small cell lung cancer (NSCLC) in which the tumor-suppressive and tumor-promoting function of autophagy can be visualized in the same system. We discovered that early tumorigenesis in Braf(V600E)-driven lung cancer is accelerated by autophagy ablation due to unmitigated oxidative stress, as observed with loss of Nfe2l2/Nrf2-mediated antioxidant defense. However, this growth advantage is eventually overshadowed by progressive mitochondrial dysfunction and metabolic insufficiency, and is associated with increased survival of mice bearing autophagy-deficient tumors. Atg7 deficiency alters progression of Braf(V600E)-driven tumors from adenomas (Braf(V600E); atg7(-/-)) and adenocarcinomas (trp53(-/-); Braf(V600E); atg7(-/-)) to benign oncocytomas that accumulated morphologically and functionally defective mitochondria, suggesting that defects in mitochondrial metabolism may compromise continued tumor growth. Analysis of tumor-derived cell lines (TDCLs) revealed that Atg7-deficient cells are significantly more sensitive to starvation than Atg7-wild-type counterparts, and are impaired in their ability to respire, phenotypes that are rescued by the addition of exogenous glutamine. Taken together, these data suggest that Braf(V600E)-driven tumors become addicted to autophagy as a means to preserve mitochondrial function and glutamine metabolism, and that inhibiting autophagy may be a powerful strategy for Braf(V600E)-driven malignancies.

Huang KH, Kuo KL, Ho IL, et al.
Celecoxib-induced cytotoxic effect is potentiated by inhibition of autophagy in human urothelial carcinoma cells.
PLoS One. 2013; 8(12):e82034 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC.

Jang YH, Choi KY, Min DS
Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy.
Cell Death Differ. 2014; 21(4):533-46 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7, which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase (AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in the molecular machinery regulating autophagy.

Rosenfeldt MT, O'Prey J, Morton JP, et al.
p53 status determines the role of autophagy in pancreatic tumour development.
Nature. 2013; 504(7479):296-300 [PubMed] Related Publications
Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy's role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)--the most common mutational event in PDAC--develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.

Chen S, Guan JL
Tumor-promoting and -suppressive roles of autophagy in the same mouse model of BrafV600E-driven lung cancer.
Cancer Discov. 2013; 3(11):1225-7 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Although a role of autophagy in cancer development and progression has received increasing appreciation in recent years, there are still significantly uncertain and conflicting results about its tumor-suppressive and -promoting functions, and, more importantly, a lack of understanding of mechanisms underlying these opposing activities. The work presented by Strohecker and colleagues uses an innovative approach to address these challenges by examining the effects of inactivating the key autophagy gene Atg7 at different stages of oncogenic development in a BrafV600E-driven mouse lung cancer model. The authors show that autophagy blockage initially accelerated tumor development, but suppressed tumor progression in later stages, converting adenomas to oncocytomas and increasing mouse survival. Importantly, they identify a critical role of glutamine dependency in the suppression of BrafV600E-induced cancer, thus revealing an important mechanism by which autophagy may promote tumor progression in different cellular contexts.

Fujiya M, Konishi H, Mohamed Kamel MK, et al.
microRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1.
Oncogene. 2014; 33(40):4847-56 [PubMed] Related Publications
It is well known that microRNAs (miRs) are abnormally expressed in various cancers and target the messenger RNAs (mRNAs) of cancer-associated genes. While (miRs) are abnormally expressed in various cancers, whether miRs directly target oncogenic proteins is unknown. The present study investigated the inhibitory effects of miR-18a on colon cancer progression, which was considered to be mediated through its direct binding and degradation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). An MTT assay and xenograft model demonstrated that the transfection of miR-18a induced apoptosis in SW620 cells. A binding assay revealed direct binding between miR-18a and hnRNP A1 in the cytoplasm of SW620 cells, which inhibited the oncogenic functions of hnRNP A1. A competitor RNA, which included the complementary sequence of the region of the miR-18a-hnRNP A1 binding site, repressed the effects of miR-18a on the induction of cancer cell apoptosis. In vitro single and in vivo double isotope assays demonstrated that miR-18a induced the degradation of hnRNP A1. An immunocytochemical study of hnRNP A1 and LC3-II and the inhibition of autophagy by 3-methyladenine and ATG7, p62 and BAG3 siRNA showed that miR-18a and hnRNP A1 formed a complex that was degraded through the autophagolysosomal pathway. This is the first report showing a novel function of a miR in the autophagolysosomal degradation of an oncogenic protein resulting from the creation of a complex consisting of the miR and a RNA-binding protein, which suppressed cancer progression.

Dragowska WH, Weppler SA, Wang JC, et al.
Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer.
PLoS One. 2013; 8(10):e76503 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Gefitinib (Iressa(®), ZD1839) is a small molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. We report on an early cellular response to gefitinib that involves induction of functional autophagic flux in phenotypically diverse breast cancer cells that were sensitive (BT474 and SKBR3) or insensitive (MCF7-GFPLC3 and JIMT-1) to gefitinib. Our data show that elevation of autophagy in gefitinib-treated breast cancer cells correlated with downregulation of AKT and ERK1/2 signaling early in the course of treatment. Inhibition of autophagosome formation by BECLIN-1 or ATG7 siRNA in combination with gefitinib reduced the abundance of autophagic organelles and sensitized SKBR3 but not MCF7-GFPLC3 cells to cell death. However, inhibition of the late stage of gefitinib-induced autophagy with hydroxychloroquine (HCQ) or bafilomycin A1 significantly increased (p<0.05) cell death in gefitinib-sensitive SKBR3 and BT474 cells, as well as in gefitinib-insensitive JIMT-1 and MCF7-GFPLC3 cells, relative to the effects observed with the respective single agents. Treatment with the combination of gefitinib and HCQ was more effective (p<0.05) in delaying tumor growth than either monotherapy (p>0.05), when compared to vehicle-treated controls. Our results also show that elevated autophagosome content following short-term treatment with gefitinib is a reversible response that ceases upon removal of the drug. In aggregate, these data demonstrate that elevated autophagic flux is an early response to gefitinib and that targeting EGFR and autophagy should be considered when developing new therapeutic strategies for EGFR expressing breast cancers.

Kumar D, Shankar S, Srivastava RK
Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway.
Cancer Lett. 2014; 343(2):179-89 [PubMed] Related Publications
Autophagy plays an important role in cellular homeostasis through the disposal and recycling of cellular components. Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and drug resistance. Rottlerin (Rott) is an active molecule isolated from Mallotus philippinensis, a medicinal plant used in Ayurvedic Medicine for anti-allergic and anti-helminthic treatments, demonstrates anticancer activities. However, the molecular mechanisms by which it induces autophagy in prostate CSCs have not been examined. The main objective of the paper was to examine the molecular mechanisms by which Rott induces autophagy in prostate CSCs. Autophagy was measured by the lipid modification of light chain-3 (LC3) and the formation of autophagosomes. Apoptosis was measured by flow cytometer analysis. The Western blot analysis was used to examine the effects of Rott on the expression of PI3K, phosphorylation of Akt, phosphorylation of mTOR, and phosphorylation of AMPK in pros CSCs. RNAi technology was used to inhibit the expression of Beclin-1 and ATG-7. Rott induced the lipid modification of light chain-3 (LC3) and the formation of autophagosomes after 24h of Rott treatment in prostate CSCs. Rott-treated prostate CSCs induced transition from LC3-I to LC3-II, a hall mark of autophagy. Rott also induced the expression of Atg5, Atg7, Atg12 and Beclin-1 proteins during autophagy. The knock-down of Atg7 and Beclin-1 blocked Rott-induced autophagy. Furthermore, Rott induced AMPK phosphorylation was blocked by 3-MA, Baf and CHX. In addition, inhibition of AMPK expression by shRNA blocked Rott induced autophagy. In conclusion, a better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for prostate cancer.

Stankov MV, El Khatib M, Kumar Thakur B, et al.
Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy.
Leukemia. 2014; 28(3):577-88 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Histone deacetylase (HDAC) inhibitors (HDACis) are well-characterized anti-cancer agents with promising results in clinical trials. However, mechanistically little is known regarding their selectivity in killing malignant cells while sparing normal cells. Gene expression-based chemical genomics identified HDACis as being particularly potent against Down syndrome-associated myeloid leukemia (DS-AMKL) blasts. Investigating the antileukemic function of HDACis revealed their transcriptional and post-translational regulation of key autophagic proteins, including ATG7. This leads to suppression of autophagy, a lysosomal degradation process that can protect cells against damaged or unnecessary organelles and protein aggregates. DS-AMKL cells exhibit low baseline autophagy due to mammalian target of rapamycin (mTOR) activation. Consequently, HDAC inhibition repressed autophagy below a critical threshold, which resulted in accumulation of mitochondria, production of reactive oxygen species, DNA damage and apoptosis. Those HDACi-mediated effects could be reverted upon autophagy activation or aggravated upon further pharmacological or genetic inhibition. Our findings were further extended to other major acute myeloid leukemia subgroups with low basal level autophagy. The constitutive suppression of autophagy due to mTOR activation represents an inherent difference between cancer and normal cells. Thus, via autophagy suppression, HDACis deprive cells of an essential pro-survival mechanism, which translates into an attractive strategy to specifically target cancer cells.

Strohecker AM, Guo JY, Karsli-Uzunbas G, et al.
Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors.
Cancer Discov. 2013; 3(11):1272-85 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
UNLABELLED: Autophagic elimination of defective mitochondria suppresses oxidative stress and preserves mitochondrial function. Here, the essential autophagy gene Atg7 was deleted in a mouse model of BrafV600E-induced lung cancer in the presence or absence of the tumor suppressor Trp53. Atg7 deletion initially induced oxidative stress and accelerated tumor cell proliferation in a manner indistinguishable from Nrf2 ablation. Compound deletion of Atg7 and Nrf2 had no additive effect, suggesting that both genes modulate tumorigenesis by regulating oxidative stress and revealing a potential mechanism of autophagy-mediated tumor suppression. At later stages of tumorigenesis, Atg7 deficiency resulted in an accumulation of defective mitochondria, proliferative defects, reduced tumor burden, conversion of adenomas and adenocarcinomas to oncocytomas, and increased mouse life span. Autophagy-defective tumor-derived cell lines were impaired in their ability to respire and survive starvation and were glutamine-dependent, suggesting that autophagy-supplied substrates from protein degradation sustains BrafV600E tumor growth and metabolism.
SIGNIFICANCE: The essential autophagy gene Atg7 functions to promote BrafV600E-driven lung tumorigenesis by preserving mitochondrial glutamine metabolism. This suggests that inhibiting autophagy is a novel approach to treating BrafV600E-driven cancers.

Guo JY, White E
Autophagy is required for mitochondrial function, lipid metabolism, growth, and fate of KRAS(G12D)-driven lung tumors.
Autophagy. 2013; 9(10):1636-8 [PubMed] Related Publications
Evidence suggests that the role of autophagy in tumorigenesis is context dependent. Using genetically engineered mouse models (GEMMs) for human non-small-cell lung cancer (NSCLC), we found that deletion of the essential autophagy gene, Atg7, in KRAS(G12D)-driven NSCLC inhibits tumor growth and converts adenomas and adenocarcinomas to benign oncocytomas characterized by the accumulation of respiration-defective mitochondria. Atg7 is required to preserve mitochondrial fatty acid oxidation (FAO) to maintain lipid homeostasis upon additional loss of Trp53 in NSCLC. Furthermore, cell lines derived from autophagy-deficient tumors depend on glutamine to survive starvation. This suggests that autophagy is essential for the metabolism, growth, and fate of NSCLC.

Qin Z, Xue J, He Y, et al.
Potentially functional polymorphisms in ATG10 are associated with risk of breast cancer in a Chinese population.
Gene. 2013; 527(2):491-5 [PubMed] Related Publications
Autophagy is a cellular process directed at recycling of cellular proteins and removal of intracellular microorganisms, which is important for balancing sources of energy at critical times in development and in response to nutrient stress. It has been reported to be a critical process in cancer initiation and progression. We hypothesized that genetic variants in critical genes of autophagy may be involve in the development of breast cancer. Thus, we systematically screened 14 potentially functional polymorphisms in six autophagy-related genes (ATG3, ATG5, ATG7, ATG10, and ATG12 and LC3) that are core components in autophagosome formation. We conducted a case-control study including 1064 breast cancer cases and 1073 cancer-free controls to evaluate the associations of these variants with breast cancer risk. We found that rs1864182 and rs10514231 in ATG10 were significantly associated with a decreased risk of breast cancer [odds ratios (OR)=0.77, 95% confidence interval (CI): 0.61-0.96, P=0.023; and OR=0.75, 95% CI: 0.59-0.93, P=0.010, respectively]. Similar protective effects for both loci were observed between subgroups stratified by ages at diagnosis/recruitment, menarche and first live birth, and status of menopause, estrogen receptor (ER) and progesterone receptor (PR). These results suggest that genetic variants in ATG10 may implicate with breast cancer susceptibility in Chinese population. Further large and functional studies are needed to confirm our findings.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ATG7, Cancer Genetics Web: http://www.cancer-genetics.org/ATG7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999