Gene Summary

Gene:CLDN1; claudin 1
Aliases: CLD1, SEMP1, ILVASC
Summary:Tight junctions represent one mode of cell-to-cell adhesion in epithelial or endothelial cell sheets, forming continuous seals around cells and serving as a physical barrier to prevent solutes and water from passing freely through the paracellular space. These junctions are comprised of sets of continuous networking strands in the outwardly facing cytoplasmic leaflet, with complementary grooves in the inwardly facing extracytoplasmic leaflet. The protein encoded by this gene, a member of the claudin family, is an integral membrane protein and a component of tight junction strands. Loss of function mutations result in neonatal ichthyosis-sclerosing cholangitis syndrome. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CLDN1 (cancer-related)

Yang Y, Cheon S, Jung MK, et al.
Interleukin-18 enhances breast cancer cell migration via down-regulation of claudin-12 and induction of the p38 MAPK pathway.
Biochem Biophys Res Commun. 2015; 459(3):379-86 [PubMed] Related Publications
Interleukin-18 (IL-18) was recently reported to have a pro-tumor effect in various cancers. Increased IL-18 levels in the serum of cancer patients correlated with malignancy, and IL-18 acts a crucial factor for cell migration in gastric cancer and melanoma. Claudins, which are the most important tight junction proteins, are also linked with cancer progression and metastasis. However, the relationship between claudins and IL-18 is not well-understood. Here, we show that the migratory ability of MCF-7 cells was reduced when endogenous IL-18 expression was inhibited with IL-18 siRNA. Moreover, exogenous IL-18 enhanced breast cancer cell migration and suppressed the expression of the tight junction proteins claudin-1, claudin-3, claudin-4, and claudin-12 in MCF-7 cells. Knockdown of claudin-3, claudin-4, and claudin-12, but not claudin-1, increased breast cancer migration with maximal effects observed in claudin-12 siRNA-transfected cells. To investigate whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in IL-18-induced cell migration and claudin-12 expression, cells were pretreated with SB203580 (an inhibitor of p38 MAPK) or PD98059 (an inhibitor of ERK1/2) prior to the addition of IL-18. Although pretreatment of MCF-7 cells with SB203580 blocked both the enhanced cell migration and the decreased claudin-12 expression, PD98059 only blocked cell migration and did not affect claudin-12 expression. In addition, exogenous IL-18 induced rapid phosphorylation of p38 MAPK. These results suggest that IL-18 is an important factor inducing breast cancer cell migration through down-regulation of claudin-12 and activation of the p38 MAPK pathway.

Herr R, Köhler M, Andrlová H, et al.
B-Raf inhibitors induce epithelial differentiation in BRAF-mutant colorectal cancer cells.
Cancer Res. 2015; 75(1):216-29 [PubMed] Related Publications
BRAF mutations are associated with aggressive, less-differentiated and therapy-resistant colorectal carcinoma. However, the underlying mechanisms for these correlations remain unknown. To understand how oncogenic B-Raf contributes to carcinogenesis, in particular to aspects other than cellular proliferation and survival, we generated three isogenic human colorectal carcinoma cell line models in which we can dynamically modulate the expression of the B-Raf(V600E) oncoprotein. Doxycyclin-inducible knockdown of endogenous B-Raf(V600E) decreases cellular motility and invasion in conventional and three-dimensional (3D) culture, whereas it promotes cell-cell contacts and induces various hallmarks of differentiated epithelia. Importantly, all these effects are recapitulated by B-Raf (PLX4720, vemurafenib, and dabrafenib) or MEK inhibitors (trametinib). Surprisingly, loss of B-Raf(V600E) in HT29 xenografts does not only stall tumor growth, but also induces glandular structures with marked expression of CDX2, a tumor-suppressor and master transcription factor of intestinal differentiation. By performing the first transcriptome profiles of PLX4720-treated 3D cultures of HT29 and Colo-205 cells, we identify several upregulated genes linked to epithelial differentiation and effector functions, such as claudin-1, a Cdx-2 target gene encoding a critical tight junction component. Thereby, we provide a mechanism for the clinically observed correlation between mutant BRAF and the loss of Cdx-2 and claudin-1. PLX4720 also suppressed several metastasis-associated transcripts that have not been implicated as targets, effectors or potential biomarkers of oncogenic B-Raf signaling so far. Together, we identify a novel facet of clinically applied B-Raf or MEK inhibitors by showing that they promote cellular adhesion and differentiation of colorectal carcinoma cells.

Liszka L
Ductal adenocarcinoma of the pancreas usually retained SMAD4 and p53 protein status as well as expression of epithelial-to-mesenchymal transition markers and cell cycle regulators at the stage of liver metastasis.
Pol J Pathol. 2014; 65(2):100-12 [PubMed] Related Publications
There are limited data on the biology of metastatic pancreatic ductal adenocarcinoma (PDAC). The aim of the present study was to compare the expression of immunohistochemical markers that may be involved in the development of metastatic disease in primary PDAC and in synchronous liver metastatic tissues. Thirty-two stains (corresponding to proteins encoded by 31 genes: SMAD4, TP53, ACTA2, CDH1, CDKN1A, CLDN1, CLDN4, CLDN7, CTNNB1, EGFR, ERBB2, FN1, KRT19, MAPK1/MAPK3, MAPK14, MKI67, MMP2, MMP9, MUC1 (3 antibodies), MUC5AC, MUC6, MTOR, MYC, NES, PTGS2, RPS6, RPS6KB1, TGFB1, TGFBR1, VIM) were evaluated using tissue microarray of 26 pairs of primary PDACs and their liver metastases. There were no significant differences in expression levels of examined proteins between primary and secondary lesions. In particular, metastatic PDAC retained the primary tumour's SMAD4 protein status in all and p53 protein status in all but one case. This surprising homogeneity also involved expression levels of markers of epithelial-to-mesenchymal transition as well as cell cycle regulators studied. In conclusion, the biological profiles of primary PDACs and their liver metastases seemed to be similar. Molecular alterations of PDAC related to a set of immunohistochemical markers examined in the present study were already present at the stage of localized disease.

Izraely S, Sagi-Assif O, Klein A, et al.
The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis.
Int J Cancer. 2015; 136(6):1296-307 [PubMed] Related Publications
Brain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease. Gene expression profiles of cutaneous and brain-metastasizing melanoma variants from three xenograft tumor models established in our laboratory revealed that expression of tight junction component CLDN1 was lower in the brain-metastasizing variants than in cutaneous variants from the same melanoma. The objective of our study was to determine the significance of CLDN1 downregulation/loss in metastatic melanoma and its role in melanoma brain metastasis. An immunohistochemical analysis of human cells of the melanocyte lineage indicated a significant CLDN1 downregulation in metastatic melanomas. Transduction of melanoma brain metastatic cells expressing low levels of CLDN1 with a CLDN1 retrovirus suppressed their metastatic phenotype. CLDN1-overexpressing melanoma cells expressed a lower ability to migrate and adhere to extracellular matrix, reduced tumor aggressiveness in nude mice and, most importantly, eliminated the formation of micrometastases in the brain. In sharp contrast, the ability of the CLDN1-overexpressing cells to form lung micrometastases was not impaired. CLDN1-mediated interactions between these cells and brain endothelial cells constitute the mechanism underlying these results. Taken together, we demonstrated that downregulation or loss of CLDN1 supports the formation of melanoma brain metastasis, and that CLDN1 expression could be a useful prognostic predictor for melanoma patients with a high risk of brain metastasis.

Yoda S, Soejima K, Hamamoto J, et al.
Claudin-1 is a novel target of miR-375 in non-small-cell lung cancer.
Lung Cancer. 2014; 85(3):366-72 [PubMed] Related Publications
OBJECTIVES: We previously reported low expression of miR-375 in squamous-cell carcinoma (SCC) and high expression in adenocarcinoma (AC) of the lung. miR-375's target genes and its function in non-small-cell lung cancer (NSCLC) have not been elucidated. Therefore, the present study was designed to identify the targets of miR-375 and to characterize its function in NSCLC.
MATERIALS AND METHODS: Candidate targets of miR-375 were determined using a prediction database and previous data on differential gene expression between SCC and AC. We evaluated miR-375 and target-gene expression levels in 12 NSCLC cell lines. The effect of miR-375 overexpression and knockdown was evaluated in NSCLC cell lines by transfecting them with an miR-375 precursor or inhibitor. A luciferase-reporter assay was performed to confirm a direct interaction between miR-375 and its target gene. Further, a wound-healing assay was performed to evaluate the effect of miR-375 overexpression on the migration of SK-MES-1 cells. Finally, to assess the clinical relevance, 63 clinical NSCLC samples were analyzed.
RESULTS: Claudin-1 (CLDN1) has 4 putative miR-375 target sites in its 3'-untranslated region, and this gene was determined to be a target of miR-375. CLDN1 messenger RNA and protein expression were attenuated by overexpression of miR-375 and increased by knockdown of miR-375 in NSCLC cell lines. In a luciferase-reporter assay, miR-375 overexpression resulted in a 3-fold repression of luciferase activity (P<0.001). Cell migration was promoted by miR-375 overexpression, suggesting a high potential for invasion and metastasis in NSCLC expressing high levels of miR-375. In clinical NSCLC samples, there was a negative correlation between miR-375 and CLDN1 expression (r=-0.35, P=0.005). In addition, high miR-375 expression was correlated with a shorter survival time among the clinical samples (P=0.043).
CONCLUSION: CLDN1 is a novel target of miR-375, and high miR-375 expression shortens survival in NSCLC.

Martin TA, Mason MD, Jiang WG
HGF and the regulation of tight junctions in human prostate cancer cells.
Oncol Rep. 2014; 32(1):213-24 [PubMed] Related Publications
Hepatocyte growth factor (HGF) may impact the metastasis of prostate cancer via its action on prostate stem cells or their progeny. Tight junctions (TJs) are crucial to the process of metastasis and have been previously shown to be regulated by HGF. The present study aimed to evaluate the effect of HGF on the function of TJs in human prostate epithelial, prostate stem cell-like and prostate cancer cell lines. Four human prostate cancer cell lines (PC-3, DU-145, PZHPV-7, CaHPV-10), normal adult prostate parental epithelial cells (RWPE-1) and a stem cell-like derivative of RWPE-1 (WPE-STEM) were used to assess HGF-induced changes in TJs. A significant difference was noted in the behaviour between the WPE-STEM, RWPE-1 and the cancer cell lines which was HGF concentration-dependent. However, in the WPE-STEM cells, the effect was biphasic, with the cells seemingly resistant to HGF-modulated TJ disruption. Closer examination revealed that HGF affected the redistribution of ZO-1, ZO-2 and ZO-3 away from the TJs of confluent cells with concurrent loss of claudin-1 and claudin-5, and western blot analysis revealed a loss in TJ protein expression of ZO-1 and ZO-2. We demonstrated for the first time that HGF regulates TJ function in human prostate cells. Moreover, this regulation was dependent on the tumourigenicity of the cells, with the most aggressive cells most susceptible and the stem cell-like cells least susceptible. These data offer an intriguing glimpse of how TJs affect the behaviour of prostate cancer cells and how HGF modulates the expression and function of the molecules maintaining TJ structure and function.

Bouchagier KA, Assimakopoulos SF, Karavias DD, et al.
Expression of claudins-1, -4, -5, -7 and occludin in hepatocellular carcinoma and their relation with classic clinicopathological features and patients' survival.
In Vivo. 2014 May-Jun; 28(3):315-26 [PubMed] Related Publications
BACKGROUND: Occludin and claudins are integral constituents of tight junction proteins and are de-regulated in various malignancies, including hepatocellular carcinoma (HCC). This study investigated whether expression of claudins 1, 4, 5, 7 and occludin may be used as prognostic markers for overall and disease-free survival in patients with HCC after hepatectomy.
PATIENTS AND METHODS: The study included 67 hepatectomy specimens obtained from an equal number of patients with HCC who underwent partial hepatectomy at the Patras University Hospital for therapeutic reasons. Ten normal liver tissues were used as controls. Expression of claudins 1, 4, 5, 7 and occludin in liver tissues was assessed by immunochemistry. Clinicopathological features were also available for each case.
RESULTS: Expression of claudins 1, 4, 5, 7 and occludin was significantly increased in HCC specimens compared to non-neoplastic liver tissues and normal controls (p<0.001 in each case) Moreover, there was a statistically significant association between low level of claudin-4 and advanced tumor grade (p=0.03). Down-regulation of claudin-1 was associated with low overall survival in univariate survival analysis (p=0.049) and Kaplan-Meier analysis (p=0.04). Multivariate analysis showed that the claudin-4 level was an independent factor for survival prognosis (p=0.01). In addition, down-regulation of claudin-4 expression was associated with increased recurrence rate and low disease-free survival rate in univariate analysis (p=0.038), Kaplan-Meier plot (p=0.013) and multivariate analysis (p=0.013). A low level of claudin-5 and high level of claudin-7 levels were independent negative prognostic factors according to multivariate analysis (p=0.015 and 0.009, respectively).
CONCLUSION: The present study demonstrates that high expression of claudins 1, 4, 5 and down-regulation of claudin-7 are positive prognostic markers and are associated with good outcome and increased survival rates. Moreover, an increase in claudin-4 expression may serve as an independent positive prognostic factor for low recurrence rate after hepatectomy.

Lennon FE, Mirzapoiazova T, Mambetsariev B, et al.
The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer.
PLoS One. 2014; 9(3):e91577 [PubMed] Free Access to Full Article Related Publications
Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR) can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC) cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT) in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation) which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA) or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05). Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.

Huang J, Li J, Qu Y, et al.
The expression of claudin 1 correlates with β-catenin and is a prognostic factor of poor outcome in gastric cancer.
Int J Oncol. 2014; 44(4):1293-301 [PubMed] Related Publications
Claudin 1 is one of the tight junction proteins, which are critical in the maintenance of epithelial integrity. Aberrant regulation of CLDN1 and its correlation with β-catenin have been discovered in malignant tumors. The present study aimed to investigate the expression profile and clinical relevance of CLDN1 and β-catenin. The protein levels of CLDN1 and β-catenin were examined using immunohistochemical staining. The characteristics of expression profile and prognostic value were analyzed using Pearson's χ² test and Kaplan-Meier analysis, respectively. β-catenin overexpression and knockdown were used to investigate its role in regulating CLDN1 expression. We showed that CLDN1 was overexpressed in intestinal-type, presence of lymph node metastasis, higher TNM stage in gastric cancer patients and correlated with decreased overall survival. The characteristics of CLDN1 expression were associated with that of β-catenin. CLDN1 and β-catenin showed similar prognostic value in intestinal-type gastric cancers. β-catenin knockdown and overexpression in cell models revealed a positive relation between CLDN1 and β-catenin. Our study demonstrated that CLDN1 is a biomarker for intestinal-type gastric cancer with shorter survival. The expression of CLDN1 was strongly associated with β-catenin in gastric cancer patients and a gastric cancer cell model.

Chaudhry P, Fabi F, Singh M, et al.
Prostate apoptosis response-4 mediates TGF-β-induced epithelial-to-mesenchymal transition.
Cell Death Dis. 2014; 5:e1044 [PubMed] Free Access to Full Article Related Publications
A growing body of evidence supports that the epithelial-to-mesenchymal transition (EMT), which occurs during cancer development and progression, has a crucial role in metastasis by enhancing the motility of tumor cells. Transforming growth factor-β (TGF-β) is known to induce EMT in a number of cancer cell types; however, the mechanism underlying this transition process is not fully understood. In this study we have demonstrated that TGF-β upregulates the expression of tumor suppressor protein Par-4 (prostate apoptosis response-4) concomitant with the induction of EMT. Mechanistic investigations revealed that exogenous treatment with each TGF-β isoform upregulates Par-4 mRNA and protein levels in parallel levels of phosphorylated Smad2 and IκB-α increase. Disruption of TGF-β signaling by using ALK5 inhibitor, neutralizing TGF-β antibody or phosphoinositide 3-kinase inhibitor reduces endogenous Par-4 levels, suggesting that both Smad and NF-κB pathways are involved in TGF-β-mediated Par-4 upregulation. NF-κB-binding sites in Par-4 promoter have previously been reported; however, using chromatin immunoprecipitation assay we showed that Par-4 promoter region also contains Smad4-binding site. Furthermore, TGF-β promotes nuclear localization of Par-4. Prolonged TGF-β3 treatment disrupts epithelial cell morphology, promotes cell motility and induces upregulation of Snail, vimentin, zinc-finger E-box binding homeobox 1 and N-Cadherin and downregulation of Claudin-1 and E-Cadherin. Forced expression of Par-4, results in the upregulation of vimentin and Snail expression together with increase in cell migration. In contrast, small interfering RNA-mediated silencing of Par-4 expression results in decrease of vimentin and Snail expression and prevents TGF-β-induced EMT. We have also uncovered a role of X-linked inhibitor of apoptosis protein in the regulation of endogenous Par-4 levels through inhibition of caspase-mediated cleavage. In conclusion, our findings suggest that Par-4 is a novel and essential downstream target of TGF-β signaling and acts as an important factor during TGF-β-induced EMT.

Hahn-Strömberg V, Askari S, Befekadu R, et al.
Polymorphisms in the CLDN1 and CLDN7 genes are related to differentiation and tumor stage in colon carcinoma.
APMIS. 2014; 122(7):636-42 [PubMed] Related Publications
Tight junction is composed of transmembrane proteins important for maintaining cell polarity and regulating ion flow. Among these proteins are the tissue-specific claudins, proteins that have recently been suggested as tumor markers for several different types of cancer. An altered claudin expression has been observed in colon, prostatic, ovarian, and breast carcinoma. The aim of this study was to analyze the allele frequencies of three common single nucleotide polymorphisms (SNPs) in the genes for claudin 1 and claudin 7 in colon cancer (CC) patients and in a control population of healthy blood donors. Pyrosequencing was used to genotype the CLDN1 SNP rs9869263 (c.369C>T), and the CLDN7 SNPs rs4562 (c.590C>T) and rs374400 (c.606T>G) in DNA from 102 formalin fixed paraffin embedded (FFPE) colon cancer tissue, and 111 blood leukocyte DNA from blood/plasma donors. These results were correlated with clinical parameters such as TNM stage, tumor localization, tumor differentiation, complexity index, sex, and age. We found that there was a significant association between the CLDN1 genotype CC in tumor samples and a higher risk of colon cancer development (OR 3.0, p < 0.001). We also found that the CLDN7 rs4562 (c.590C>T) genotype CT had a higher risk of lymph node involvement (p = 0.031) and a lower degree of tumor differentiation (p = 0.028). In the control population, the allele frequencies were very similar to those in the HapMap cohort for CLDN7. The CLDN1 rs9869263 genotype (c.369C>T) was related to increased risk of colon cancer, and the CLDN7 rs4562 genotype (c.590C>T) was related to tumor differentiation and lymph node involvement in colon carcinoma. Further studies are warranted to ascertain their potential uses as biomarkers predicting tumor development, proliferation, and outcome in this disease.

Eftang LL, Esbensen Y, Tannæs TM, et al.
Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival.
BMC Cancer. 2013; 13:586 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The genetic changes in gastric adenocarcinoma are extremely complex and reliable tumor markers have not yet been identified. There are also remarkable geographical differences in the distribution of this disease. Our aim was to identify the most differentially regulated genes in 20 gastric adenocarcinomas from a Norwegian selection, compared to matched normal mucosa, and we have related our findings to prognosis, survival and chronic Helicobacter pylori infection.
METHODS: Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 20 patients immediately following surgical resection of the tumor. Whole genome, cDNA microarray analysis was performed on the RNA isolated from the sample pairs to compare the gene expression profiles between the tumor against matched mucosa. The samples were microscopically examined to classify gastritis. The presence of H. pylori was examined using microscopy and immunohistochemistry.
RESULTS: 130 genes showed differential regulation above a predefined cut-off level. Interleukin-8 (IL-8) and Claudin-1 (CLDN1) were the most consistently up-regulated genes in the tumors. Very high CLDN1 expression in the tumor was identified as an independent and significant predictor gene of reduced post-operative survival. There were distinctly different expression profiles between the tumor group and the control mucosa group, and the histological subsets of mixed type, diffuse type and intestinal type cancer demonstrated further sub-clustering. Up-regulated genes were mapped to cell-adhesion, collagen-related processes and angiogenesis, whereas normal intestinal functions such as digestion and excretion were associated with down-regulated genes. We relate the current findings to our previous study on the gene response of gastric epithelial cells to H. pylori infection.
CONCLUSIONS: CLDN1 was highly up-regulated in gastric cancer, and CLDN1 expression was independently associated with a poor post-operative prognosis, and may have important prognostic value. IL-8 and CLDN1 may represent central links between the gene response seen in acute H. pylori infection of gastric epithelial cells, and ultimately gastric cancer.

Schaefer IM, Ströbel P, Thiha A, et al.
Soft tissue perineurioma and other unusual tumors in a patient with neurofibromatosis type 1.
Int J Clin Exp Pathol. 2013; 6(12):3003-8 [PubMed] Free Access to Full Article Related Publications
Perineurioma is a rare benign peripheral nerve sheath tumor featuring perineurial differentiation. Perineurioma occurs sporadically with only one reported case in the setting of neurofibromatosis type 1 (NF-1). We present a 6.7-cm soft tissue perineurioma of the lower leg in a 51-year-old man with proven NF-1. The tumor displayed whorled and fascicular pattern with infiltrative margins and expressed EMA, GLUT-1, claudin-1, and CD34. Electron microscopy confirmed diagnosis. Furthermore, lipomatosis, cutaneous angiomatous nodules, vasculopathy, and iliac spine lesion consistent with non-ossifying fibroma were observed. Tumor DNA revealed no NF2 mutations or chromosomal aberrations but a germline NF1-deletion (c.449_502delTGTT) was detected in his blood sample. His brother displayed neurofibromas, duodenal ganglioneuroma and colonic juvenile polyp, and his mother a neurofibroma, cutaneous squamous cell carcinoma, and jejunal gastrointestinal stromal tumor (GIST); both were affected by NF-1. In conclusion, perineurioma may rarely be NF-1 related and should be included in the spectrum of neoplasms occurring in this disorder.

He Y, Meng XM, Huang C, et al.
Long noncoding RNAs: Novel insights into hepatocelluar carcinoma.
Cancer Lett. 2014; 344(1):20-7 [PubMed] Related Publications
Recent advances in non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack of coding protein function, termed long noncoding RNAs (lncRNAs). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNAs world. Moreover, accumulating studies have demonstrated that a class of lncRNAs are dysregulated in hepatocellular carcinoma(HCC) and closely related with tumorigenesis, metastasis, prognosis or diagnosis. In this review, we will briefly discuss the regulation and functional role of lncRNAs in HCC, therefore evaluating the potential of lncRNAs as prospective novel therapeutic targets in HCC.

Zhang ZF, Pei BX, Wang AL, et al.
Expressions of CLDN1 and insulin-like growth factor 2 are associated with poor prognosis in stage N2 non-small cell lung cancer.
Chin Med J (Engl). 2013; 126(19):3668-74 [PubMed] Related Publications
BACKGROUND: Patients with single station mediastinal lymph node (N2) non-small cell lung cancer (NSCLC) have a better prognosis than those with multilevel N2. The molecular factors which are involved in disease progression remain largely unknown. The purpose of this study was to investigate gene expression differences between single station and multilevel N2 NSCLC and to identify the crucial molecular factors which are associated with progress and prognosis of stage N2 NSCLC.
METHODS: Gene expression analysis was performed using Agilent 4×44K Whole Human Genome Oligo Microarray on 10 freshfrozen lymph node tissue samples from single station N2 and paired multilevel N2 NSCLC patients. Real-time reverse transcription (RT)-PCR was used to validate the differential expression of 14 genes selected by cDNA microarray of which four were confirmed. Immunohistochemical staining for these validated genes was performed on formalin-fixed, paraffinembedded tissue samples from 130 cases of stage N2 NSCLC arranged in a high-density tissue microarray.
RESULTS: We identified a 14 gene expression signature by comparative analysis of gene expression. Expression of these genes strongly differed between single station and multilevel N2 NSCLC. Four genes (ADAM28, MUC4, CLDN1, and IGF2) correlated with the results of microarray and real-time RT-PCR analysis for the gene-expression data in samples from 56 NSCLC patients. Immunohistochemical staining for these genes in samples from 130 cases of stage N2 NSCLC demonstrated the expression of IGF2 and CLDN1 was negatively correlated with overall survival of stage N2 NSCLC.
CONCLUSIONS: Our results suggest that the expression of CLDN1 and IGF2 indicate a poor prognosis in stage N2 NSCLC. Further, CLDN1 and IGF2 may provide potential targeting opportunities in future therapies.

Ratovitski EA
Phospho-ΔNp63α regulates AQP3, ALOX12B, CASP14 and CLDN1 expression through transcription and microRNA modulation.
FEBS Lett. 2013; 587(21):3581-6 [PubMed] Related Publications
Cisplatin-induced and ATM-phosphorylated (p)-ΔNp63α regulates the expression of epidermal differentiation and skin barrier regulators (AQP3, CASP14, ALOX12B, and CLDN1) in squamous cell carcinoma (SCC) cells by dual transcriptional and post-transcriptional mechanisms. We found that p-ΔNp63α bound to target gene promoters, and regulated the activity of the tested promoters in vitro. P-ΔNp63α was shown to upregulate miR-185-5p and downregulate let7-5p, which subsequently modulated AQP3, CASP14, ALOX12B and CLDN1 through their respective 3'-untranslated regions. The introduction of miR-185-5p into resistant SCC-11M cells, which are unable to phosphorylate ΔNp63α, render these cells more sensitive to cisplatin treatment. Further studies of the AQP3, CASP14, ALOX12B, and CLDN1 contributions to chemoresistance may assist in developing novel microRNA-based therapies for human SCC.

de Souza WF, Fortunato-Miranda N, Robbs BK, et al.
Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling.
PLoS One. 2013; 8(9):e74994 [PubMed] Free Access to Full Article Related Publications
The altered expressions of claudin proteins have been reported during the tumorigenesis of colorectal cancer. However, the molecular mechanisms that regulate these events in this cancer type are poorly understood. Here, we report that epidermal growth factor (EGF) increases the expression of claudin-3 in human colorectal adenocarcinoma HT-29 cells. This increase was related to increased cell migration and the formation of anchorage-dependent and anchorage-independent colonies. We further showed that the ERK1/2 and PI3K-Akt pathways were involved in the regulation of these effects because specific pharmacological inhibition blocked these events. Genetic manipulation of claudin-1 and claudin-3 in HT-29 cells showed that the overexpression of claudin-1 resulted in decreased cell migration; however, migration was not altered in cells that overexpressed claudin-3. Furthermore, the overexpression of claudin-3, but not that of claudin-1, increased the tight junction-related paracellular flux of macromolecules. Additionally, an increased formation of anchorage-dependent and anchorage-independent colonies were observed in cells that overexpressed claudin-3, while no such changes were observed when claudin-1 was overexpressed. Finally, claudin-3 silencing alone despite induce increase proliferation, and the formation of anchoragedependent and -independent colonies, it was able to prevent the EGF-induced increased malignant potential. In conclusion, our results show a novel role for claudin-3 overexpression in promoting the malignant potential of colorectal cancer cells, which is potentially regulated by the EGF-activated ERK1/2 and PI3K-Akt pathways.

Li WH, Qiu Y, Zhang HQ, et al.
P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells.
Br J Cancer. 2013; 109(6):1666-75 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Our previous study demonstrated that extracellular adenosine 5'-triphosphate (ATP) stimulated prostate cancer cell invasion via P2Y receptors. However, the purinergic receptor subtype(s) involved in this process remains unclear. Here we aimed to determine whether P2Y2, one subtype of P2Y receptors, was involved in the invasion and metastasis of prostate cancer cells, and elucidated the underlying mechanism.
METHODS: RNAi was introduced to silence the expression of P2Y2. In vitro invasion and migration assays and in vivo experiments were carried out to examine the role of P2Y2 receptor in cell invasion and metastasis. cDNA microarray was performed to identify the differentially expressed genes downstream of ATP treatment.
RESULTS: P2Y2 was significantly expressed in the prostate cancer cells. Knockdown of P2Y2 receptor suppressed cell invasion and metastasis in vitro and in vivo. Further experiments identified that ATP could promote IL-8 and Snail expression and inhibit E-cadherin and Claudin-1 expression. Knockdown of P2Y2 receptor affected the expression of these EMT/invasion-related genes in vitro and in vivo.
CONCLUSION: P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes. Thereby, P2Y2 receptor could be a potential therapeutic target for the treatment of prostate cancer.

Sharma A, Bhat AA, Krishnan M, et al.
Trichostatin-A modulates claudin-1 mRNA stability through the modulation of Hu antigen R and tristetraprolin in colon cancer cells.
Carcinogenesis. 2013; 34(11):2610-21 [PubMed] Free Access to Full Article Related Publications
Expression of claudin-1, a tight junction protein, is highly upregulated in colon cancer. We have reported that claudin-1 expression in colon cancer cells is epigenetically regulated as histone deacetylase (HDAC) inhibitors decrease claudin-1 messenger RNA (mRNA) stability and thus expression. In this regard, our data suggested a role of the 3'-untranslated region (UTR) in the regulation of HDAC-dependent regulation of claudin-1 mRNA stability. In the current study, we demonstrate, based on our continued investigation, that the ELAV-like RNA-binding proteins (RBPs), human antigen R (HuR) and tristetraprolin (TTP) associate with the 3'-UTR of claudin-1 mRNA to modulate the latter's stability. Ribonomic and site-directed mutagenesis approaches were used to confirm the binding of HuR and TTP to the 3'-UTR of claudin-1. We further confirmed their roles in the stabilization of claudin-1 mRNA, under conditions of HDAC inhibition. In summary, we report that HuR and TTP are the critical regulators of the posttranscriptional regulation of claudin-1 expression in colon cancer cells. We also demonstrate that inhibition of HDACs by trichostatin treatment decreased the binding of HuR while increasing the binding of TTP to the 3'-UTR of claudin-1. Additionally, we provide data showing transcriptional regulation of claudin-1 expression, through the regulation of transcription factor Sp1. Taken together, we demonstrate epigenetic regulation of claudin-1 expression in colon cancer cells at the transcriptional and posttranscriptional levels.

Dasgupta S, Menezes ME, Das SK, et al.
Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling.
Clin Cancer Res. 2013; 19(17):4621-33 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression.
EXPERIMENTAL DESIGN: Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knockdown was examined in multiple cells lines and key findings were validated in primary tumors.
RESULTS: Significantly higher (P=0.002-0.003) expression of MDA-9/Syntenin was observed in 64% (28 of 44) of primary tumors and an association was evident with stage (P=0.01), grade (P=0.03), and invasion status (P=0.02). MDA-9/Syntenin overexpression in nontumorigenic HUC-1 cells increased proliferation (P=0.0012), invasion (P=0.0001), and EGF receptor (EGFR), AKT, phosphoinositide 3-kinase (PI3K), and c-Src expression. Alteration of β-catenin, E-cadherin, vimentin, claudin-1, ZO-1, and T-cell factor-4 (TCF4) expression was also observed. MDA-9/Syntenin knockdown in three UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and colocalization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin:AKT expressions with stage (P=0.04, EGFR; P=0.01, AKT). A correlation between MDA-9/Syntenin:β-catenin coexpression with stage (P=0.03) and invasion (P=0.04) was also evident.
CONCLUSIONS: Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring, and therapeutic strategies for managing UCC.

Di Cello F, Cope L, Li H, et al.
Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer.
PLoS One. 2013; 8(7):e68630 [PubMed] Free Access to Full Article Related Publications
Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA). Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+) breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.

Someya M, Kojima T, Ogawa M, et al.
Regulation of tight junctions by sex hormones in normal human endometrial epithelial cells and uterus cancer cell line Sawano.
Cell Tissue Res. 2013; 354(2):481-94 [PubMed] Related Publications
The number of patients with uterine endometrial carcinoma, the cause of which involves sex hormones, has recently been growing rapidly because of increases in life expectancy and obesity. Tight junction proteins claudin-3 and -4 are receptors of Clostridium perfringens enterotoxin (CPE) and increase during endometrial carcinogenesis. In the present study of normal human endometrial epithelial (HEE) cells and the uterus cancer cell line Sawano, we investigate changes in the expression of tight junction proteins including claudin-3 and -4, the fence and barrier functions of the tight junction and the cytotoxic effects of CPE by sex hormones. In primary cultured HEE cells, treatment with progesterone (P4) but not estradiol (E2), induced claudin-1, -3, -4 and -7 and occludin, together with the downregulation of the barrier function but not the fence function. In Sawano cells, claudin-3 and -4 were upregulated by E2 but not by P4, together with a disruption of both the barrier and fence function. In primary cultured HEE cells, claudin-3 and -4 were localized at the apicalmost regions (tight junction areas) and no cytotoxicity of CPE was observed. In Sawano cells, claudin-3 and -4 were found not only in the apicalmost regions but also at the basolateral membrane and the cytotoxicity of CPE was enhanced by E2. Thus, tight junctions are physiological regulated by sex hormones in normal HEE cells during the menstrual cycle suggesting that safer and more effective therapeutic methods targeting claudins in uterine cancer can be developed.

Kondo S, Demachi-Okamura A, Hirosawa T, et al.
An HLA-modified ovarian cancer cell line induced CTL responses specific to an epitope derived from claudin-1 presented by HLA-A*24:02 molecules.
Hum Immunol. 2013; 74(9):1103-10 [PubMed] Related Publications
In an attempt to induce cytotoxic T lymphocytes (CTLs) that react to ovarian cancer cells, we isolated a CTL clone that specifically recognizes claudin-1 in an HLA-A*24:02-restricted manner. Naïve CD8(+) T lymphocytes were obtained from a healthy adult donor and stimulated twice in vitro with HLA-modified TOV21G cells that were originally derived from an ovarian clear-cell carcinoma line. The TOV21G modification involved RNAi-mediated gene silencing of intrinsic HLA molecules and lentiviral transduction of a synonymously mutated HLA-A*24:02. Then, cDNA library construction using mRNA extracted from the parental TOV21G cells and subsequent expression cloning were conducted. These experiments revealed that a CTL clone obtained from the bulk culture recognized a minimal epitope peptide RYEFGQALF, which was derived from an autoantigen claudin-1 presented by HLA-A*24:02 molecules. This clone exhibited cytolytic activities against three ovarian cancer cell lines and normal bronchial epithelial cells in an HLA-A*24:02-restricted manner. Our data indicate that HLA-modified cancer cells can be used as an artificial antigen-presenting cell to generate antigen-specific CTLs in a manner restricted by an HLA allele of interest.

Blanchard AA, Ma X, Dueck KJ, et al.
Claudin 1 expression in basal-like breast cancer is related to patient age.
BMC Cancer. 2013; 13:268 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Defects in tight junctions, gate-keepers of the integrity of the epidermal barrier function, are known to contribute to cancer development. As such, enhancing our understanding of how the expression of proteins involved in these junctions is regulated in cancer, remains a priority. Although the expression of one of these proteins, claudin 1, is down regulated in most invasive human breast cancers (HBC), we have recently shown that high levels of claudin 1, characterized tumors belonging to the very aggressive basal-like breast cancer (BLBC) subtype. In these tumors, the claudin 1 protein, usually localized in the cell membrane, is often mislocalized to the cytoplasm.
METHODS: To examine the clinical relevance of this observation, we have generated and analyzed an invasive HBC tissue microarray consisting of 151 breast tumor samples; 79 of which presented a basal-like phenotype (i.e. ER-ve, PR-ve HER2-ve, CK5/6 or EGFR+ve). We also interrogated the outcome of claudin 1 knockdown in a human BLBC cell line, BT-20.
RESULTS: Immunohistochemical analysis of this patient cohort revealed a significant association between high claudin 1 expression and BLBCs in women 55 years of age and older. Interestingly, no significant association was found between claudin 1 and nodal involvement, tumor grade or tumor size. Regression analysis however, showed a significant positive association between claudin 1 and claudin 4, even though claudin 4 did not significantly correlate with patient age. Claudin 1 knockdown in BT-20 cells resulted in decreased cell migration. It also significantly altered the expression of several genes involved in epithelial-mesenchymal-transition (EMT); in particular, SERPINE 1 (PAI1) and SSP1 (osteopontin), known to inhibit EMT and cancer cell migration. Conversely, genes known to maintain EMT through their interaction, SNAIL2, TCF4 and FOXC2 were significantly down regulated.
CONCLUSIONS: The association of high claudin 1 protein levels observed in tumors derived from older women with BLBC, suggests that claudin 1 has the potential to serve as a marker which can identify a specific subgroup of patients within the BLBC subtype and thus, further contribute to the characterization of these ill-defined breast cancers. More importantly, our studies strongly suggest that claudin 1 directly participates in promoting breast cancer progression, possibly through the alteration of expression of EMT genes.

Broussard EK, Kim R, Wiley JC, et al.
Identification of putative immunologic targets for colon cancer prevention based on conserved gene upregulation from preinvasive to malignant lesions.
Cancer Prev Res (Phila). 2013; 6(7):666-74 [PubMed] Free Access to Full Article Related Publications
The length of time required for preinvasive adenoma to progress to carcinoma, the immunogenicity of colorectal cancer (CRC), and the identification of high-risk populations make development and testing of a prophylactic vaccine for the prevention of CRC possible. We hypothesized that genes upregulated in adenoma relative to normal tissue, which maintained increased expression in CRC, would encode proteins suitable as putative targets for immunoprevention. We evaluated existing adenoma and CRC microarray datasets and identified 160 genes that were ≥2-fold upregulated in both adenoma and CRC relative to normal colon tissue. We further identified 23 genes that showed protein overexpression in colon adenoma and CRC based on literature review. Silencing the most highly upregulated genes, CDH3, CLDN1, KRT23, and MMP7, in adenoma and CRC cell lines resulted in a significant decrease in viability (P < 0.0001) and proliferation (P < 0.0001) as compared to controls and an increase in cellular apoptosis (P < 0.05 for CDH3, KRT23). Results were duplicated across cell lines representing microsatellite instability, CpG island methylator, and chromosomal instability phenotypes, suggesting immunologic elimination of cells expressing these proteins could impact the progression of all CRC phenotypes. To determine whether these proteins were immunogens, we interrogated sera from early stage CRC patients and controls and found significantly elevated CDH3 (P = 0.006), KRT23 (P = 0.0007), and MMP7 (P < 0.0001) serum immunoglobulin G in cases as compared to controls. These data show a high throughput approach to the identification of biologically relevant putative immunologic targets for CRC and identified three candidates suitable for vaccine development.

Siar CH, Abbas SA
Claudin expression and tight junction protein localization in the lining epithelium of the keratocystic odontogenic tumors, dentigerous cysts, and radicular cysts.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2013; 115(5):652-9 [PubMed] Related Publications
OBJECTIVE: The aim of this study was to evaluate the expression and localization of tight junction proteins (TJPs) or claudins in the keratocystic odontogenic tumor (KCOT) and to correlate with its biological behavior.
STUDY DESIGN: Five claudins (-1, -3, -4, -5, and 7) were examined immunohistochemically in 25 KCOTs and compared with 10 dentigerous cysts (DCs) and 10 radicular cysts (RCs).
RESULTS: Marked claudin-3 loss of expression in KCOT basal layer (n=24/25; 96%) compared with DCs (n=1/10; 10%) and RCs (n=5/10; 50%) (P<.05) suggests that claudin-3 downregulation may indicate altered or loss of basal cell polarity and impaired barrier function of KCOT lining epithelium and this might contribute indirectly to its biological behavior. In contrast, claudins-1, -4, -5, and -7 distribution patterns were less distinctive in all three entities, suggesting that these TJP molecules probably play limited roles in influencing their different growth potentials.
CONCLUSION: Present findings suggest that differential claudin expressions in the lining epithelium of KCOTs, DCs, and RCs probably reflect their neoplastic or nonneoplastic nature.

Zhang GJ, Xiao HX, Tian HP, et al.
Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression.
Int J Mol Med. 2013; 31(6):1375-80 [PubMed] Related Publications
Human microRNA-155 (miR-155) has been demonstrated to regulate a variety of cellular functions, including epithelial-to-mesenchymal transition (EMT) by targeting multiple messenger RNAs (mRNAs). However, its role in colorectal cancer (CRC) remains unelucidated. Therefore, the aim of the present study was to investigate the effects of miR-155 on CRC cells. The expression level of miR-155 was quantified by quantitative real-time reverse transcriptase-PCR (qRT-PCR) in primary CRC tissues and normal adjacent mucosa. MTT, migration and invasion assays were used to examine the proliferation, migration and invasion of SW480 cells transfected with miR‑155. The expression of miR-155 was significantly upregulated in the CRC tissues and the high expression of miR-155 correlated with an advanced clinical stage, lymph node and distant metastases. The ectopic expression of miR-155 enhanced the migration and invasive ability of the SW480 cells and altered their morphological appearance; however, cell proliferation was not affected. E-cadherin expression levels decreased, while ZEB1 expression levels increased in the SW480 cells overexpressing miR-155. Furthermore, the overexpression of miR-155 upregulated claudin-1 expression. Thus, our data suggest that miR-155 plays an important role in promoting CRC cell migration and invasion, at least in part through the regulation of claudin-1 expression and controlling metastasis in CRC.

Qin W, Ren Q, Liu T, et al.
MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets CLDN1.
FEBS Lett. 2013; 587(9):1434-9 [PubMed] Related Publications
Previous cDNA microarrays indicated that CLDN1 (claudin-1) is an important gene for ovarian cancer-initiating cell (OCIC) invasion and adhesion. Here, we show that the downregulation of miR-155 in OCICs correlates with CLDN1 overexpression and the suppression of OCIC invasion. Luciferase assays indicate that miR-155 targets CLDN1 mRNA on the 3' UTR. CLDN1 mRNA and claudin-1 protein expression were significantly decreased in miR-155-OCICs. Proliferation assays and Transwell migration assays show that miR-155 significantly suppresses the proliferative and invasive capacity of OCICs. Furthermore, miR-155 suppresses the growth of OCIC xenograft tumors. Thus, overexpression of miR-155 may prevent tumorigenesis in human ovarian cancer through downregulation of CLDN1.

Dutta P, Bui T, Bauckman KA, et al.
EVI1 splice variants modulate functional responses in ovarian cancer cells.
Mol Oncol. 2013; 7(3):647-68 [PubMed] Free Access to Full Article Related Publications
Amplification of 3q26.2, found in many cancer lineages, is a frequent and early event in ovarian cancer. We previously defined the most frequent region of copy number increase at 3q26.2 to EVI1 (ecotropic viral integration site-1) and MDS1 (myelodysplastic syndrome 1) (aka MECOM), an observation recently confirmed by the cancer genome atlas (TCGA). MECOM is increased at the DNA, RNA, and protein level and likely contributes to patient outcome. Herein, we report that EVI1 is aberrantly spliced, generating multiple variants including a Del(190-515) variant (equivalent to previously reported) expressed in >90% of advanced stage serous epithelial ovarian cancers. Although EVI1(Del190-515) lacks ∼70% of exon 7, it binds CtBP1 as well as SMAD3, important mediators of TGFβ signaling, similar to wild type EVI1. This contrasts with EVI1 1-268 which failed to interact with CtBP1. Interestingly, the EVI1(Del190-515) splice variant preferentially localizes to PML nuclear bodies compared to wild type and EVI1(Del427-515). While wild type EVI1 efficiently repressed TGFβ-mediated AP-1 (activator protein-1) and plasminogen activator inhibitor-1 (PAI-1) promoters, EVI1(Del190-515) elicited a slight increase in both promoter activities. Expression of EVI1 and EVI1(Del427-515) (but not EVI1(Del190-515)) in OVCAR8 ovarian cancer cells increased cyclin E1 LMW expression and cell cycle progression. Furthermore, knockdown of specific EVI1 splice variants (both MDS1/EVI1 and EVI1(Del190-515)) markedly increased claudin-1 mRNA and protein expression in HEY ovarian and MDA-MB-231 breast cancer cells. Changes in claudin-1 were associated with alterations in specific epithelial-mesenchymal transition markers concurrent with reduced migratory potential. Collectively, EVI1 is frequently aberrantly spliced in ovarian cancer with specific forms eliciting altered functions which could potentially contribute to ovarian cancer pathophysiology.

Fortier AM, Asselin E, Cadrin M
Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation.
J Biol Chem. 2013; 288(16):11555-71 [PubMed] Free Access to Full Article Related Publications
Keratins 8 and 18 (K8/18) are simple epithelial cell-specific intermediate filament proteins. Keratins are essential for tissue integrity and are involved in intracellular signaling pathways that regulate cell response to injuries, cell growth, and death. K8/18 expression is maintained during tumorigenesis; hence, they are used as a diagnostic marker in tumor pathology. In recent years, studies have provided evidence that keratins should be considered not only as markers but also as regulators of cancer cell signaling. The loss of K8/18 expression during epithelial-mesenchymal transition (EMT) is associated with metastasis and chemoresistance. In the present study, we investigated whether K8/18 expression plays an active role in EMT. We show that K8/18 stable knockdown using shRNA increased collective migration and invasiveness of epithelial cancer cells without modulating EMT markers. K8/18-depleted cells showed PI3K/Akt/NF-κB hyperactivation and increased MMP2 and MMP9 expression. K8/18 deletion also increased cisplatin-induced apoptosis. Increased Fas receptor membrane targeting suggests that apoptosis is enhanced via the extrinsic pathway. Interestingly, we identified the tight junction protein claudin1 as a regulator of these processes. This is the first indication that modulation of K8/18 expression can influence the phenotype of epithelial cancer cells at a transcriptional level and supports the hypothesis that keratins play an active role in cancer progression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CLDN1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999