HEBP1

Gene Summary

Gene:HEBP1; heme binding protein 1
Aliases: HBP, HEBP
Location:12p13.1
Summary:The full-length protein encoded by this gene is an intracellular tetrapyrrole-binding protein. This protein includes a natural chemoattractant peptide of 21 amino acids at the N-terminus, which is a natural ligand for formyl peptide receptor-like receptor 2 (FPRL2) and promotes calcium mobilization and chemotaxis in monocytes and dendritic cells. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:heme-binding protein 1
HPRD
Source:NCBIAccessed: 26 February, 2015

Ontology:

What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 26 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Oxidation-Reduction
  • Non-Small Cell Lung Cancer
  • Cancer Gene Expression Regulation
  • Signal Transducing Adaptor Proteins
  • Drug Resistance
  • Heme Oxygenase-1
  • Adenocarcinoma
  • Messenger RNA
  • Nucleic Acid Synthesis Inhibitors
  • siRNA
  • Cell Survival
  • RB1
  • Anticarcinogenic Agents
  • Oxidative Stress
  • NAD(P)H Dehydrogenase (Quinone)
  • Survival Rate
  • Cell Nucleus
  • Chromosome 12
  • Intracellular Signaling Peptides and Proteins
  • Transcription Factor AP-1
  • Lung Cancer
  • Western Blotting
  • Xenograft Models
  • Breast Cancer
  • Cell Proliferation
  • Down-Regulation
  • Promoter Regions
  • Antioxidants
  • Knockout Mice
  • Antineoplastic Agents
  • RNA Interference
  • Neoplastic Cell Transformation
  • Proteasome Endopeptidase Complex
  • Response Elements
  • Squamous Cell Carcinoma
  • Isothiocyanates
  • Mutation
  • Transcription
  • Apoptosis
  • Gene Expression Regulation
Tag cloud generated 26 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HEBP1 (cancer-related)

Sourbier C, Ricketts CJ, Matsumoto S, et al.
Targeting ABL1-mediated oxidative stress adaptation in fumarate hydratase-deficient cancer.
Cancer Cell. 2014; 26(6):840-50 [PubMed] Related Publications
Patients with germline fumarate hydratase (FH) mutation are predisposed to develop aggressive kidney cancer with few treatment options and poor therapeutic outcomes. Activity of the proto-oncogene ABL1 is upregulated in FH-deficient kidney tumors and drives a metabolic and survival signaling network necessary to cope with impaired mitochondrial function and abnormal accumulation of intracellular fumarate. Excess fumarate indirectly stimulates ABL1 activity, while restoration of wild-type FH abrogates both ABL1 activation and the cytotoxicity caused by ABL1 inhibition or knockdown. ABL1 upregulates aerobic glycolysis via the mTOR/HIF1α pathway and neutralizes fumarate-induced proteotoxic stress by promoting nuclear localization of the antioxidant response transcription factor NRF2. Our findings identify ABL1 as a pharmacologically tractable therapeutic target in glycolytically dependent, oxidatively stressed tumors.

Patel AD, Rotenberg S, Messer RL, et al.
Blue light activates phase 2 response proteins and slows growth of a431 epidermoid carcinoma xenografts.
Anticancer Res. 2014; 34(11):6305-13 [PubMed] Related Publications
BACKGROUND: Recent studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory, antioxidative and play a critical role in protection against cancer. These effects have been attributed to NF-E2-related factor (NRF2)-mediated up-regulation of 'phase 2' genes that neutralize oxidative stress and metabolize electrophiles. We had previously shown that small doses of blue light (400-500 nm) had selective toxicity for cultured oral tumor cells and increased levels of peroxiredoxin phase 2 proteins, which led to our hypothesis that blue light activates NRF2 signaling.
MATERIALS AND METHODS: A431 epidermoid carcinoma cells were treated in culture and as nude mouse xenografts with doses of blue light. Cell lysates and tumor samples were tested for NRF2 activation, and for markers of proliferation and oxidative stress.
RESULTS: Blue light activated the phase 2 response in cultured A431 cells and reduced their viability dose dependently. Light treatment of tumors reduced tumor growth, and levels of proliferating cell nuclear antigen (PCNA), and oxidized proteins.
DISCUSSION: Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation and cancer.

Tao S, Wang S, Moghaddam SJ, et al.
Oncogenic KRAS confers chemoresistance by upregulating NRF2.
Cancer Res. 2014; 74(24):7430-41 [PubMed] Article available free on PMC after 15/12/2015 Related Publications
Oncogenic KRAS mutations found in 20% to 30% of all non-small cell lung cancers (NSCLC) are associated with chemoresistance and poor prognosis. Here we demonstrate that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance. RNAi-mediated silencing of NRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic expression of oncogenic KRAS in NSCLC cells. Mechanistically, KRAS increased NRF2 gene transcription through a TPA response element (TRE) located in a regulatory region in exon 1 of NRF2. In a mouse model of mutant KrasG12D-induced lung cancer, we found that suppressing the NRF2 pathway with the chemical inhibitor brusatol enhanced the antitumor efficacy of cisplatin. Cotreatment reduced tumor burden and improved survival. Our findings illuminate the mechanistic details of KRAS-mediated drug resistance and provide a preclinical rationale to improve the management of lung tumors harboring KRAS mutations with NRF2 pathway inhibitors.

van der Wijst MG, Brown R, Rots MG
Nrf2, the master redox switch: the Achilles' heel of ovarian cancer?
Biochim Biophys Acta. 2014; 1846(2):494-509 [PubMed] Related Publications
Ovarian cancer is the most lethal gynecological tumor type in the world due to late stage detection, and resistance to chemotherapy. Therefore, alternative additional therapies are required. The etiology of ovarian cancer remains largely unknown, but risk factors point toward an important role for oxidative stress. Both healthy and tumor cells can cope with oxidative stress by activating the transcription factor Nrf2 (also known as Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most ovarian cancers, aberrant activation of Nrf2 is observed, which is often associated with a copy number loss within the Nrf2-inhibitory complex KEAP1-CUL3-RBX1. A key role for Nrf2 in ovarian carcinogenesis has been validated by siRNA studies. However, to exploit the Nrf2 pathway for therapeutic interventions, potential side-effects should be minimized. In this review, we explore ovarian cancer specific factors with links to aberrant activity of Nrf2, to be exploited in future combination strategies, synergistic with direct Nrf2 inhibitory drugs. Particularly, we propose to stratify patients based on common ovarian cancer mutations (KRAS, BRAF, ERBB2, BRCA1 and its link with estradiol, TP53) for future NRF2 targeting strategies.

Wu J, Williams D, Walter GA, et al.
Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells.
Exp Cell Res. 2014; 328(2):351-60 [PubMed] Related Publications
The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer cells and suggest that patients׳ hormonal status through this activity may play a significant role in some therapeutic outcomes.

Hunakova L, Gronesova P, Horvathova E, et al.
Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane.
Toxicol Lett. 2014; 230(3):479-86 [PubMed] Related Publications
Cisplatin resistance is one of the major obstacles in the treatment of ovarian cancer. In an effort to look for new possibilities of how to overcome this difficulty, we studied the mechanisms of the interactions between sulforaphane (SFN) and cisplatin (cisPt) in combined treatment of human ovarian carcinoma A2780 and SKOV3 cell lines. Synergy (A2780) and antagonism (SKOV3) found in MTT assay was confirmed by apoptosis. While SFN significantly potentiated cisPt-induced DNA damage in A2780 cells, it protected SKOV3 cells against cisPt-crosslinking. We revealed a less efficient Nrf-2 pathway inducibility by SFN in A2780 compared to SKOV3 cells, when activation of the Nrf-2 pathway incites its protectivity against cisPt. Thus, different activation of the Nrf-2 pathway may explain the dual effects of SFN.

Son YO, Pratheeshkumar P, Roy RV, et al.
Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis.
J Biol Chem. 2014; 289(41):28660-75 [PubMed] Article available free on PMC after 10/10/2015 Related Publications
The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis.

Sid B, Glorieux C, Valenzuela M, et al.
AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells.
Biochem Pharmacol. 2014; 91(2):168-80 [PubMed] Related Publications
Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.

Valenzuela M, Glorieux C, Stockis J, et al.
Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells.
Br J Cancer. 2014; 111(5):874-82 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
BACKGROUND: Standard therapy for acute promyelocytic leukaemia (APL) includes retinoic acid (all-trans retinoic acid (ATRA)), which promotes differentiation of promyelocytic blasts. Although co-administration of arsenic trioxide (ATO) with ATRA has emerged as an effective option to treat APL, the molecular basis of this effect remains unclear.
METHODS: Four leukaemia cancer human models (HL60, THP-1, NBR4 and NBR4-R2 cells) were treated either with ATO alone or ATO plus ATRA. Cancer cell survival was monitored by trypan blue exclusion and DEVDase activity assays. Gene and protein expression changes were assessed by RT-PCR and western blot.
RESULTS: ATO induced an antioxidant response characterised by Nrf2 nuclear translocation and enhanced transcription of downstream target genes (that is, HO-1, NQO1, GCLM, ferritin). In cells exposed to ATO plus ATRA, the Nrf2 nuclear translocation was prevented and cytotoxicity was enhanced. HO-1 overexpression reversed partially the cytotoxicity by ATRA-ATO in HL60 cells. The inhibitory effects of ATRA on ATO-mediated responses were not observed in either the ATRA-resistant NB4-R2 cells or in NB4 cells pre-incubated with the RARα antagonist Ro-41-52-53.
CONCLUSIONS: The augmented cytotoxicity observed in leukaemia cells following combined ATO-ATRA treatment is likely due to inhibition of Nrf2 activity, thus explaining the efficacy of combined ATO-ATRA treatment in the APL therapy.

Ye P, Mimura J, Okada T, et al.
Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition.
Mol Cell Biol. 2014; 34(18):3421-34 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The ubiquitin-proteasome pathway degrades ubiquitinated proteins to remove damaged or misfolded protein and thus plays an important role in the maintenance of many important cellular processes. Because the pathway is also crucial for tumor cell growth and survival, proteasome inhibition by specific inhibitors exhibits potent antitumor effects in many cancer cells. xCT, a subunit of the cystine antiporter system xc (-), plays an important role in cellular cysteine and glutathione homeostasis. Several recent reports have revealed that xCT is involved in cancer cell survival; however, it was unknown whether xCT affects the cytotoxic effects of proteasome inhibitors. In this study, we found that two stress-inducible transcription factors, Nrf2 and ATF4, were upregulated by proteasome inhibition and cooperatively enhance human xCT gene expression upon proteasome inhibition. In addition, we demonstrated that the knockdown of xCT by small interfering RNA (siRNA) or pharmacological inhibition of xCT by sulfasalazine (SASP) or (S)-4-carboxyphenylglycine (CPG) significantly increased the sensitivity of T24 cells to proteasome inhibition. These results suggest that the simultaneous inhibition of both the proteasome and xCT could have therapeutic benefits in the treatment of bladder tumors.

Leinonen HM, Kansanen E, Pölönen P, et al.
Role of the Keap1-Nrf2 pathway in cancer.
Adv Cancer Res. 2014; 122:281-320 [PubMed] Related Publications
The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway is one of the major signaling cascades involved in cell defense and survival against endogenous and exogenous stress. While Nrf2 and its target genes provide protection against various age-related diseases including tumorigenesis, constitutively active Nrf2 in cancer cells increases the expression of cytoprotective genes and, consequently, enhances proliferation via metabolic reprogramming and inhibition of apoptosis. Herein, we review the current understanding of the regulation of Nrf2 in normal cells as well as its dual role in cancer. Furthermore, the mechanisms of Nrf2 dysregulation in cancer, consequences of unchecked Nrf2 activity, and therapies targeting the Keap1-Nrf2 system are discussed.

Henderson CJ, McLaren AW, Wolf CR
In vivo regulation of human glutathione transferase GSTP by chemopreventive agents.
Cancer Res. 2014; 74(16):4378-87 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Relatively little progress has been made in determining the in vivo regulation of glutathione S-transferase P (GSTP), particularly the human enzyme hGSTP1, despite being identified as a significant factor in carcinogenesis and development of drug resistance in tumor cell lines. Here, we report the characterization of a transgenic reporter mouse that reveals how hGSTP1 is regulated in vivo by chemopreventive agents. Basal expression was found in crypts and villi of the small and large intestine, bronchiolar epithelial cells, the epidermis and hair follicles, gall bladder epithelium, choroid plexus, and biliary epithelium. Expression was induced in different tissues by the antioxidant chemopreventive agents ethoxyquin and butylated hydroxyanisole. However, genetic deletion of the Nrf2 transcription factor, which directs central genetic programs of detoxification and protection against oxidative stress, increased rather than attenuated GSTP1 expression. In vitro investigations with mouse embryonic fibroblasts revealed factors, in addition to Nrf2, that control the expression of GSTP1, offering further insights into regulation. The new reporter mouse described here provides a useful tool to gain deeper insights into the mechanisms of action of chemopreventive compounds and other environmental agents.

Yan Z, Wang J, Wang C, et al.
miR-96/HBP1/Wnt/β-catenin regulatory circuitry promotes glioma growth.
FEBS Lett. 2014; 588(17):3038-46 [PubMed] Related Publications
We found that miR-96 is overexpressed in glioma, and its level inversely correlates with the survival of patients. The reduction in miR-96 abundance suppresses the proliferation and colony formation of glioma cells. The tumorigenicity of U-87 MG cells is reduced by miR-96 silencing. miR-96 contributes to the activation of Wnt/β-catenin pathway in glioma cells. HMG-box transcription factor 1 (HBP-1), a Wnt/β-catenin pathway inhibitor, is suppressed by miR-96. The reactivation of Wnt/β-catenin signaling causes an increase in the proliferation of glioma cells, and a decrease in miR-96 expression. On the other hand, HBP1 silencing promotes miR-96 expression. Collectively, miR-96 contributes to the progression of glioma by enhancing the activation of the Wnt/β-catenin pathway, and the miR-96/HBP1/Wnt/β-catenin regulatory circuitry promotes the proliferation of glioma cells.

Zhu J, Wang H, Fan Y, et al.
Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review).
Oncol Rep. 2014; 32(2):443-50 [PubMed] Related Publications
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.

Reszka E, Jablonowski Z, Wieczorek E, et al.
Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients.
J Cancer Res Clin Oncol. 2014; 140(10):1723-31 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
PURPOSE: NRF2 transcription factor is involved in modulation of various antioxidant and metabolic genes and, therefore, may modulate anti-carcinogenic potential. Association between polymorphisms of NRF2 and five NRF2-regulated genes and urinary bladder cancer (BC) risk was analyzed.
METHODS: The study group included 244 BC patients, while the control group comprised 365 individuals with no evidence of malignancy. Genotyping of GSTM1 (deletion), GSTT1 (deletion), GSTA1 -69C/T (rs3957357), GSTP1 Ile105Val (rs1695), SOD2 Ala16Val (rs4880) and NRF2 -617C/A (rs6721961) in blood genomic DNA was performed by means of real-time PCR assays. The associations between gene polymorphism and BC risk were computed by logistic regression.
RESULTS: The frequency of GSTA1, GSTP1, SOD2 and NRF2 genotypes did not differ in both groups. A significantly higher BC risk was associated with GSTM1 null genotype after adjusting to age, sex and smoking habit (OR 1.85, 95 % CI 1.30-2.62; P = 0.001). GSTT1 null (OR 0.50, 95 % CI 0.31-0.81; P = 0.005) and GSTP1 Val105Val (OR 0.52, 95 % CI 0.27-0.98; P = 0.04) genotypes were associated with reduced BC risk separately or in combination (OR 0.24, 95 % CI 0.11-0.51; P < 0.0001) (P heterogeneity = 0.01). Combined GSTT1 null and SOD2 with at least one 16Val allele among never smokers encompass reduced BC risk (OR 0.14, 95 % CI 0.03-0.63; P = 0.01) (P heterogeneity = 0.04).
CONCLUSIONS: This study supports hypothesis that GSTM1 null genotype may be a moderate BC risk factor. The gene-gene and gene-environment interactions associated with combined GSTP1/GSTT1 and combined GSTT1/SOD2 genetic polymorphisms along with cigarette smoking habit may play a significant role in BC risk modulation.

Singh B, Shoulson R, Chatterjee A, et al.
Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways.
Carcinogenesis. 2014; 35(8):1872-80 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective pathways.

Chun KS, Kundu J, Kundu JK, Surh YJ
Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals.
Toxicol Lett. 2014; 229(1):73-84 [PubMed] Related Publications
The incidence of skin cancer is increasing worldwide. Over the last several decades, attention has been focused on understanding the molecular basis of skin carcinogenesis and identifying substances for use in chemoprevention of skin cancer. Reactive oxygen species generated by chemical carcinogens or UV irradiation play a key role in skin tumorigenesis. Multiple lines of evidence suggest that cellular antioxidant and/or phase-2 detoxification enzymes, collectively known as cytoprotective proteins, can protect against skin carcinogenesis. A redox sensitive transcription factor, nuclear factor-erythroid related factor-2 (Nrf2), is a master regulator of transcriptional activation of genes encoding cytoprotective proteins. Many chemopreventive phytochemicals are known to activate Nrf2 either by oxidative or covalent modification of its cytosolic repressor Kelch-like ECH-associated protein (Keap1) or by phosphorylation of Nrf2. Upon activation, Nrf2 translocates to the nucleus and binds to the antioxidant response element (ARE) located in the promoter regions of genes encoding cytoprotective proteins. Mice genetically deficient in Nrf2 are highly susceptible to chemically induced skin tumorigenesis and are less responsive to the cytoprotective effects of some chemopreventive phytochemicals. This article highlights the Nrf2-ARE signaling as a prime target for chemoprevention of skin cancer with some phytochemicals.

Namani A, Li Y, Wang XJ, Tang X
Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer.
Biochim Biophys Acta. 2014; 1843(9):1875-85 [PubMed] Related Publications
Nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also known as Nfe2l2) plays a critical role in regulating cellular defense against electrophilic and oxidative stress by activating the expression of an array of antioxidant response element-dependent genes. On one hand, NRF2 activators have been used in clinical trials for cancer prevention and the treatment of diseases associated with oxidative stress; on the other hand, constitutive activation of NRF2 in many types of tumors contributes to the survival and growth of cancer cells, as well as resistance to anticancer therapy. In this review, we provide an overview of the NRF2 signaling pathway and discuss its role in carcinogenesis. We also introduce the inhibition of NRF2 by nuclear receptors. Further, we address the biological significance of regulation of the NRF2 signaling pathway by nuclear receptors in health and disease. Finally, we discuss the possible impact of NRF2 inhibition by nuclear receptors on cancer therapy.

Kaufman JM, Amann JM, Park K, et al.
LKB1 Loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT.
J Thorac Oncol. 2014; 9(6):794-804 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
INTRODUCTION: Inactivation of serine/threonine kinase 11 (STK11 or LKB1) is common in lung cancer, and understanding the pathways and phenotypes altered as a consequence will aid the development of targeted therapeutic strategies. Gene and protein expressions in a murine model of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (Kras)-mutant lung cancer have been studied to gain insight into the biology of these tumors. However, the molecular consequences of LKB1 loss in human lung cancer have not been fully characterized.
METHODS: We studied gene expression profiles associated with LKB1 loss in resected lung adenocarcinomas, non-small-cell lung cancer cell lines, and murine tumors. The biological significance of dysregulated genes was interpreted using gene set enrichment and transcription factor analyses and also by integration with somatic mutations and proteomic data.
RESULTS: Loss of LKB1 is associated with consistent gene expression changes in resected human lung cancers and cell lines that differ substantially from the mouse model. Our analysis implicates novel biological features associated with LKB1 loss, including altered mitochondrial metabolism, activation of the nuclear respiratory factor 2 (NRF2) transcription factor by kelch-like ECH-associated protein 1 (KEAP1) mutations, and attenuation of the phosphatidylinositiol 3-kinase and v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway. Furthermore, we derived a 16-gene classifier that accurately predicts LKB1 mutations and loss by nonmutational mechanisms. In vitro, transduction of LKB1 into LKB1-mutant cell lines results in attenuation of this signature.
CONCLUSION: Loss of LKB1 defines a subset of lung adenocarcinomas associated with characteristic molecular phenotypes and distinctive gene expression features. Studying these effects may improve our understanding of the biology of these tumors and lead to the identification of targeted treatment strategies.

Gonzalez-Sanchez E, Marin JJ, Perez MJ
The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion.
Mol Pharm. 2014; 11(6):1856-68 [PubMed] Related Publications
Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.

Bao LJ, Jaramillo MC, Zhang ZB, et al.
Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma.
Int J Clin Exp Pathol. 2014; 7(4):1502-13 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
UNLABELLED: Cisplatin resistance is a major problem affecting ovarian carcinoma treatment. NF-E2-related factor 2 (Nrf2), a nuclear transcription factor, plays an important role in chemotherapy resistance. However, the underlying mechanism by which Nrf2 mediates cisplatin chemoresistance is unclear.
METHODS: The human ovarian carcinoma cell line, A2780, and its cisplatin-resistant variant, A2780cp were cultivated. Cell viability was determined with WST-8 assay. Western blot was applied to detect the expression of Nrf2, Nrf2 target genes, and autophagy-related proteins. RNA interference was used to knock down target genes. Annexin V and propidium iodide (PI) staining was utilized to quantify apoptosis. The ultrastructural analysis of autophagosomes was performed by transmission electron microscopy (TEM).
RESULTS: Nrf2 and its targeting genes, NQO1 and HO-1, are overexpressed in A2780cp cells compared with A2780 cells. Knocking down Nrf2 sensitized A2780cp cells to cisplatin treatment and decreased autophagy-related genes, Atg3, Atg6, Atg12 and p62 in both mRNA and protein levels. Furthermore, we demonstrated that in both cell lines cisplatin could induce the formation of autophagosomes and upregulate the expression of autophagy-related genes Atg3, Atg6 and Atg12. Treatment with an autophagy inhibitor, 3-Methyladenine (3-MA), or beclin 1 siRNA enhanced cisplatin-induced cell death in A2780cp cells, suggesting that inhibition of autophagy renders resistant cells to be more sensitive to cisplatin. Taken together, Nrf2 signaling may regulate cisplatin resistance by activating autophagy.
CONCLUSIONS: Nrf2-activated autophagy may function as a novel mechanism causing cisplatin-resistance.

Chian S, Li YY, Wang XJ, Tang XW
Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway.
Asian Pac J Cancer Prev. 2014; 15(6):2911-6 [PubMed] Related Publications
Oxaliplatin is a first-line therapy for colorectal cancer, but cancer cell resistance to the drug compromises its efficacy. To explore mechanisms of drug resistance, we treated colorectal cancer cells (HCT116 and SW620) long-term with oxaliplatin and established stable oxaliplatin-resistant lines (HCT116-OX and SW620-OX). Compared with parental cell lines, IC50s for various chemotherapeutic agents (oxaliplatin, cisplatin and doxorubicin) were increased in oxaliplatin-resistant cell lines and this was accompanied by activation of nuclear factor erythroid-2 p45-related factor 2 (Nrf2) and NADPH quinone oxidoreductase 1 (NQO1). Furthermore, luteolin inhibited the Nrf2 pathway in oxaliplatin-resistant cell lines in a dose-dependent manner. Luteolin also inhibited Nrf2 target gene [NQO1, heme oxygenase-1 (HO-1) and GSTα1/2] expression and decreased reduced glutathione in wild type mouse small intestinal cells. There was no apparent effect in Nrf2-/- mice. Luteolin combined with other chemotherapeutics had greater anti-cancer activity in resistant cell lines (combined index values below 1), indicating a synergistic effect. Therefore, adaptive activation of Nrf2 may contribute to the development of acquired drug-resistance and luteolin could restore sensitivity of oxaliplatin-resistant cell lines to chemotherapeutic drugs. Inhibition of the Nrf2 pathway may be the mechanism for this restored therapeutic response.

Abedi-Ardekani B, Hainaut P
Cancers of the upper gastro-intestinal tract: a review of somatic mutation distributions.
Arch Iran Med. 2014; 17(4):286-92 [PubMed] Related Publications
Cancers of the upper gastro-intestinal tract (UGIT) comprise esophageal, esophago-gastric junction, stomach and duodenal cancers. Together, these cancers represent over 1.5 million cases and are the cause of about 1.25 million deaths annually. This group of cancers encompasses diseases with marked disparities in etiology, geographic distribution, histopathological features and frequency. Based on histological origin, squamous cell carcinoma of the esophagus (ESCC), which arises through a dysplasia-carcinoma sequence within the squamous mucosa, is a completely different cancer than junction, stomach and duodenal cancers, which develop within glandular epithelia through cascades involving inflammation, metaplasia, dysplasia and carcinoma. At the frontline between these two histological domains, cancers of the esophago-gastric junction constitute a mixed group of glandular tumors including distal esophageal adenocarcinomas and cancers arising within the most proximal part of the stomach - the cardia. Most of UGIT cancers are sporadic, although familial susceptibility genes have been identified for stomach and rare cases of ESCC. We have used the COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/) to identify genes commonly mutated in UGIT cancers. Regardless of etiology and histopathology, three genes are mutated in at least 5% of UGIT cancers: TP53, CDKN2a and PIK3CA. Another three genes, NFE2L2, PTCH1 and NOTCH1, are mutated in ESCC only. Conversely, genes of the RAS family and of the CDH1/APC/CTNNB1 pathway are mutated only in non-squamous cancers, with differences in mutated genes according to topography. We review the potential functional significance of these observations for understanding mechanisms of UGIT carcinogenesis.

Su S, Yang X, Omiecinski CJ
Intronic DNA elements regulate Nrf2 chemical responsiveness of the human microsomal epoxide hydrolase gene (EPHX1) through a far upstream alternative promoter.
Biochim Biophys Acta. 2014; 1839(6):493-505 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
In humans, microsomal epoxide hydrolase (mEH) contributes important biological functions that underlie both detoxification and bioactivation fates arising from exposures to foreign chemicals. Previously, we discovered that human mEH gene transcription is initiated from alternative promoters. The respective transcripts are programmed with tissue specificity and the upstream E1b promoter contributes predominantly to mEH expression. The results presented demonstrate that exposures to the Nrf2 activators, sulforaphane (SFN) and tert-butylhydroquinone (tBHQ), markedly activate E1b transcription in human lung and liver cells. Genomic analyses identified two major DNase I hypersensitive regions (HS-1 and HS-2) within the ~15 kb intervening sequence separating E1b from the downstream E1 promoter. In BEAS-2B cells, the Nrf2 effectors, SFN and tBHQ, selectively activated the more distal HS-2 through an antioxidant response element (ARE). An activator protein 1/12-O-tetradecanoylphorbol-13-acetate interaction was further identified within the HS-2 enhancer that functioned to additionally contribute to ARE-mediated induction responsiveness of the E1b promoter. The results demonstrate that ARE modulation, integrated with additional transcriptional complexes, regulates the tissue-specific expression of mEH and that these processes likely coordinate both the protective and bioactivation functions contributed by mEH activities in human tissues.

Gonzalez Y, Aryal B, Chehab L, Rao VA
Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress.
Oncotarget. 2014; 5(6):1526-37 [PubMed] Article available free on PMC after 01/06/2015 Related Publications
The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ.

Xiang M, Namani A, Wu S, Wang X
Nrf2: bane or blessing in cancer?
J Cancer Res Clin Oncol. 2014; 140(8):1251-9 [PubMed] Related Publications
BACKGROUND: The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element pathway serves a major function in endogenous cytoprotection in normal cells. Nrf2 is a transcription factor that mainly regulates the expression of a wide array of genes that produce the antioxidants and other proteins responsible for the detoxification of xenobiotics and reactive oxygen species. Nrf2 mediates the chemoprevention of cancer in normal cells.
RESULTS AND DISCUSSION: Growing body of evidence suggests that Nrf2 is not only involved in the chemoprevention of normal cells but also promotes the growth of cancer cells. However, the mechanism underlying the function of Nrf2 in oncogenesis and tumor protection in cancer cells remains unclear and thus requires further study.
CONCLUSION: This review aims to rationalize the existing functions of Nrf2 in chemoprevention and tumorigenesis, as well as the somatic mutations of Nrf2 and Keap1 in cancer and Nrf2 cross talk with miRNAs. This review also discusses the future challenges in Nrf2 research.

Chen Z, Ye X, Tang N, et al.
The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer.
Br J Pharmacol. 2014; 171(13):3196-211 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
BACKGROUND AND PURPOSE: The histone acetyltransferase MOF is a member of the MYST family. In mammals, MOF plays critical roles by acetylating histone H4 at K16 and non-histone substrates such as p53. Here we have investigated the role of MOF in human lung cancer and possible new substrates of hMOF.
EXPERIMENTAL APPROACH: Samples of human non-small cell lung cancer (NSCLC) were used to correlate MOF with clinicopathological parameters and NF-E2-related factor 2 (Nrf2) downstream genes. 293T-cells were used to study interactions between MOF and Nrf2, and acetylation of Nrf2 by MOF. Mouse embryonic fibroblast and A549 cells were utilized to assess involvement of MOF in antioxidative and anti-drug responses. A549 cells were used to analysis the role of MOF in anti-drug response in vitro and in vivo.
KEY RESULTS: hMOF was overexpressed in human NSCLC tissues and was associated with large tumour size, advanced disease stage and metastasis, and with poor prognosis. hMOF levels were positively correlated with Nrf2-downstream genes. MOF/hMOF physically interacted with and acetylated Nrf2 at Lys(588) . MOF-mediated acetylation increased nuclear retention of Nrf2 and transcription of its downstream genes. Importantly, MOF/hMOF was essential for anti-oxidative and anti-drug responses in vitro and regulated tumour growth and drug resistance in vivo in an Nrf2-dependent manner.
CONCLUSION AND IMPLICATIONS: hMOF was overexpressed in human NSCLC and was a predictor of poor survival. hMOF-mediated Nrf2 acetylation and nuclear retention are essential for anti-oxidative and anti-drug responses. hMOF may provide a therapeutic target for the treatment of NSCLC.

Wang XJ, Li Y, Luo L, et al.
Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs.
Free Radic Biol Med. 2014; 70:68-77 [PubMed] Related Publications
Oxaliplatin is an important drug in the treatment of advanced metastatic colorectal cancer. NF-E2 p45-related factor 2 (Nrf2) is a key transcription factor that controls genes encoding cytoprotective and detoxifying enzymes through antioxidant-response elements (AREs) in their regulatory regions. Here, we report that oxaliplatin is an activator of the Nrf2 signaling pathway, with upregulation of ARE-driven genes and glutathione elevation. An injection of oxaliplatin into mice enhanced the expression of glutathione transferases and antioxidant enzymes in the small and large intestines of wild-type (WT) mice but not Nrf2(-/-) mice, indicating that oxaliplatin activates Nrf2 in vivo. Oxaliplatin failed to increase Nrf2 accumulation in non-small-cell lung cancer A549 cells, which harbor a dysfunctional somatic mutation of KEAP1. However, forced expression of WT mKeap1 restored the ability of oxaliplatin to activate the transcription factor. Cys(151) in Keap1 was required for the response stimulated by oxaliplatin. In addition, dichloro(1,2-diaminocyclohexane) platinum, a metabolite of oxaliplatin, was found to have the same effect in activating the ARE-gene battery as its parent drug, whereas another metabolite, oxalate, was ineffective. Moreover, two other platinum derivatives, cisplatin and carboplatin, had no effect on the Keap1/Nrf2 system. Furthermore, activation of Nrf2 by oxaliplatin reduced the sensitivity of colon cancer cells to therapeutic drugs. Conversely, knockdown of Nrf2 by Nrf2 siRNA reduced oxaliplatin-induced chemoresistance. Our study showed that oxaliplatin exerts protection against the cytotoxicity of anticancer drugs via Nrf2, indicating an important role of Nrf2 in oxaliplatin-based chemotherapy.

Bellezza I, Grottelli S, Gatticchi L, et al.
α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells.
Gene. 2014; 539(1):1-7 [PubMed] Related Publications
UNLABELLED: α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H₂O₂₋/docetaxel-induced cytotoxicity. While glutathione and heme oxygenase-1 are not involved in α-tocopheryl succinate-induced adaptive response to paraquat,
NAD(P)H: quinone oxidoreductase seems to be responsible, at least in part, for the lack of the additional response. Silencing the gene and/or the inhibition of
NAD(P)H: quinone oxidoreductase activity counteracts the α-tocopheryl succinate-induced adaptive response. In conclusion, the adaptive response to α-tocopheryl succinate shows that the activation of Nrf2 can promote the survival of cancer cells in an unfavourable environment.

Khunluck T, Kukongviriyapan V, Puapairoj A, et al.
Association of NRF2 polymorphism with cholangiocarcinoma prognosis in Thai patients.
Asian Pac J Cancer Prev. 2014; 15(1):299-304 [PubMed] Related Publications
Cholangiocarcinoma (CCA), a malignancy of biliary duct with a very poor prognosis, is the leading cause of cancer death in countries of the Mekong subregion. Liver fluke infection is the main etiological factor, but genetic variation has been recognized as also important in conferring susceptibility to CCA risk. Nuclear factor (erythroid derived 2)-like 2 (NRF2) is a key transcription factor in detoxification and antioxidant defense. Emerging evidence has demonstrated that genetic polymorphisms in the NRF2 gene may be associated with cancer development. The objectives of this study were to investigate the association of NRF2 genetic polymorphism with CCA risk and to evaluate the influence of the NRF2 genotype on survival time of affected patients. Single nucleotide polymorphisms (SNPs) of the NRF2 gene, including rs6726395: A/G, rs2886161: C/T, rs1806649: C/T, and rs10183914: C/T, were analyzed using TaqMan® SNP genotyping assays. Among 158 healthy northeastern Thai subjects, the allele frequencies were 41, 62, 94, and 92%, respectively. The correlation of NRF2 SNPs and CCA risk was analyzed in the 158 healthy subjects and 198 CCA patients, using unconditional logistic regression. The results showed that whereas the NRF2 SNPs were not associated with CCA risk (p>0.05), Kaplan-Meier analysis of 88 intrahepatic CCA patients showed median survival time with rs6726395 genotypes of GG and AA/AG to be 344±138 (95%CI: 73-615) days and 172±37 (95%CI: 100-244) days, respectively, (p<0.006). On multivariate Cox proportional hazard analysis, the GG genotype of rs6726395 was found to be associated with longer survival with a hazard ratio of 0.54 (95%CI: 0.31-0.94). In addition, non-papillary adenocarcinoma was associated with poor survival with a hazard ratio of 2.09 (95%CI: 1.16-3.75). The results suggest that the NRF2 rs6726395 polymorphism can be a potential prognostic biomarker for CCA patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HEBP1, Cancer Genetics Web: http://www.cancer-genetics.org/HEBP1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 26 February, 2015     Cancer Genetics Web, Established 1999