IBSP

Gene Summary

Gene:IBSP; integrin binding sialoprotein
Aliases: BSP, BNSP, SP-II, BSP-II
Location:4q22.1
Summary:The protein encoded by this gene is a major structural protein of the bone matrix. It constitutes approximately 12% of the noncollagenous proteins in human bone and is synthesized by skeletal-associated cell types, including hypertrophic chondrocytes, osteoblasts, osteocytes, and osteoclasts. The only extraskeletal site of its synthesis is the trophoblast. This protein binds to calcium and hydroxyapatite via its acidic amino acid clusters, and mediates cell attachment through an RGD sequence that recognizes the vitronectin receptor. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:bone sialoprotein 2
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (8)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cancer Gene Expression Regulation
  • Integrin-Binding Sialoprotein
  • Chromosome 4
  • Polymerase Chain Reaction
  • Cell Division
  • Neoplasm Metastasis
  • In Situ Hybridization
  • Amino Acid Motifs
  • RTPCR
  • Breast Cancer
  • Cervical Cancer
  • Osteocalcin
  • Transcription Factors
  • Immunoenzyme Techniques
  • Transfection
  • Cell Differentiation
  • Signal Transduction
  • Messenger RNA
  • Osteoblasts
  • Childhood Cancer
  • DNA Primers
  • Up-Regulation
  • Osteoclasts
  • Sialoglycoproteins
  • Biomarkers, Tumor
  • IBSP
  • Glycoproteins
  • Molecular Sequence Data
  • Bone Cancer
  • Gene Expression
  • Trans-Activators
  • Immunohistochemistry
  • Transcription Factor AP-1
  • Base Sequence
  • Core Binding Factor Alpha 1 Subunit
  • beta-Galactosidase
  • Phosphoproteins
  • Promoter Regions
  • Cell Proliferation
  • Osteosarcoma
  • Osteopontin
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IBSP (cancer-related)

Jiang LL, Xie JK, Cui JQ, et al.
Promoter methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome.
Medicine (Baltimore). 2017; 96(2):e5768 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: DNA methylation modification has been proved to influence the phenotype of polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) demonstrate that yes-associated protein (YAP1) genetic sites are associated with PCOS. The study aims to detect the methylation status of YAP1 promoter in ovary granulosa cells (GCs) of PCOS patients and explore novel therapeutic targets for PCOS.
METHODS: Randomized controlled trial was applied and a total of 72 women were included in the study, including 36 cases of PCOS patients and 36 cases of health controls. Ovary GCs were extracted from in vitro fertilization embryo transfer. Methylation status of YAP1 promoter was detected by bisulfite sequencing PCR (BSP). Protein and mRNA expression of YAP1 were measured by western blotting and real-time quantitate PCR.
RESULTS: Overall methylation level of YAP1 promoter region from PCOS group was significantly lower than that from control group. CpG sites analysis revealed that 12 sites (-443, -431, -403, -371, -331, -120, -49, -5, +1, +9, +15, +22) were significantly hypomethylated in women with PCOS (P < 0.05). A significant upregulation of YAP1 mRNA and protein expression levels was observed. Testosterone concentration could alleviate the methylation status and demonstrate obvious dose-dependent relation.
CONCLUSION: Our research achievements manifest that hypomethylation of YAP1 promoter promotes the YAP1 expression, which plays a key role in the pathogenesis and accelerate PCOS.

Tang X, Tang J, Liu X, et al.
Downregulation of miR-129-2 by promoter hypermethylation regulates breast cancer cell proliferation and apoptosis.
Oncol Rep. 2016; 35(5):2963-9 [PubMed] Related Publications
Aberrant expression of the miR-129 family has been found in several types of cancer, yet its expression and potential biologic role in breast cancer remain largely unknown. In the present study, we found that miR-129-2 was consistently downregulated in the breast cancer specimens and cell lines. Overexpression of miR-129-2-3p markedly suppressed breast cancer cell proliferation and induced its apoptosis. In addition, a luciferase reporter assay revealed that miR-129-2-3p suppressed BCL2L2 expression. Furthermore, BCL2L2 was able to reverse miR-129-2-3p-mediated cell apoptosis, indicating that BCL2L2 plays a crucial role in mediating the tumor-suppressive role of miR-129-2-3p. Moreover, bisulfite DNA sequencing PCR (BSP) analysis identified that promoter hypermethylation was responsible for the downregulation of miR-129-2 in breast cancer. Collectively, our findings indicate that miR-129-2 is downregulated in breast cancer cells by promoter hypermethylation. Moreover, downregulation of miR-129-2 results in BCL2L2 overexpression and disease progression in breast cancer patients.

Wu WR, Sun H, Zhang R, et al.
Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1.
Oncotarget. 2016; 7(14):18684-93 [PubMed] Free Access to Full Article Related Publications
This study aims to investigate the biological function of microRNA-200b and BMI1, predicted target of microRNA-200b in human hepatocellular carcinoma (HCC). MicroRNA-200b and BMI1 expression in HCC tissues were evaluated by qPCR. A luciferase reporter assay was used to validate BMI1 as a direct target of microRNA-200b. The effect of microRNA-200b on HCC progression was studied in vitro and in vivo. Methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to detect the methylation status of the microRNA-200b promoter. Significant downregulation of microRNA-200b was observed in 83.3% of HCC tissues. By contrast, BMI1 was significantly overexpressed in 66.7% of HCC tissues. The results of the luciferase assay confirmed BMI1 as a direct target gene of microRNA-200b. Forced expression of microRNA-200b in HCC cells dramatically repressed proliferation, colony formation, cell cycle progression, and invasion. Moreover, microRNA-200b synergized with 5-fluorouracil to induce apoptosis in vitro and suppressed tumorigenicity in vivo. In addition, MSP analysis and BSP revealed that CpG sites in the promoter region of microRNA-200b were extensively methylated in HCC, with concomitant downregulation of microRNA-200b expression. Furthermore, microRNA-200b was activated in HCC cells after treatment with 5-azacytidine, whereas BMI1 expression was clearly downregulated. Our results indicate that microRNA-200b is partially silenced by DNA hypermethylation and that it can repress tumor progression by directly targeting BMI1 in HCC.

Pan FP, Zhou HK, Bu HQ, et al.
Emodin enhances the demethylation by 5-Aza-CdR of pancreatic cancer cell tumor-suppressor genes P16, RASSF1A and ppENK.
Oncol Rep. 2016; 35(4):1941-9 [PubMed] Free Access to Full Article Related Publications
5-Aza-2'-deoxycytidine (5-Aza-CdR) is currently acknowledged as a demethylation drug, and causes a certain degree of demethylation in a variety of cancer cells, including pancreatic cancer cells. Emodin, a traditional Chinese medicine (TCM), is an effective monomer extracted from rhubarb and has been reported to exhibit antitumor activity in different manners in pancreatic cancer. In the present study, we examined whether emodin caused demethylation and increased the demethylation of three tumor-suppressor genes P16, RASSF1A and ppENK with a high degree of methylation in pancreatic cancer when combined with 5-Aza-CdR. Our research showed that emodin inhibited the growth of pancreatic cancer Panc-1 cells in a dose- and time-dependent manner. Dot-blot results showed that emodin combined with 5-Aza-CdR significantly suppressed the expression of genome 5mC in PANC-1 cells. In order to verify the effect of methylation, methylation-specific PCR (MSP) and bisulfite genomic sequencing PCR (BSP) combined with TA were selected for the cloning and sequencing. Results of MSP and BSP confirmed that emodin caused faint demethylation, and 5-Aza-CdR had a certain degree of demethylation. When emodin was combined with 5-Aza-CdR, the demethylation was more significant. At the same time, fluorescent quantitative PCR and western blot analysis results confirmed that when emodin was combined with 5-Aza-CdR, the expression levels of P16, RASSF1A and ppENK were increased more significantly compared to either treatment alone. In contrast, the expression levels of DNA methyltransferase 1 (DNMT1) and DNMT3a were more significantly reduced with the combination treatment than the control or either agent alone, further proving that emodin in combination with 5-Aza-CdR enhanced the demethylation effect of 5-Aza-CdR by reducing the expression of methyltransferases. In conclusion, the present study confirmed that emodin in combination with 5-Aza-CdR enhanced the demethylation by 5-Aza-CdR of tumor-suppressor genes p16, RASSF1A and ppENK by reducing the expression of methyltransferases DNMT1 and DNMT3a.

Chen H, Xu Z
Hypermethylation-Associated Silencing of miR-125a and miR-125b: A Potential Marker in Colorectal Cancer.
Dis Markers. 2015; 2015:345080 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNAs (miRNAs) have been found to be downregulated in human colorectal cancer (CRC), and some of them may function as tumor suppressor genes (TSGs). Aberrant methylation triggers the inactivation of TSGs during tumorigenesis.
PATIENTS AND METHODS: We investigated the methylation status of miR-125 family in CRC tissues and adjacent nontumor tissues by using bisulfite sequencing PCR (BSP). The expression levels of the two miRNAs were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results. The methylation frequency of miR-125a and miR-125b was higher in CRC tissues. QRT-PCR analysis showed that miR-125a and miR-125b were significantly downregulated in CRC tissues. Moreover, the expression levels of miR-125a and miR-125b were inversely correlated to CpG island methylation in CRC.
CONCLUSIONS: Our results suggest that DNA hypermethylation may be involved in the inactivation of miR-125a and miR-125b in CRC, and hypermethylation of miR-125 is a potential biomarker for clinical outcome.

Yang M, Liu R, Li X, et al.
Epigenetic Repression of miR-218 Promotes Esophageal Carcinogenesis by Targeting ROBO1.
Int J Mol Sci. 2015; 16(11):27781-95 [PubMed] Free Access to Full Article Related Publications
miR-218, consisting of miR-218-1 at 4p15.31 and miR-218-2 at 5q35.1, was significantly decreased in esophageal squamous cell carcinoma (ESCC) in our previous study. The aim of this study was to determine whether aberrant methylation is associated with miR-218 repression. Bisulfite sequencing analysis (BSP), methylation specific PCR (MSP), and 5-aza-2'-deoxycytidine treatment assay were applied to determine the methyaltion status of miR-218 in cells and clinical samples. In vitro assays were performed to explore the role of miR-218. Results showed that miR-218-1 was significantly CpG hypermethylated in tumor tissues (81%, 34/42) compared with paired non-tumor tissues (33%, 14/42) (p < 0.05). However, no statistical difference was found in miR-218-2. Accordingly, expression of miR-218 was negatively correlated with miR-218-1 methylation status (p < 0.05). After demethylation treatment by 5-aza-2'-deoxycytidine, there was a 2.53- and 2.40-fold increase of miR-218 expression in EC109 and EC9706, respectively. miR-218 suppressed cell proliferation and arrested cells at G1 phase by targeting 3' untranslated region (3'UTR) of roundabout guidance receptor 1 (ROBO1). A negative correlation was found between miR-218 and ROBO1 mRNA expression in clinical samples. In conclusion, our results support that aberrant CpG hypermethylation at least partly accounts for miR-218 silencing in ESCC, which impairs its tumor-suppressive function.

Azevedo FV, Lopes DS, Cirilo Gimenes SN, et al.
Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA₂ homologue from Bothrops pauloensis venom.
Int J Biol Macromol. 2016; 82:671-7 [PubMed] Related Publications
This work shows the antitumoral effects of BnSP-6, a Lys 49 PLA2 isolated from Bothrops pauloensis venom, on human breast cancer MDA-MB-231 cells. BnSP-6 caused a dose-dependent cytotoxicity and inhibited cell adhesion. Interestingly, cytotoxic activity of BnSP-6 was significantly lower against MCF10A, a non-tumorigenic breast cell line, suggesting that this PLA2 presented a possible preference for targets in cancer cells. Analysis of cell death on MDA-MB-231 cells showed that BnSP-6 stimulated the autophagy process, as evidenced by labeling of autophagic vacuoles. Moreover, apoptosis assays showed that BnSP-6 induced both early and late apoptosis. Apoptosis of MDA-MB-231 cells was also confirmed by up-regulation of different genes related to the apoptosis pathway, such as TNF, TNFRSF10B, TNFRSF1A and CASP8 and decreased expression of anti-apoptotic genes (BCL2 and BCL2L). In addition, BnSP-6 caused a remarkable increase in gene expression of BRCA2 and TP53 tumor suppressors. Finally, BnSP-6 induced down-regulation of Angiopoetin 1 gene (potent pro-angiogenic factor) and inhibited adhesion and migration of MDA-MB-231 cells suggesting pharmaceutical applications of this PLA2 as an antiangiogenic and anti-metastatic agent. Taken together, our results show that the PLA2 BnSP-6 presents anticancer potential that can be exploited as prototype for the design of new therapies.

Dai Y, Duan H, Duan C, et al.
Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer.
Biochem Biophys Res Commun. 2016; 469(3):430-6 [PubMed] Related Publications
Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development.

Liu L, Sun L, Li C, et al.
Quantitative detection of methylation of FHIT and BRCA1 promoters in the serum of ductal breast cancer patients.
Biomed Mater Eng. 2015; 26 Suppl 1:S2217-22 [PubMed] Related Publications
The development of carcinoma has been found to be associated with epigenetic modifications. The aim of this study was to estimate the methylation levels of FHIT and BRCA1 promoters using the bisulphite sequencing method (BSP) and high-resolution melting curve analysis (HRM) in the serum of patients with ductal breast carcinoma as a biomarker for the possible application of early diagnosis of breast cancer. The results showed that the methylation levels of both BRCA1 and FHIT promoters were higher in the serum of the breast ductal carcinoma group (BDC group) than those of the breast fibroadenoma group (BFA group), and the healthy individuals group (HI group). However, the methylation levels of the BRCA1 promoters were very low in all three groups compared to the levels of FHIT. The advanced quantitative detection of the samples with HRM showed that the FHIT promoter methylation level of the cfDNA in each serum was also very high in the BDC group compared to the HI group. The methylation level of FHIT was found to be significantly associated with breast cancer (p < 0.05). In conclusion, the methylation quantitative detection of FHIT promoter in serum may be useful for the early diagnosis of ductal breast carcinoma.

Brisotto G, di Gennaro A, Damiano V, et al.
An improved sequencing-based strategy to estimate locus-specific DNA methylation.
BMC Cancer. 2015; 15:639 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: DNA methylation is an important epigenetic mechanism of transcriptional control that plays an essential role in several cellular functions. Aberrant DNA methylation in cancer has been frequently associated with downregulation of microRNAs and protein coding genes, such as miR-200c/miR-141 cluster and E-cadherin. Current strategies to assess DNA methylation, including bisulfite treatment-based assays, tend to be time-consuming and may be quite expensive when a precise appraisal is required. The Sanger-sequencing of the amplified bisulfite-treated DNA (BSP) might represent a practical option to measure DNA methylation at single CpG resolution. However, this strategy often produces noisy data, which affects accurate quantification. Here we propose an improved, reliable and cost-effective BSP-based protocol that allows proper DNA methylation assessment.
METHODS: Our strategy, named normalized-BSP (NBSP), takes advantage of tailed C-balanced primers and a normalization procedure based on C/T ratio to overcome BSP-associated noise problems and nucleotide signal unbalance. NBSP was applied to estimate miR-200c/miR-141 locus methylation in serial dilution experiments and was compared to conventional methods. Besides, it was applied in the analysis of FFPE breast cancer samples and further validated in the context of the E-cadherin promoter.
RESULTS: NBSP strategy outperformed conventional BSP in the estimate of the fraction of methylated cytosine in serial dilution experiments, providing data in agreement with the widely used but cumbersome cloning-based protocol. This held true for both miR-200c/miR-141 locus and E-cadherin promoter analyses. Moreover, the miR-200c/miR-141 locus methylation reflected the decrease in miRNA expression both in breast cancer cell lines and in the FFPE samples.
CONCLUSIONS: NBSP is a rapid and economical method to estimate the extent of methylation at each CpG of a given locus. Notably, NBSP works efficiently on FFPE samples, thus disclosing the perspective of its application also in the diagnostic setting.

Zhang S, Zhou M, Jiang G, et al.
Expression and DNA methylation status of the Rap2B gene in human bronchial epithelial cells treated by cigarette smoke condensate.
Inhal Toxicol. 2015; 27(10):502-9 [PubMed] Related Publications
BACKGROUND: The relationship between lung cancer and smoking has been demonstrated. The Rap2B gene is usually overexpressed in lung cancers. This study was aimed to investigate the Rap2B gene expression and its promoter methylation in human bronchial epithelial cells (16HBE) treated by cigarette smoke condensate (CSC).
METHODS: 16HBE cells were treated with CSC (1/8 IC50). Soft ager assay, tumorigenicity test, chromosome aberrations analysis were used to identify the transformed cells. The expression level of mRNA and protein of Rap2B was detected using real time PCR and Western blotting, respectively. The genome DNA methylation level was detected using combined bisulfite restriction analysis (COBRA) and the methylation status of the target fragment in Rap2B gene promoter was determined by bisulfite sequencing PCR (BSP).
RESULTS: The 16HBE cells were successfully malignant transformed after the chronic exposure to CSC. The expression of Rap2B gradually increased in the process of malignant transformation. Meanwhile, global DNA was hypomethylated. However, no obvious change was observed in the methylation level of Rap2B gene promoter in transformed 16HBE cells.
CONCLUSIONS: Rap2B gene may play an important role in the process of lung cancer and global DNA hypomethylation might be an early event in tumorigenesis.

Zhu XW, Wen XM, Zhang YY, et al.
The 5' flanking region of miR-378 is hypomethylated in acute myeloid leukemia.
Int J Clin Exp Pathol. 2015; 8(5):4321-31 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant expression of miR-378 has been observed in various malignancies including acute myeloid leukemia (AML). However, the mechanism regulating of miR-378 expression remains unknown. This study was aimed to investigate miR-378 methylation and to explore its clinical significance in AML.
METHODS: Methylation status of miR-378 5'-flanking region was investigated by real-time quantitative methylation-specific PCR (RQ-MSP) and bisulfite-sequencing PCR (BSP). The expression of miR-378 was evaluated by real-time quantitative PCR (RQ-PCR). The correlation between expression of miR-378 and 5'-flanking region methylation was analyzed using 5-aza-2'-deoxycytidine (5-aza-dC) treatment.
RESULTS: miR-378 5'-flanking region was significantly hypomethylated in AML patients compared to controls (median 0.109 vs. 0.058) (P=0.048). miR-378 expression was correlated with miR-378 5'-flanking region in leukemic cell line treated with 5-aza-dC, but not in AML patients. The level of miR-378 hypomethylation significantly increased in M2 subtype compared to other subtypes. Moreover, patients with t(8;21) harbored the highest level of miR-378 hypomethylation. However, there was no significant difference in overall survival between patients with high and low miR-378 hypomethylation. The association of miR-378 expression with methylation was not observed in AML patients, but miR-378 expression in THP-1 line was increased while methylation status of miR-378 5-flanking region was decreased after 5-aza-dC treatment.
CONCLUSIONS: Our findings suggest that miR-378 is reactivated by demethylation after 5-aza-dC treatment. 5'-flanking region of miR-378 is hypomethylated in AML especially in those with t(8;21).

Wu F, Lv T, Chen G, et al.
Epigenetic silencing of DUSP9 induces the proliferation of human gastric cancer by activating JNK signaling.
Oncol Rep. 2015; 34(1):121-8 [PubMed] Related Publications
Dual-specificity phosphatase 9 (DUSP9) is a strong negative regulator of transcription factor activating kinases (ERK, JNK and p38) in the mitogen-activated protein kinase (MAPK) pathways. The aim of this study was to examine the CpG island methylation status of DUSP9 using bisulfite sequencing PCR (BSP) in gastric cancer (GC). The investigation was conducted on 30 clinical GC samples and selected corresponding tumor-free normal gastric mucosa tissues, using BSP for the determination of the promoter methylation status. The methylation status of the tumor samples was compared to the corresponding tumor-free samples. DUSP9 was silenced by promoter region hypermethylation and G2/M phase arrest was induced by DUSP9 in the MKN-1 GC cell line. MKN-1 proliferation was suppressed by DUSP9 by inhibiting c-Jun, which was induced by JNK signaling. The expression levels of CCND1, c-Jun, CDK4 and CDK6 were upregulated while p21 was downregulated by DUSP9 in MKN-1 cells. However, DUSP9-induced resulted in the regulation of the levels of cycle-related molecules, whivh were inhibited when the JNK inhibitor SP600125 was added. In conclusion, DUSP9 was frequently methylated in human GC and the expression of DUSP9 is silenced by promoter region hypermethylation. The results of this study, combined with previous studies, suggested that therapeutic intervention to increase the expression or activity of DUSP9 may enable the activation of anti-proliferation signals in malignant cells.

Zhang H, Chen L, Bu HQ, et al.
Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.
Oncol Rep. 2015; 33(6):3015-23 [PubMed] Related Publications
Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

Xu Z, Chen H, Liu D, Huo J
Fibulin-1 is downregulated through promoter hypermethylation in colorectal cancer: a CONSORT study.
Medicine (Baltimore). 2015; 94(13):e663 [PubMed] Free Access to Full Article Related Publications
Fibulin-1 (FBLN1) is involved in the progression of some types of cancer. However, the role of FBLN1 in colorectal cancer (CRC) has not been examined. The purpose of this study was to understand the molecular mechanisms and clinical significance of FBLN1 inactivation in CRC. The expression of FBLN1 in CRC tissues and adjacent normal tissues was analyzed by immunohistochemical analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Methylation-specific polymerase chain reaction (MSP) and bisulfite sequencing PCR (BSP) were performed to examine the methylation status of the FBLN1 gene promoter. Furthermore, the methylated level of FBLN1 was analyzed with the clinicopathological characteristics. Immunohistochemical analysis and qRT-PCR analysis showed that FBLN1 protein and messenger RNA (mRNA) levels in tumor tissues were both significantly decreased compared with that in adjacent nontumor tissues. The methylation rate of FBLN1 promoter was significantly higher in CRC tissues than that in adjacent nontumor tissues (P < 0.001). In addition, the correlation between FBLN1 hypermethylation, protein expression, and overall survival (OS) was statistically significant. Our results indicated that the FBLN1 gene may be a novel candidate of tumor suppressor gene in CRC, and that promoter hypermethylation of FBLN1 is an important reason for its downregulation and is also a good predictor of OS for CRC.

Bian H, Zhang S, Wu H, Wang Y
Interpretation of immunohistochemistry data of tumor should consider microenvironmental factors.
Tumour Biol. 2015; 36(6):4467-77 [PubMed] Related Publications
The influence of tumor surrounding microenvironment is often neglected when immunohistochemistry is performed to investigate tumor properties and search biomarkers of cancer. This study was designed to evaluate whether the influence of tumor microenvironment on biological features of tumor cells should be taken into account for interpretation of the immunohistochemistry data of tumor specimens. In this study, we showed an example by using three tumor cell lines (HeLa, WSU-HN6, and Tca83) to establish tumor-caused bone destruction models in nude mice and then to investigate the influence of bone marrow microenvironment (BMM) on biological features of tumor cells. Immunohistochemistry results showed that, compared with tumor cells located outside of BMM, tumor cells located inside of BMM presented huge differences in the expression of inflammation-related proteins including tumor necrosis factor-α (TNF-α), TNF receptor-associated factor protein-6 (TRAF-6), phosphorylated-NF-κB p65 (p-p65), interleukin (IL)-6 and IL-11, matrix metalloproteinases including MMP-1, MMP-2, MMP-9, and MMP-13; and osteogenesis-related proteins including runt-related transcription factor 2 (RUNX2), bone sialoprotein (BSP), and osteocalcin (OCN) in all the models. However, when we compared the cell line pair derived from different sites (outside and inside of BMM, respectively) of the same HeLa tumor sample by real-time PCR, Western blot, and immunocytochemistry, the differences aforementioned in tumor tissues were not found. In addition, we verified that normal human bone marrow could not cause the above changes detected in vivo. Our results suggested that tumor-modified microenvironment could give the new biological features of the invaded tumor cells. Therefore, we should consider the influence of the surrounding microenvironment on tumor cells when we analyze tumor properties using immunohistochemistry.

Zhou C, Qin Y, Xie Z, et al.
NPTX1 is a novel epigenetic regulation gene and associated with prognosis in lung cancer.
Biochem Biophys Res Commun. 2015; 458(2):381-6 [PubMed] Related Publications
BACKGROUND: CpG island hypermethylation of gene promoters is a well-known mechanism of epigenetic regulation of tumor related-genes and is directly linked to lung carcinogenesis. Alterations in the pattern of methylation of the NPTX1 gene have not yet been studied in detail in human lung cancer.
METHODS: Methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to analyze promoter methylation status, and real-time quantitative reverse transcription-PCR (qRT-PCR) examined mRNA levels. Subsequently, we compared the methylation profile of NPTX1 in samples of neoplastic and non-neoplastic lung tissue taken from the same patients by using quantitative methylation specific PCR (QMSP).
RESULTS: CpG island hypermethylation in promoter of NPTX1 was confirmed in lung cancer cell lines. A significant increase in NPTX1 methylation was identified in lung cancer specimens compared to adjacent noncancerous tissues and that it was negatively correlated with its mRNA expression. The overall survival time among patients carrying methylated NPTX1 tumors was significantly shorter as compared to those with unmethylated NPTX1 tumors (P = 0.011). Moreover, methylation of NPTX1 gene was found to be an independent prognostic factor for poor overall survival based on multivariate analysis models (p = 0.021), as was age ≥60 years old (p = 0.012) and TNM stage (p < 0.001).
CONCLUSIONS: These results suggest that NPTX1 hypermethylation and consequent mRNA changes might be an important molecular mechanism in lung cancer. Epigenetic alterations in NPTX1 may serve as potential diagnostic and prognostic biomarkers in lung cancer.

Li N, Li S
Epigenetic inactivation of SOX1 promotes cell migration in lung cancer.
Tumour Biol. 2015; 36(6):4603-10 [PubMed] Related Publications
SOX1 is epigenetically inactivated in hepatocellular carcinoma. However, the expression and methylation status of SOX1 in non-small cell lung cancer (NSCLC) remains unknown. The aim of the current study was to investigate whether the promoter hypermethylation of SOX1 is involved in human lung carcinogenesis. We first detected the expression of SOX1 protein in a tissue microarray (TMA) of primary NSCLC and adjacent normal lung tissue specimens using immunohistochemical staining with a specific anti-SOX1 antibody. Methylation of the promoter region of SOX1 in lung cancer tissues was determined by bisulfite sequencing PCR (BSP). In the present study, we found that the SOX1 promoter was fully or partially methylated in 40 of 60 (66.7 %) tumor tissues but not in the majority 15 of 60 (25 %) of normal tissues. A statistically significant inverse association was found between SOX1 methylation status and expression of the SOX1 in tumor tissues (P = 0.003). We further demonstrate that restoration of SOX1 inhibited cell migration by regulating actin cytoskeletal remodeling. Our results suggest that SOX1 is epigenetically silenced in the majority of NSCLC and restoration of SOX1 inhibited cell migration by regulating actin cytoskeletal remodeling in NSCLC.

Sheyhidin I, Hasim A, Zheng F, Ma H
Epigenetic changes within the promoter regions of antigen processing machinery family genes in Kazakh primary esophageal squamous cell carcinoma.
Asian Pac J Cancer Prev. 2014; 15(23):10299-306 [PubMed] Related Publications
The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher (0.0517±0.0357) in Kazakh esophageal cancer than in neighboring normal tissues (0.0380±0.0214, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Yuan R, Zhi Q, Zhao H, et al.
Upregulated expression of miR-106a by DNA hypomethylation plays an oncogenic role in hepatocellular carcinoma.
Tumour Biol. 2015; 36(4):3093-100 [PubMed] Related Publications
Aberrant microRNA (miRNA) expression has been widely recognized to play an extremely important role in several cancers, including hepatocellular carcinoma (HCC). According to the previous studies, abnormal miR-106a expression was closely related to various cancer occurrences. However, the miR-106a expression in HCC remains unclear. In our study, we firstly detected the miR-106a expression levels in 36 pairs of HCC tissues. The results showed that miR-106a expression in HCC tissues was apparently higher than the level in the adjacent tissues. Then, we used quantitative real-time PCR (qPCR) and BSP to analyze miR-106a expression and promoter methylation in HCC cell lines. There came to a conclusion that the methylation status of the miR-106a promoter region was inversely correlated with the expression of miR-106a. After prediction with online software, we further used dual-luciferase reporter gene assay to ensure that TP53INP1 and CDKN1A might be the direct targets of miR-106a. At last, we explored the functions of miR-106a in HCC cells in vitro. Our results manifested that high-miR-106a cell line had stronger invasiveness, faster cell cycle progression, and more resistance to apoptosis compared with the low-miR-106a cell line. Therefore, our study suggested that upregulated expression of miR-106a by its promoter hypomethylation might contribute to the progression of HCC, which might be considered as a potentially effective biomarker and therapeutic approach in the future.

Li Z, Zhang G, Li D, et al.
Methylation-associated silencing of miR-495 inhibit the migration and invasion of human gastric cancer cells by directly targeting PRL-3.
Biochem Biophys Res Commun. 2015; 456(1):344-50 [PubMed] Related Publications
Phosphatase of regenerating liver-3 (PRL-3) is believed to be associated with cell motility, invasion, and metastasis. Our previous work found that PRL-3 is highly overexpressed in gastric cancer (GC) tissue with peritoneal metastasis and directly involved in the pathogenesis of GC peritoneal metastasis. Moreover, we further found that the down-regulation of endogenous miR-495 expression plays a causative role in over expression of PRL-3 in GC peritoneal metastasis. However, the molecular regulation mechanisms by which endogenous miR-495 expression is down-regulated and PRL-3 promotes GC peritoneal metastasis remain to be clearly elucidated. Some studies have shown that the promoter methylation is closely related to the miRNA gene expression. Therefore, in present study, based on our previous findings, we will analysis whether DNA methylation is a major cause of the down-expression of endogenous miR-495, which results in PRL-3 overexpression in GC peritoneal metastasis. Methylation specific PCR (MSP) and sodium bisulfite sequencing method (BSP) detected miR-495 gene promoter methylation status. We treated GC cell lines with 5-Aza-2'-deoxycytidine (5-Aza-dC) to make the gene promoter methylation inactivation. By treating with 5-Aza-dC the migration and invasion of GC cells were significantly inhibited. And the miR-495 was overexpressing, corresponds to the mRNA and protein levels of PRL-3 were reduced, the ability of invasion and metastasis was inhibited. This study suggest that miR-495 have tumor suppressor properties and are partially silenced by DNA hypermethylation in GC, will provide new strategies for prevention and treatment of GC peritoneal metastasis.

Wu Q, Yang Z, Xia L, et al.
Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters.
Oncotarget. 2014; 5(22):11552-63 [PubMed] Free Access to Full Article Related Publications
Recent studies have reported that hyper-methylation in the promoter region of miRNAs could silence the expression of tumor suppressive miRNAs and might play significant roles in the process of tumor development. However, the potential mechanisms regarding how methylation of miRNA CpG Island could regulate cancer cell chemo-resistance have not yet been studied. Using microarray and BSP (Bisulfate Sequencing PCR) assays, we found that compared with the parent SGC7901/VCR cells, expression of miR-129-5p was restored in SGC7901/VCR gastric cancer multi-drug resistant cell line treated by de-methylation reagent (5-AZA-dC). Using gain or loss of function assays, we found the over-expressed miR-129-5p reduced the chemo-resistance of SGC7901/VCR and SGC7901/ADR cells, while down-regulation of miR-129-5p had an opposite effect. Furthermore, three members of multi-drug resistance (MDR) related ABC transporters (ABCB1, ABCC5 and ABCG1) were found to be direct targets of miR-129-5p using bioinformatics analysis and report gene assays. The present study indicated that hyper-methylation of miR-129-5p CpG island might play important roles in the development of gastric cancer chemo-resistance by targeting MDR related ABC transporters and might be used as a potential therapeutic target in preventing the chemo-resistance of gastric cancer.

Rawat A, Gopisetty G, Thangarajan R
E4BP4 is a repressor of epigenetically regulated SOSTDC1 expression in breast cancer cells.
Cell Oncol (Dordr). 2014; 37(6):409-19 [PubMed] Related Publications
PURPOSE: We and others show that SOSTDC1 is down-regulated in breast cancer tissues compared to matched normal tissues. Previously, we found that epigenetic mechanisms underlie the down-regulation of SOSTDC1 in gastric cancer cells. The aim of this study was to assess the putative epigenetic regulation of SOSTDC1 expression in breast cancer cells.
METHODS: Microarray-based expression profiling was performed in a series of primary breast cancers and matched normal tissues. Real-time PCR was performed to assess SOSTDC1 and E4BP4 mRNA levels in MCF7, BT549, MBMDA231, T47D (breast cancer) and HEK293T (normal kidney) cell lines. Methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) were performed to assess the methylation level of the SOSTDC1 gene promoter, and 5-Aza 2-deoxycytidine (5'-Aza-dC) treatment was used to induce its demethylation. A luciferase assay was used to measure SOSTDC1 promoter activity in vitro. Stable shRNA-mediated knockdown of E4BP4 was carried out in MCF7 cells and confirmed by Western blotting. Finally, MCF7 cell proliferation and survival were measured by MTS assay.
RESULTS: We found that SOSTDC1 is frequently down-regulated in primary breast cancers (98.2%) and in all breast cancer cell lines tested. MSP and BSP analyses revealed SOSTC1 promoter hypermethylation at CpG sites. 5'-Aza-dC treatment induced a striking down-regulation of SOSTDC1 gene expression, whereas BSP analysis showed demethylation of its promoter. Subsequent in silico SOSTDC1 promoter analysis indicated the presence of putative transcriptional repressor E4BP4 binding sites, and promoter deletion studies indeed revealed repressor binding regions encompassing these E4BP4 binding sites. Relative quantification of E4BP4 expression showed an inverse correlation to SOSTDC1 expression in the breast cancer cell lines tested. Exogenous over-expression of E4BP4 in HEK-293 and BT549 cells reduced SOSTDC1 expression and its promoter activity, respectively. Stable shRNA-mediated E4BP4 BT549 and MCF7 knock-down cells treated with 5'-Aza-dC exhibited up-regulation of SOSTDC1 expression and a concomitant inhibition of cell proliferation and survival.
CONCLUSION: From our results we conclude that the transcriptional repressor E4BP4 plays a role in repressing epigenetically regulated SOSTDC1 expression in breast cancer cells, which can be reverted by E4BP4 silencing.

Zhang CY, Zhao YX, Xia RH, et al.
RASSF1A promoter hypermethylation is a strong biomarker of poor survival in patients with salivary adenoid cystic carcinoma in a Chinese population.
PLoS One. 2014; 9(10):e110159 [PubMed] Free Access to Full Article Related Publications
In addition to the clinicopathological parameters, molecular biomarkers are becoming increasingly important in the prognostic evaluation of cancer patients. This study aimed to determine the molecular alterations in the RAS association domain family protein1A gene (RASSF1A) in salivary adenoid cystic carcinoma (ACC) and to evaluate the potential of such alterations as prognostic markers. One hundred and sixty-seven ACC tumor tissues and 50 samples of matched normal salivary gland tissues from the same patients were analyzed for RASSF1A promoter methylation status by bisulfite sequencing PCR (BSP) and/or methylation-specific PCR (MSP). Fifty ACC tumor tissues and matched normal salivary gland tissues were analyzed for loss of heterozygosity (LOH) by examining two microsatellite markers (D3S1478, D3S1621) at 3p21. RASSF1A gene mutations were detected by direct sequencing of all six exons in 50 tumor and normal tissue specimens. Over-all, RASSF1A promoter hypermethylation was detected in 35.3% (59/167) of ACC tissues and was associated with histologically solid tumor pattern (P = 0.002) and advanced TNM stage (P = 0.014). RASSF1A LOH was observed in 18.0% (9/50) of cases, and no somatic mutation of RASSF1A was detected in any cases. RASSF1A promoter methylation was associated with the poor over-all survival (Log-rank test, P <0.001) and disease-free survival (Log-rank test, P <0.001) and identified as an independent predicator of over-all patient survival (P = 0.009) and disease-free survival (P <0.001). It was concluded that RASSF1A methylation is involved in the development, differentiation and progression of ACC and is a strong independent biomarker of poor survival in ACC patients in a Chinese population.

Li Y, Xu Z, Li B, et al.
Epigenetic silencing of miRNA-9 is correlated with promoter-proximal CpG island hypermethylation in gastric cancer in vitro and in vivo.
Int J Oncol. 2014; 45(6):2576-86 [PubMed] Related Publications
Silencing of protein-coding tumor suppressor genes (TSGs) by CpG island hypermethylation is a common occurrence in gastric cancer (GC). Here, we examine if tumor suppressor microRNAs (miRNAs) are silenced in a similar manner. Real-time quantitative PCR (RTQ-PCR) was employed to investigate the expression level of four candidate miRNAs in GC tissues (n=30) and cell lines. Basing on RTQ-PCR results and bioinformatics approach, miR-9 was chosen for further study on epigenetic regulation. Bisulfite genomic sequencing PCR (BSP) was performed to assess the methylation status of miR-9 in GC tissues. In both GC cell lines and animal models, demethylation was performed either by treatment with 5-aza-2'-deoxycytidine (5-AZA-CdR) or by siRNA targeting DNMT1. We also analyzed the relationship between miRNAs and several clinicopathological features. Candidate miRNAs (miR-9, miR-433, miR-19b, and miR-370) were found strongly downregulated in GC tissues and cell lines. Their expression was increased following 5-AZA-CdR treatment. CpG island methylation of miR-9 was significantly higher in GC tissues compared to normal controls. After two demethylation treatments, miR-9 methylation degree was significantly decreased and miR-9 expression was ob-viously restored in GC cells and animal models. Deregulation of miR-9 was positively correlated with tumor lesion size. Three other miRNAs, miR-19b, miR-433, and miR-370 were assοciated with lymph node metastasis, decreased curvature, and poorly differentiated carcinoma. miR-19b and miR-433 were positively correlated with male gender. Of four candidate miRNAs downregulated in GC, miR-9 is epigenetically regulated by DNA methylation both in vitro and in vivo.

Chen KH, He J, Wang DL, et al.
Methylation‑associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma.
Int J Oncol. 2014; 45(6):2511-21 [PubMed] Related Publications
Large tumor suppressor 1 (LATS1) gene is one of the key factors in Hippo signaling pathway. Inactivation of LATS1 by promoter methylation was found in colorectal cancer (CRC), head and neck squamous cell carcinoma (HNSCC), astrocytoma, breast cancer and it was proved to be a tumor suppressor. However, its role is unclear in renal cell carcinoma (RCC). In this study, the expression of LATS1 was determined by reverse transcription polymerase chain reaction (RT‑PCR) and immunohistochemistry in 30 pairs of RCC tissues and matched normal kidney tissues and RCC cells. We found that the expression of LATS1 was markedly reduced in RCC tissues and cells, in the RCC tissue in 46.7% (14/30), while in the normal kidney tissues in 76.7% (23/30), and was associated with pathological grade and clinical stage of RCC. We detected methylation status of LATS1 by bisulfite sequence-PCR (BSP) in renal cancer cell line 786-O which lowers expression of LATS1, and we found it hypermethy-lated (in 97.5%). In addition, pharmacological demethylation using 5-Aza-2'-deoxycytidine (5-Aza) restored the expression of LATS1 mRNA and protein in 786-O cells, both LATS1 demethylation and overexpression of LATS1 downregulated the expression of Yes-associated protein (YAP), inhibited cell proliferation, induced cell apoptosis and cell cycle G1 arrest in 786-O cells. Thus, this report for the first time demonstrates the inactivation of LATS1 by promoter methy-lation and it is a tumor suppressor in kidney cancer. LATS1 may serve as a biomarker for possible early diagnosis and as a potential therapeutic target for human RCC.

Wang Y, Huang LH, Xu CX, et al.
Connexin 32 and 43 promoter methylation in Helicobacter pylori-associated gastric tumorigenesis.
World J Gastroenterol. 2014; 20(33):11770-9 [PubMed] Free Access to Full Article Related Publications
AIM: To explore the mechanism of abnormal Connexin (Cx) 32 and Cx43 expression in the gastric mucosa after Helicobacter pylori (H. pylori) infection.
METHODS: Biopsy specimens of gastric mucosa in different gastric carcinogenesis stages with H. pylori infection, that is, non-atrophic gastritis (NAG; n = 24), chronic atrophic gastritis (CAG; n = 25), intestinal metaplasia (IM; n = 28), dysplasia (DYS; n = 24), and gastric cancer (GC; n = 30), as well as specimens of normal gastric mucosa without H. pylori infection (NGM; n = 25), were confirmed by endoscopy and pathological examination. Cx32 and Cx43 mRNA expression was detected by real-time polymerase chain reaction (PCR). Cx32 and Cx43 promoter CpG island methylation status was determined by methylation-specific PCR (MSP), bisulfite PCR sequencing (BSP) and MassArray methods.
RESULTS: The relative mRNA expression levels in the gastric mucosa of patients with NGM, NAG, CAG, IM, DYS and GC were 0.146 ± 0.011, 0.133 ± 0.026, 0.107 ± 0.035, 0.039 ± 0.032, 0.037 ± 0.01 and 0.03 ± 0.011 for Cx32; and 0.667 ± 0.057, 0.644 ± 0.051, 0.624 ± 0.049, 0.555 ± 0.067, 0.536 ± 0.058 and 0.245 ± 0.121 for Cx43, respectively, which were gradually decreasing and significantly different (GC vs NGM: P < 0.001 for Cx32, P < 0.001 for Cx43). The promoter methylation levels in the gastric mucosa from NGM to GC stages by MSP were 38.8% ± 9.0%, 43.1% ± 9.4%, 56.5% ± 3.1%, 64.4% ± 9.7%, 72.5% ± 4.2% and 79.6% ± 6.8% for Cx32; and 49.0% ± 3.9%, 58.1% ± 5.0%, 66.5% ± 7.9%, 74.0% ± 8.8%, 78.3% ± 3.6% and 88.7% ± 6.2% for Cx43, respectively, which were gradually increasing and significantly different (P = 0.039, P = 0.019). The promoter methylation levels by BSP and MassArray exhibited similar trends. Cx32 and Cx43 mRNA expression was negatively correlated with promoter methylation status and gastric carcinogenesis stages (P < 0.001, P = 0.016).
CONCLUSION: Cx32 and Cx43 mRNA expression decreased gradually during H. pylori infection-associated gastric carcinogenesis, and it is associated with hypermethylation of these genes' promoter.

Kovacheva M, Zepp M, Berger SM, Berger MR
Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis.
Oncotarget. 2014; 5(14):5510-22 [PubMed] Free Access to Full Article Related Publications
Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-reg-ulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic le-sions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant de-creases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions.

Wang X, Gao H, Ren L, et al.
Demethylation of the miR-146a promoter by 5-Aza-2'-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer.
BMC Cancer. 2014; 14:308 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Androgen deprivation therapy is the primary strategy for the treatment of advanced prostate cancer; however, after an initial regression, most patients will inevitably develop a fatal androgen-independent tumor. Therefore, understanding the mechanisms of the transition to androgen independence prostate cancer is critical to identify new ways to treat older patients who are ineligible for conventional chemotherapy.
METHODS: The effects of 5-Aza-2'-deoxycytidine (5-Aza-CdR) on the viability and the apoptosis of the androgen-dependent (LNCaP) and androgen-independent (PC3) cell lines were examined by MTS assay and western blot analysis for the activation of caspase-3. The subcutaneous LNCaP xenografts were established in a nude mice model. MiR-146a and DNMTs expressions were analyzed by qRT-PCR and DNA methylation rates of LINE-1 were measured by COBRA-IRS to determine the global DNA methylation levels. The methylation levels of miR-146a promoter region in the different groups were quantified by the bisulfite sequencing PCR (BSP) assay.
RESULTS: We validated that 5-Aza-CdR induced cell death and increased miR-146a expression in both LNCaP and PC3 cells. Notably, the expression of miR-146a in LNCaP cells was much higher than in PC3 cells. MiR-146a inhibitor was shown to suppress apoptosis in 5-Aza-CdR-treated cells. In a castrate mouse LNCaP xenograft model, 5-Aza-CdR significantly suppressed the tumors growth and also inhibited prostate cancer progression. Meanwhile, miR-146a expression was significantly enhanced in the tumor xenografts of 5-Aza-CdR-treated mice and the androgen-dependent but not the androgen-independent stage of castrated mice. In particular, the expression of miR-146a was significantly augmented in both stages of the combined treatment (castration and 5-Aza-CdR). Additionally, the methylation percentage of the two CpG sites (-444 bp and -433 bp), which were around the NF-κB binding site at miR-146a promoter, showed the lowest methylation levels among all CpG sites in the combined treatment tumors of both stages.
CONCLUSION: Up-regulating miR-146a expression via the hypomethylation of the miR-146a promoter by 5-Aza-CdR was correlated with delayed progression of castration-resistant prostate cancers. Moreover, site-specific DNA methylation may play an important role in miR-146a expression in androgen-dependent prostate cancer progression to androgen-independent prostate cancer and therefore provides a potentially useful biomarker for assessing drug efficacy in prostate cancer.

Wojcicka A, Piekielko-Witkowska A, Kedzierska H, et al.
Epigenetic regulation of thyroid hormone receptor beta in renal cancer.
PLoS One. 2014; 9(5):e97624 [PubMed] Free Access to Full Article Related Publications
Thyroid hormone receptor beta (THRB) gene is commonly deregulated in cancers and, as strengthened by animal models, postulated to play a tumor-suppressive role. Our previous studies revealed downregulation of THRB in clear cell renal cell carcinoma (ccRCC), but the culpable mechanisms have not been fully elucidated. Since epigenetic regulation is a common mechanism influencing the expression of tumor suppressors, we hypothesized that downregulation of THRB in renal cancer results from epigenetic aberrances, including CpG methylation and microRNA-dependent silencing. Our study revealed that ccRCC tumors exhibited a 56% decrease in THRB and a 37% increase in DNA methyltransferase 1 (DNMT1) expression when compared with paired non-neoplastic control samples. However, THRB CpG methylation analysis performed using BSP, SNaPshot and MSP-PCR consistently revealed no changes in methylation patterns between matched tumor and control samples. In silico analysis resulted in identification of four microRNAs (miR-155, miR-425, miR-592, and miR-599) as potentially targeting THRB transcript. Luciferase assay showed direct binding of miR-155 and miR-425 to 3'UTR of THRB, and subsequent in vivo analyses revealed that transfection of UOK171 cell line with synthetic miR-155 or miR-425 resulted in decreased expression of endogenous TRHB by 22% and 64%, respectively. Finally, real-time PCR analysis showed significant upregulation of miR-155 (354%) and miR-425 (162%) in ccRCC when compared with matched controls. Moreover, microRNA levels were negatively correlated with the amount of THRB transcript in tissue samples. We conclude that CpG methylation is not the major mechanism contributing to decreased THRB expression in ccRCC. In contrast, THRB is targeted by microRNAs miR-155 and miR-425, whose increased expression may be responsible for downregulation of THRB in ccRCC tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IBSP, Cancer Genetics Web: http://www.cancer-genetics.org/IBSP.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999