Gene Summary

Gene:IL13; interleukin 13
Aliases: P600, IL-13
Summary:This gene encodes an immunoregulatory cytokine produced primarily by activated Th2 cells. This cytokine is involved in several stages of B-cell maturation and differentiation. It up-regulates CD23 and MHC class II expression, and promotes IgE isotype switching of B cells. This cytokine down-regulates macrophage activity, thereby inhibits the production of pro-inflammatory cytokines and chemokines. This cytokine is found to be critical to the pathogenesis of allergen-induced asthma but operates through mechanisms independent of IgE and eosinophils. This gene, IL3, IL5, IL4, and CSF2 form a cytokine gene cluster on chromosome 5q, with this gene particularly close to IL4. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (27)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IL13 (cancer-related)

Jin TB, Du S, Zhu XK, et al.
Polymorphism in the IL4R gene and clinical features are associated with glioma prognosis: Analyses of case-cohort studies.
Medicine (Baltimore). 2016; 95(31):e4231 [PubMed] Free Access to Full Article Related Publications
Inflammatory gene polymorphisms may be associated with glioma risk. The purpose of this study was to analyze effects of certain inflammatory gene and some clinical factors on patient survival.The clinical information of 269 glioma patients conceived operation from September 2010 to May 2014 to decide the 1-, 3-year survival rates according to follow-up results and analyze age, gender, the WHO classification, extent of surgical resection, radiotherapy and chemotherapy factors effects on prognosis. Survival distributions were estimated by using the Kaplan-Meier method and difference in the survival was tested using the log-rank test. To estimate the association between the IL4, IL13, IL10, IL4R SNPs, and PFS and OS in glioma, the HR and 95% CI were calculated by univariate Cox proportional hazards model. Multivariate Cox model were performed to compute adjusted HR and 95% CI. All data was analyzed with SPSS17.0 package. Extent of surgical resection, chemotherapy, and age are an important factor in glioma overall survival and progression-free survival overall. Extent of surgery and chemotherapy are important factors in astrocytoma overall survival. Univariate analysis showed that IL4R rs1801275 was significantly associated with overall survival of glioma and astrocytoma patients (P < 0.05). Multivariate Cox regression analysis showed that IL4R rs1801275 GG genotype could increase the death risk of glioma and astrocytoma patients (Glioma: hazard ratio [HR]: 4.897, 95% confidence limits [95% CI]: 1.962-12.222, P = 0.001; Astrocytoma: HR: 15.944, 95% CI: 4.019-63.253, P < 0.05).Our research results showed that extent of surgical resection, age, and chemotherapy affect the prognosis of glioma. The IL4R gene may affect the survival of glioma patients.

Fu MR, Conley YP, Axelrod D, et al.
Precision assessment of heterogeneity of lymphedema phenotype, genotypes and risk prediction.
Breast. 2016; 29:231-40 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Lymphedema following breast cancer surgery is considered to be mainly due to the mechanical injury from surgery. Recent research identified that inflammation-infection and obesity may be the important predictors for lymphedema. The purpose of this exploratory research was to prospectively examine phenotype of arm lymphedema defined by limb volume and lymphedema symptoms in relation to inflammatory genes in women treated for breast cancer. A prospective, descriptive and repeated-measure design using candidate gene association method was used to enroll 140 women at pre-surgery and followed at 4-8 weeks and 12 months post-surgery. Arm lymphedema was determined by a perometer measurement of ≥5% limb volume increase from baseline of pre-surgery. Lymphedema symptom phenotype was evaluated using a reliable and valid instrument. Saliva samples were collected for DNA extraction. Genes known for inflammation were evaluated, including lymphatic specific growth factors (VEGF-C & VEGF-D), cytokines (IL1-a, IL-4, IL6, IL8, IL10, & IL13), and tumor necrosis factor-a (TNF-a). No significant associations were found between arm lymphedema phenotype and any inflammatory genetic variations. IL1-a rs17561 was marginally associated with symptom count phenotype of ≥8 symptoms. IL-4 rs2070874 was significantly associated with phenotype of impaired limb mobility and fluid accumulation. Phenotype of fluid accumulation was significantly associated with IL6 rs1800795, IL4 rs2243250 and IL4 rs2070874. Phenotype of discomfort was significantly associated with VEGF-C rs3775203 and IL13 rs1800925. Precision assessment of heterogeneity of lymphedema phenotype and understanding the biological mechanism of each phenotype through the exploration of inherited genetic susceptibility is essential for finding a cure. Further exploration of investigative intervention in the context of genotype and gene expressions would advance our understanding of heterogeneity of lymphedema phenotype.

Bu X, Li M, Zhao Y, et al.
Genetically engineered Newcastle disease virus expressing human interferon-λ1 induces apoptosis in gastric adenocarcinoma cells and modulates the Th1/Th2 immune response.
Oncol Rep. 2016; 36(3):1393-402 [PubMed] Related Publications
Interferon-λ1 (IFN-λ1), a recently discovered cytokine of the type III IFN family, was found to be a therapeutic alternative to type I IFN in terms of tumors. Using reverse genetics technique, we generated a recombinant Newcastle disease virus (NDV) LaSota strains named as human IFN‑λ1 recombinant adenovirus (rL-hIFN-λ1) containing human IFN-λ1 gene and further evaluated the expressing of IFN-λ1 in human gastric adenocarcinoma cell line SGC-7901 after infected with rL-hIFN-λ1 by using western blot analysis, RT-PCR and immunofluorescence analyses. IFN-λl specific receptor IFNLR1 was detected on several gastric tumor cell lines including SGC-7901 and AGS and on PBMCs.The expression of the IFN-λ1 proteins reached a high level detected in the supernatant harvested 24 h after the infection of tumor cells. The proliferation changes of SGC infected with rL-hIFN-λ1 was significantly inhibited compared with NDV-infected group. Apoptosis was significantly induced by rL-hIFN-λ1 in gastric cancer cells compared with NDV virus tested by TUNEL assay, western blot analysis and Annexin V flow cytometry. Due to the high dose of IFN-λ1 expressed by the rL-hIFN-λ1-infected tumor cells, the immune study showed that rL-hIFN-λ1 increased IFN-γ production [the T helper cell subtype 1 (Th1) response] and inhibited interleukin (IL)-13 production [the T helper cell subtype 2 (Th2) response] to change the Th1/Th2 response of tumor microenvironment which inhibited tumor growth. This study aims at building recombinant NDV rL-hIFN-λ1 as an efficient antitumor agent.

Hsiao LT, Wang HY, Yang CF, et al.
Human Cytokine Genetic Variants Associated With HBsAg Reverse Seroconversion in Rituximab-Treated Non-Hodgkin Lymphoma Patients.
Medicine (Baltimore). 2016; 95(11):e3064 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Hepatitis B virus (HBV) reactivation has been noted in HBV surface antigen (HBsAg)-seronegative patients with CD20 B-cell non-Hodgkin lymphoma (NHL) undergoing rituximab treatment. Clinically, hepatitis flares are usually associated with the reappearance of HBsAg (reverse seroconversion of HBsAg, HBV-RS). It is unclear whether human genetic factors are related to rituximab-associated HBV reactivation. Unvaccinated HBsAg-seronegative adults (n = 104) with CD20 NHL who had received rituximab-containing therapy without anti-HBV prophylaxis were enrolled. Eighty-nine candidate single nucleotide polymorphisms (SNPs) of 49 human cytokine genes were chosen and were analyzed using the iPLEX technique. Competing risk regression was used to identify the factors associated with HBV-RS. Participants had a median age of 66.1 years and 56.7% were male (n = 59). The anti-HBs and anti-HBc positivity rates were 82.4% and 94.1%, respectively, among patients for whom data were available (approximately 81%). A mean of 7.14 cycles of rituximab therapy were administered, and a total of 14 (13.4%) patients developed HBV-RS. Nine SNPs showed significant differences in frequency between patients with or without HBV-RS: CD40 rs1883832, IL4 rs2243248 and rs2243263, IL13 rs1295686, IL18 rs243908, IL20 rs1518108, and TNFSF13B rs12428930 and rs12583006. Multivariate analysis showed that ≥6 cycles of rituximab therapy, IL18 rs243908, and the IL4 haplotype rs2243248∼rs2243263 were independently associated with HBV-RS. The IL4 haplotype rs2243248∼rs2243263 was significantly associated with HBV-RS regardless of anti-HBs status. Polymorphisms in human cytokine genes impact the risk of rituximab-associated HBV-RS.

Ning C, Xie B, Zhang L, et al.
Infiltrating Macrophages Induce ERα Expression through an IL17A-mediated Epigenetic Mechanism to Sensitize Endometrial Cancer Cells to Estrogen.
Cancer Res. 2016; 76(6):1354-66 [PubMed] Related Publications
Persistent unopposed estrogen stimulation is a central oncogenic mechanism driving the formation of type I endometrial cancer. Recent epidemiologic and clinical studies of endometrial cancer have also revealed a role for insulin resistance, clinically manifested by chronic inflammation. However, the role of inflammation in estrogen-driven endometrial cancer is not well characterized. In this study, we investigated the association between infiltrating macrophages and estrogen sensitivity in endometrial cancer. Evaluating tissue samples and serum from patients with precancerous lesions or endometrial cancer, we found that tissue macrophage infiltration, but not serum estradiol levels, correlated positively with endometrial cancer development. Furthermore, IL4/IL13-induced CD68(+)CD163(+) macrophages enhanced the proliferative effects of estradiol in endometrial cancer cells by upregulating estrogen receptor alpha (ERα), but not ERβ. Mechanistic investigations revealed that CD68(+)CD163(+) macrophages secreted cytokines, such as IL17A, that upregulated ERα expression through TET1-mediated epigenetic modulation of the ERα gene. Overall, our findings show how cytokines produced by infiltrating macrophages in the endometrial microenvironment can induce epigenetic upregulation of ERα expression, which in turn sensitizes endometrial cells to estrogen stimulation. The concept that inflammation-induced estrogen sensitivity in the endometrium acts as a driver of type I endometrial cancer has implications for infiltrating macrophages as a prognostic biomarker of progression in this disease setting.

Joshi BH, Suzuki A, Fujisawa T, et al.
Identification, characterization, and targeting of IL-4 receptor by IL-4-Pseudomonas exotoxin in mouse models of anaplastic thyroid cancer.
Discov Med. 2015; 20(111):273-84 [PubMed] Related Publications
Thyroid cancer is a rapidly increasing endocrine cancer. Since interleukin-4 receptor (IL-4R) is overexpressed in human solid cancer, we examined expression of IL-4R in 50 cases of anaplastic thyroid cancer (ATC), 37 well-differentiated papillary cancer (WDPC), 35 well-differentiated follicular cancer of thyroid (WDFC), and 37 normal thyroid specimens by immunohistochemistry (IHC) and in-situ hybridization (ISH) techniques. We demonstrated that IL-4Rα was overexpressed in 36/50 (72%) ATC, 20/35 (57%) WDFC, and 11/37 (30%) WDPC tumors. Other two subunits of IL-4R, interleukin-13 receptor α1 (IL-13Rα1) and interleukin-2 receptor gamma (IL-2RγC), were either weakly expressed or absent. As ATC is a highly aggressive cancer with higher incidence of IL-4Rα expression, we characterized IL-4R in 3 ATC cell lines. RT-qPCR and IFA results showed that IL-4Rα is overexpressed while IL-13Rα1 is weakly expressed. Control human umbilical vein endothelial cell line (HUVEC) showed weak expression of IL-4Rα. Binding and competition studies with 125I-IL-4 in ATC cell lines demonstrated that IL-4 specifically bound to IL-4Rα on cell surface. ATC cell lines were highly sensitive to a chimeric fusion cytotoxin consisting of circularly permuted IL-4 and truncated Pseudomonas exotoxin (IL-4-PE), which killed them in a concentration dependent manner. IL-4-PE also blocked colony formation of ATC cell lines in clonogenic assays. IL-4-PE mediated a significant antitumor activity in mouse models of ATC. Intratumoral administration of IL-4-PE caused significant regression of established tumors in a dose dependent manner and increased the overall survival without any visible toxicity. Thus, IL-4Rα in ATC may represent a novel therapeutic target and IL-4-PE may serve as an investigational therapeutic option for ATC.

Shamran HA, Ghazi HF, Al-Salman A, et al.
Single Nucleotide Polymorphisms in IL-10, IL-12p40, and IL-13 Genes and Susceptibility to Glioma.
Int J Med Sci. 2015; 12(10):790-6 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Glioma is one of the most aggressive and most common tumors of the central nervous system (CNS) in humans. The exact causes of glioma are not well known, but evidence suggests the involvement of genetic factors in addition to environmental risk factors. The present study aimed to determine whether polymorphisms in IL-10-1082A/G, IL-12p40 1188C/A, and IL-13+2044G/A (rs20541) are associated with the incidence of glioma in Iraqi patients. Ninety-six patients with different grades of glioma and 40 apparently healthy individuals were recruited. A blood sample and genomic DNA were collected from all subjects. The amplification refractory mutation system and sequence-specific primer polymerase chain reaction (PCR) were used for genotyping of IL-10-1082A/G and IL-12p40 1188C/A, respectively; whereas, the IL-13+2044G/A was detected by DNA sequencing after amplification of the genes by PCR. All SNPs were within Hardy-Weinberg equilibrium and each appeared in three genotypes in patients and controls. In IL-10-1082A/G, these genotypes frequencies were AA (75%), AG (22.93%) and GG (2.07%) in patients as compared to similar frequencies (62.5%), (27.5%) and (10%) respectively, in controls. The variant IL-12p40 1188C/A genotype was AA (72.92%), AC (23.96%), and CC (3.13%%) in patients as compared to 65%, 30%, and 5%, respectively, in controls. The frequencies of IL-13+2044G/A genotypes (GG, GA, and AA) were 89.58%, 9.37%, and 1.04% among patients versus 47.5%, 32.5% and 20%, respectively, among controls. These results suggest a protective role of mutant alleles G and A in IL-10-1082A/G and IL-13+2044G/A against gliomas. Further studies with more rigorous parameter designs will be needed to confirm the current findings.

Krenciute G, Krebs S, Torres D, et al.
Characterization and Functional Analysis of scFv-based Chimeric Antigen Receptors to Redirect T Cells to IL13Rα2-positive Glioma.
Mol Ther. 2016; 24(2):354-63 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Immunotherapy with T cells expressing chimeric antigen receptors (CARs) is an attractive approach to improve outcomes for patients with glioblastoma (GBM). IL13Rα2 is expressed at a high frequency in GBM but not in normal brain, making it a promising CAR T-cell therapy target. IL13Rα2-specific CARs generated up to date contain mutated forms of IL13 as an antigen-binding domain. While these CARs target IL13Rα2, they also recognize IL13Rα1, which is broadly expressed. To overcome this limitation, we constructed a panel of IL13Rα2-specific CARs that contain the IL13Rα2-specific single-chain variable fragment (scFv) 47 as an antigen binding domain, short or long spacer regions, a transmembrane domain, and endodomains derived from costimulatory molecules and CD3.ζ (IL13Rα2-CARs). IL13Rα2-CAR T cells recognized IL13Rα2-positive target cells in coculture and cytotoxicity assays with no cross-reactivity to IL13Rα1. However, only IL13Rα2-CAR T cells with a short spacer region produced IL2 in an antigen-dependent fashion. In vivo, T cells expressing IL13Rα2-CARs with short spacer regions and CD28.ζ, 41BB.ζ, and CD28.OX40.ζ endodomains had potent anti-glioma activity conferring a significant survival advantage in comparison to mice that received control T cells. Thus, IL13Rα2-CAR T cells hold the promise to improve current IL13Rα2-targeted immunotherapy approaches for GBM and other IL13Rα2-positive malignancies.

Rojas A, Delgado-López F, Perez-Castro R, et al.
HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism.
Tumour Biol. 2016; 37(3):3321-9 [PubMed] Related Publications
The monocyte-macrophage lineage shows a high degree of diversity and plasticity. Once they infiltrate tissues, they may acquire two main functional phenotypes, being known as the classically activated type 1 macrophages (M1) and the alternative activated type 2 macrophages (M2). The M1 phenotype can be induced by bacterial products and interferon-γ and exerts a cytotoxic effect on cancer cells. Conversely, the alternatively activated M2 phenotype is induced by Il-4/IL13 and promotes tumor cell growth and vascularization. Although receptor for advanced glycation end-products (RAGE) engagement in M1 macrophages has been reported by several groups to promote inflammation, nothing is known about the functionality of RAGE in M2 macrophages. In the current study, we demonstrate that RAGE is equally expressed in both macrophage phenotypes and that RAGE activation by high-mobility group protein box1 (HMGB1) promotes protumoral activities of M2 macrophages. MKN45 cells co-cultured with M2 macrophages treated with HMGB1 at different times displayed higher invasive abilities. Additionally, conditioned medium from HMGB1-treated M2 macrophages promotes angiogenesis in vitro. RAGE-targeting knockdown abrogates these activities. Overall, the present findings suggest that HMGB1 may contribute, by a RAGE-dependent mechanism, to the protumoral activities of the M2 phenotype.

Xie M, Wu XJ, Zhang JJ, He CS
IL-13 receptor α2 is a negative prognostic factor in human lung cancer and stimulates lung cancer growth in mice.
Oncotarget. 2015; 6(32):32902-13 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
IL-13 receptor subunit alpha-2 (IL13Rα2) is associated with poor prognosis in some cancers. However, the role of IL13Rα2 in lung cancer remains unknown. We showed that IL13Rα2 overexpression was associated with late stages of disease progression and shorter disease-free survival (DFS) as well as overall survival (OS) in resected lung cancer patients. IL13Rα2 promoted the migration, invasion and anoikis resistance of lung cancer cells in vitro. Silencing of IL13Rα2 in lung cancer cells decreased invasion in vitro and lung metastasis in vivo. IL13Rα2 activated phosphatidylinositol 3 kinase (PI3K), Akt, and transcriptional coactivator with PDZ-binding motif (TAZ). Inhibition of PI3K attenuated activation of TAZ and its downstream target genes by IL13Rα2. We suggest that inhibition of IL13Rα2 is a potential therapeutic approach in lung cancer.

Diekstra MH, Liu X, Swen JJ, et al.
Association of single nucleotide polymorphisms in IL8 and IL13 with sunitinib-induced toxicity in patients with metastatic renal cell carcinoma.
Eur J Clin Pharmacol. 2015; 71(12):1477-84 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
PURPOSE: Earlier, the association of single nucleotide polymorphisms (SNPs) with toxicity and efficacy of sunitinib has been explored in patients with metastatic renal cell carcinoma (mRCC). Recently, additional SNPs have been suggested as potential biomarkers. We investigated these novel SNPs for association with sunitinib treatment outcome in mRCC patients.
METHODS: In this exploratory study, we selected SNPs in genes CYP3A4, NR1I2, POR, IL8, IL13, IL4-R, HIF1A and MET that might possibly be associated with sunitinib treatment outcome. Each SNP was tested for association with progression-free survival (PFS) and overall survival (OS) by Cox-regression analysis and for clinical response and toxicity using logistic regression.
RESULTS: We included 374 patients for toxicity analyses, of which 38 patients with non-clear cell renal cell cancer were excluded from efficacy analyses. The risk for hypertension was increased in the presence of the T allele in IL8 rs1126647 (OR = 1.69, 95 % CI = 1.07-2.67, P = 0.024). The T allele in IL13 rs1800925 was associated with an increase in the risk of leukopenia (OR = 6.76, 95 % CI = 1.35-33.9, P = 0.020) and increased prevalence of any toxicity > grade 2 (OR = 1.75, 95 % CI = 1.06-2.88, P = 0.028). No significant associations were found with PFS, OS or clinical response.
CONCLUSIONS: We show that polymorphisms in IL8 rs1126647 and IL13 rs1800925 are associated with sunitinib-induced toxicities. Validation in an independent cohort is required.

May RD, Fung M
Strategies targeting the IL-4/IL-13 axes in disease.
Cytokine. 2015; 75(1):89-116 [PubMed] Related Publications
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.

Wang C, Zhu C, Wei F, et al.
Constitutive Activation of Interleukin-13/STAT6 Contributes to Kaposi's Sarcoma-Associated Herpesvirus-Related Primary Effusion Lymphoma Cell Proliferation and Survival.
J Virol. 2015; 89(20):10416-26 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
UNLABELLED: Activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been associated with numerous human malignancies, including primary effusion lymphomas (PELs). PEL, a cancerous proliferation of B cells, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Previously we identified constitutive phosphorylation of STAT6 on tyrosine 641 (p-STAT6(C)) in PEL cell lines BC3 and BCBL1; however, the molecular mechanism leading to this activation remains unclear. Here we demonstrate that STAT6 activation tightly correlates with interleukin-13 (IL-13) secretion, JAK1/2 tyrosine phosphorylation, and reduced expression of SHP1 due to KSHV infection. Moreover, p-STAT6(C) and reduction of SHP1 were also observed in KS patient tissue. Notably, blockade of IL-13 by antibody neutralization dramatically inhibits PEL cell proliferation and survival. Taken together, these results suggest that IL-13/STAT6 signaling is modulated by KSHV to promote host cell proliferation and viral pathogenesis.
IMPORTANCE: STAT6 is a member of signal transducer and activator of transcription (STAT) family, whose activation is linked to KSHV-associated cancers. The mechanism through which STAT6 is modulated by KSHV remains unclear. In this study, we demonstrated that constitutive activation of STAT6 in KSHV-associated PEL cells results from interleukin-13 (IL-13) secretion and reduced expression of SHP1. Importantly, we also found that depletion of IL-13 reduces PEL cell growth and survival. This discovery provides new insight that IL-13/STAT6 plays an essential role in KSHV pathogenesis.

Papageorgis P, Ozturk S, Lambert AW, et al.
Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis.
Breast Cancer Res. 2015; 17:98 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
INTRODUCTION: Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action.
METHODS: An unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process.
RESULTS: We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs.
CONCLUSION: Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease.

Maring ED, Tawadros PS, Steer CJ, Lee JT
Systematic Review of Candidate Single-nucleotide Polymorphisms as Biomarkers for Responsiveness to Neoadjuvant Chemoradiation for Rectal Cancer.
Anticancer Res. 2015; 35(7):3761-6 [PubMed] Related Publications
BACKGROUND/AIM: Treatment of rectal cancer has improved significantly with the addition of neoadjuvant chemoradiation. Certain patients have experienced a complete pathological response to chemoradiation, as observed in surgically resected tissue samples, thus calling into question the necessity of radical surgery in this population of patients. Pharmacogenetic studies now implicate the role that genetic biomarkers, such as single nucleotide polymorphisms, play in an individual's response to chemoradiation. The aim of this review was to provide a comprehensive evaluation of a group of candidate single nucleotide polymorphisms associated with chemoradiotherapy response and an assessment of techniques that can be used to easily identify the presence of these single nucleotide polymorphisms in patient samples.
MATERIALS AND METHODS: Relevant primary research articles were identified in the Medline Database from January 1, 2006 to May 31, 2012. We included nine relevant articles addressing the correlation between six candidate single nucleotide polymorphisms and one candidate variable number tandem repeat in six genes, namely thymidylate synthase, epidermal growth factor, epidermal growth factor receptor, superoxide dismutase 2, interleukin-13, and cyclin D1, with tumor down-staging and patient survival after neoadjuvant chemotherapy or chemoradiotherapy.
RESULTS: Specific alleles of each of the candidate single nucleotide polymorphisms were significantly associated with either a major response in tumor down-staging or a minor to non-existent response following neoadjuvant chemotherapy, individually or in combination with other single nucleotide polymorphisms. However, studies present conflicting results regarding the effect of certain candidate single nucleotide polymorphisms on tumor down-staging.
CONCLUSION: Through further research into candidate single nucleotide polymorphisms and potential identification of other polymorphisms, clinicians may be able to create individualized treatment plans in accordance with the genotype of individual patients with rectal cancer, in order to reduce morbidity and mortality.

Shibasaki N, Yamasaki T, Kanno T, et al.
Role of IL13RA2 in Sunitinib Resistance in Clear Cell Renal Cell Carcinoma.
PLoS One. 2015; 10(6):e0130980 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Vascular endothelial growth factor (VEGF) and mammalian target of rapamycin are well-known therapeutic targets for renal cell carcinoma (RCC). Sunitinib is an agent that targets VEGF receptors and is considered to be a standard treatment for metastatic or unresectable clear cell RCC (ccRCC). However, ccRCC eventually develops resistance to sunitinib in most cases, and the mechanisms underlying this resistance are not fully elucidated. In the present study, we established unique primary xenograft models, KURC1 (Kyoto University Renal Cancer 1) and KURC2, from freshly isolated ccRCC specimens. The KURC1 xenograft initially responded to sunitinib treatment, however finally acquired resistance. KURC2 retained sensitivity to sunitinib for over 6 months. Comparing gene expression profiles between the two xenograft models with different sensitivity to sunitinib, we identified interleukin 13 receptor alpha 2 (IL13RA2) as a candidate molecule associated with the acquired sunitinib-resistance in ccRCC. And patients with high IL13RA2 expression in immunohistochemistry in primary ccRCC tumor tends to have sunitinib-resistant metastatic site. Next, we showed that sunitinib-sensitive 786-O cells acquired resistance in vivo when IL13RA2 was overexpressed. Conversely, shRNA-mediated knockdown of IL13RA2 successfully overcame the sunitinib-resistance in Caki-1 cells. Histopathological analyses revealed that IL13RA2 repressed sunitinib-induced apoptosis without increasing tumor vasculature in vivo. To our knowledge, this is a novel mechanism of developing resistance to sunitinib in a certain population of ccRCC, and these results indicate that IL13RA2 could be one of potential target to overcome sunitinib resistance.

Suzuki A, Leland P, Joshi BH, Puri RK
Targeting of IL-4 and IL-13 receptors for cancer therapy.
Cytokine. 2015; 75(1):79-88 [PubMed] Related Publications
The Th2 cytokines, interleukin (IL)-4 and -13, are structurally and functionally related. They regulate immune responses and the immune microenvironment, not only under normal physiological conditions, but also in cancer. Both cytokines bind to their high-affinity receptors and form various configurations of receptor subtypes. We and others have reported that IL-4 and IL-13 bind to IL-4Rα and IL-13Rα1 chains, forming functional receptors in cancer cells. IL-13 also binds with high affinity to a private chain IL-13Rα2. After forming ligand-receptor complexes, both cytokines initiate signal transduction and mediate biological effects, such as tumor proliferation, cell survival, cell adhesion and metastasis. In certain cancers, the presence of these cytokine receptors may serve as biomarkers of cancer aggressiveness. In a series of studies, we reported that overexpression of IL-4 and IL-13 receptors on cancer cells provides targets for therapeutic agents for cancer therapy. In addition, both of these cytokines and their receptors have been shown to play important roles in modulating the immune system for tumor growth. IL-4, IL-13 and their receptors seem to play a role in cancer stem cells and provide unique targets to eradicate these cells. In this review article, we summarize some of the important attributes of IL-4 and IL-13 receptors in cancer biology and discuss pre-clinical and clinical studies pertaining to recombinant immunotoxins designed to target these receptors.

Derks S, Nason KS, Liao X, et al.
Epithelial PD-L2 Expression Marks Barrett's Esophagus and Esophageal Adenocarcinoma.
Cancer Immunol Res. 2015; 3(10):1123-9 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Esophageal adenocarcinoma is an increasingly common disease with a dismal 5-year survival rate of 10% to 15%. In the first systematic evaluation of the PD-1 pathway in esophageal adenocarcinoma, we identify expression of PD-L2 in cancer cells in 51.7% of esophageal adenocarcinomas. Epithelial PD-L1 was expressed on only 2% of cases, although PD-L1(+) immune cells were observed in 18% of esophageal adenocarcinomas. We also evaluated expression in the precursor lesion of esophageal adenocarcinoma, Barrett's esophagus, which emerges following gastric reflux-induced esophageal inflammation, and found PD-L2 expression in Barrett's esophagus but not in non-Barrett's esophagus esophagitis. Because the progression from squamous esophagitis to Barrett's esophagus is accompanied by a transition from a TH1 to TH2 immune response, we hypothesized that the TH2 cytokines IL4/IL13 could contribute to PD-L2 induction. We confirmed that these cytokines can augment PD-L2 expression in esophageal adenocarcinoma cell lines. These results suggest that the inflammatory environment in Barrett's esophagus and esophageal adenocarcinoma may contribute to the expression of PD-L2. Furthermore, the potential for PD-1 receptor blockade to be effective in esophageal adenocarcinomas with epithelial PD-L2 or immune cell PD-L1 expression should be evaluated in clinical trials.

Cotterchio M, Lowcock E, Bider-Canfield Z, et al.
Association between Variants in Atopy-Related Immunologic Candidate Genes and Pancreatic Cancer Risk.
PLoS One. 2015; 10(5):e0125273 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
BACKGROUND: Many epidemiology studies report that atopic conditions such as allergies are associated with reduced pancreas cancer risk. The reason for this relationship is not yet understood. This is the first study to comprehensively evaluate the association between variants in atopy-related candidate genes and pancreatic cancer risk.
METHODS: A population-based case-control study of pancreas cancer cases diagnosed during 2011-2012 (via Ontario Cancer Registry), and controls recruited using random digit dialing utilized DNA from 179 cases and 566 controls. Following an exhaustive literature review, SNPs in 180 candidate genes were pre-screened using dbGaP pancreas cancer GWAS data; 147 SNPs in 56 allergy-related immunologic genes were retained and genotyped. Logistic regression was used to estimate age-adjusted odd ratio (AOR) for each variant and false discovery rate was used to adjust Wald p-values for multiple testing. Subsequently, a risk allele score was derived based on statistically significant variants.
RESULTS: 18 SNPs in 14 candidate genes (CSF2, DENND1B, DPP10, FLG, IL13, IL13RA2, LRP1B, NOD1, NPSR1, ORMDL3, RORA, STAT4, TLR6, TRA) were significantly associated with pancreas cancer risk. After adjustment for multiple comparisons, two LRP1B SNPs remained statistically significant; for example, LRP1B rs1449477 (AA vs. CC: AOR=0.37, 95% CI: 0.22-0.62; p (adjusted)=0.04). Furthermore, the risk allele score was associated with a significant reduction in pancreas cancer risk (p=0.0007).
CONCLUSIONS: Preliminary findings suggest certain atopy-related variants may be associated with pancreas cancer risk. Further studies are needed to replicate this, and to elucidate the biology behind the growing body of epidemiologic evidence suggesting allergies may reduce pancreatic cancer risk.

Olsan EE, Matsushita T, Rezaei M, Weimbs T
Exploitation of the Polymeric Immunoglobulin Receptor for Antibody Targeting to Renal Cyst Lumens in Polycystic Kidney Disease.
J Biol Chem. 2015; 290(25):15679-86 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Autosomal-dominant polycystic kidney disease (ADPKD) is a common life-threatening genetic disease that leads to renal failure. No treatment is available yet to effectively slow disease progression. Renal cyst growth is, at least in part, driven by the presence of growth factors in the lumens of renal cysts, which are enclosed spaces lacking connections to the tubular system. We have shown previously shown that IL13 in cyst fluid leads to aberrant activation of STAT6 via the IL4/13 receptor. Although antagonistic antibodies against many of the growth factors implicated in ADPKD are already available, they are IgG isotype antibodies that are not expected to gain access to renal cyst lumens. Here we demonstrate that targeting antibodies to renal cyst lumens is possible with the use of dimeric IgA (dIgA) antibodies. Using human ADPKD tissues and polycystic kidney disease mouse models, we show that the polymeric immunoglobulin receptor (pIgR) is highly expressed by renal cyst-lining cells. pIgR expression is, in part, driven by aberrant STAT6 pathway activation. pIgR actively transports dIgA from the circulation across the cyst epithelium and releases it into the cyst lumen as secretory IgA. dIgA administered by intraperitoneal injection is preferentially targeted to polycystic kidneys whereas injected IgG is not. Our results suggest that pIgR-mediated transcytosis of antagonistic antibodies in dIgA format can be exploited for targeted therapy in ADPKD.

Punt S, Houwing-Duistermaat JJ, Schulkens IA, et al.
Correlations between immune response and vascularization qRT-PCR gene expression clusters in squamous cervical cancer.
Mol Cancer. 2015; 14:71 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
BACKGROUND: The tumour microenvironment comprises a network of immune response and vascularization factors. From this network, we identified immunological and vascularization gene expression clusters and the correlations between the clusters. We subsequently determined which factors were correlated with patient survival in cervical carcinoma.
METHODS: The expression of 42 genes was investigated in 52 fresh frozen squamous cervical cancer samples by qRT-PCR. Weighted gene co-expression network analysis and mixed-model analyses were performed to identify gene expression clusters. Correlations and survival analyses were further studied at expression cluster and single gene level.
RESULTS: We identified four immune response clusters: 'T cells' (CD3E/CD8A/TBX21/IFNG/FOXP3/IDO1), 'Macrophages' (CD4/CD14/CD163), 'Th2' (IL4/IL5/IL13/IL12) and 'Inflammation' (IL6/IL1B/IL8/IL23/IL10/ARG1) and two vascularization clusters: 'Angiogenesis' (VEGFA/FLT1/ANGPT2/ PGF/ICAM1) and 'Vessel maturation' (PECAM1/VCAM1/ANGPT1/SELE/KDR/LGALS9). The 'T cells' module was correlated with all modules except for 'Inflammation', while 'Inflammation' was most significantly correlated with 'Angiogenesis' (p < 0.001). High expression of the 'T cells' cluster was correlated with earlier TNM stage (p = 0.007). High CD3E expression was correlated with improved disease-specific survival (p = 0.022), while high VEGFA expression was correlated with poor disease-specific survival (p = 0.032). Independent predictors of poor disease-specific survival were IL6 (hazard ratio = 2.3, p = 0.011) and a high IL6/IL17 ratio combined with low IL5 expression (hazard ratio = 4.2, p = 0.010).
CONCLUSIONS: 'Inflammation' marker IL6, especially in combination with low levels of IL5 and IL17, was correlated with poor survival. This suggests that IL6 promotes tumour growth, which may be suppressed by a Th17 and Th2 response. Measuring IL6, IL5 and IL17 expression may improve the accuracy of predicting prognosis in cervical cancer.

Ameziane-El-Hassani R, Talbot M, de Souza Dos Santos MC, et al.
NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation.
Proc Natl Acad Sci U S A. 2015; 112(16):5051-6 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Ionizing radiation (IR) causes not only acute tissue damage, but also late effects in several cell generations after the initial exposure. The thyroid gland is one of the most sensitive organs to the carcinogenic effects of IR, and we have recently highlighted that an oxidative stress is responsible for the chromosomal rearrangements found in radio-induced papillary thyroid carcinoma. Using both a human thyroid cell line and primary thyrocytes, we investigated the mechanism by which IR induces the generation of reactive oxygen species (ROS) several days after irradiation. We focused on NADPH oxidases, which are specialized ROS-generating enzymes known as NOX/DUOX. Our results show that IR induces delayed NADPH oxidase DUOX1-dependent H2O2 production in a dose-dependent manner, which is sustained for several days. We report that p38 MAPK, activated after IR, increased DUOX1 via IL-13 expression, leading to persistent DNA damage and growth arrest. Pretreatment of cells with catalase, a scavenger of H2O2, or DUOX1 down-regulation by siRNA abrogated IR-induced DNA damage. Analysis of human thyroid tissues showed that DUOX1 is elevated not only in human radio-induced thyroid tumors, but also in sporadic thyroid tumors. Taken together, our data reveal a key role of DUOX1-dependent H2O2 production in long-term persistent radio-induced DNA damage. Our data also show that DUOX1-dependent H2O2 production, which induces DNA double-strand breaks, can cause genomic instability and promote the generation of neoplastic cells through its mutagenic effect.

Liu-Chittenden Y, Jain M, Kumar P, et al.
Phase I trial of systemic intravenous infusion of interleukin-13-Pseudomonas exotoxin in patients with metastatic adrenocortical carcinoma.
Cancer Med. 2015; 4(7):1060-8 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Adrenocortical carcinoma (ACC) is a rare but lethal malignancy without effective current therapy for metastatic disease. IL-13-PE is a recombinant cytotoxin consisting of human interleukin-13 (IL-13) and a truncated form of Pseudomonas exotoxin A (PE). The main objectives of this Phase I dose-escalation trial were to assess the maximum-tolerated dose (MTD), safety, and pharmacokinetics (PK) of IL-13-PE in patients with metastatic ACC. Eligible patients had confirmed IL-13 receptor alpha 2 (IL-13Rα2) expressions in their tumors. IL-13-PE at dose of 1-2 μg/kg was administered intravenously (IV) on day 1, 3, and 5 in a 4-week cycle. Six patients received 1 μg/kg and two patients received 2 μg/kg of IL-13-PE. Dose-limiting toxicity was observed at 2 μg/kg, at which patients exhibited thrombocytopenia and renal insufficiency without requiring dialysis. PK analysis demonstrated that at MTD, the mean maximum serum concentration (Cmax ) of IL-13-PE was 21.0 ng/mL, and the terminal half-life of IL-13-PE was 30-39 min. Two (25%) of the eight patients had baseline neutralizing antibodies against PE. Three (75%) of the remaining four tested patients developed neutralizing antibodies against IL-13-PE within 14-28 days of initial treatment. Of the five patients treated at MTD and assessed for response, one patient had stable disease for 5.5 months before disease progression; the others progressed within 1-2 months. In conclusion, systemic IV administration of IL-13-PE is safe at 1 μg/kg. All tested patients developed high levels of neutralizing antibodies during IL-13-PE treatment. Use of strategies for immunodepletion before IL-13-PE treatment should be considered in future trials.

Pezzolo E, Modena Y, Corso B, et al.
Germ line polymorphisms as predictive markers for pre-surgical radiochemotherapy in locally advanced rectal cancer: a 5-year literature update and critical review.
Eur J Clin Pharmacol. 2015; 71(5):529-39 [PubMed] Related Publications
PURPOSE: Locally advanced rectal cancer is currently treated with pre-surgical radiotherapy and chemotherapy. Approximately one-half of patients obtain a relevant shrinkage/disappearance of tumour, with major clinical advantages. The remaining patients, in contrast, show no benefit and possibly need alternative treatment. To provide the best therapeutic option for each individual patient, predictive markers have been widely researched. This review was undertaken to evaluate recent progress made in this field.
METHODS: A systematic literature search was performed using PubMed and Scopus database, focused on germ line gene polymorphisms as biomarkers and response and toxicity as outcomes. Because an exhaustive previous review was available describing findings up to 2008, we restricted our analysis to the last 5 years.
RESULTS: Ten original research articles were found, reporting promising results for some candidate genes in drug metabolism (TYMS, MTHFR), DNA repair (XRCC1, OGG1, CCND1) and inflammation (SOD2, TGFB1)/immunity (IL13) pathways, but with no firm conclusion. All the studies had small sample size and were defined as exploratory. This review highlights pivotal molecular, clinical, genetic and statistical issues in the investigation of genetic polymorphisms as outcome predictors for rectal cancer and offers suggestions for future development.
CONCLUSIONS: What emerges is a clear need for new proposals, especially in view of the increasing evidence for tumour-host and gene-gene interactions during anticancer treatment, together with stronger adherence to proper methodological requirements.

Turbica I, Gallais Y, Gueguen C, et al.
Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarization.
J Leukoc Biol. 2015; 97(4):737-49 [PubMed] Related Publications
DCs are the first immune cells to be exposed to allergens, including chemical sensitizers, such as nickel, a human TLR4 agonist that induces DC maturation. In ACD, DCs can interact with PMNs that are recruited and activated, leading, in particular, to ectosome release. The objective of this work was to characterize the effects of PMN-Ect on DC functions in an ACD context. We first developed a standardized protocol to produce, characterize, and quantify ectosomes by use of human PLB-985 cells, differentiated into mature PMN (PLB-Ect). We then studied the in vitro effects of these purified ectosomes on human moDC functions in response to NiSO4 and to LPS, another TLR4 agonist. Confocal fluorescence microscopy showed that PLB-Ect was internalized by moDCs and localized in the lysosomal compartment. We then showed that PLB-Ect down-regulated NiSO4-induced moDC maturation, as witnessed by decreased expression of CD40, CD80, CD83, CD86, PDL-1, and HLA-DR and by decreased levels of IL-1β, IL-6, TNF-α, and IL-12p40 mRNAs. These effects were related to p38MAPK and NF-κB down-regulation. However, no increase in pan-regulatory DC marker genes (GILZ, CATC, C1QA) was observed; rather, levels of effector DC markers (Mx1, NMES1) were increased. Finally, when these PLB-Ect + NiSO4-treated moDCs were cocultured with CD4(+) T cells, a Th2 cytokine profile seemed to be induced, as shown, in particular, by enhanced IL-13 production. Together, these results suggest that the PMN-Ect can modulate DC maturation in response to nickel, a common chemical sensitizer responsible for ADC.

Deng Y, Xie M, Xie L, et al.
Association between polymorphism of the interleukin-13 gene and susceptibility to hepatocellular carcinoma in the Chinese population.
PLoS One. 2015; 10(2):e0116682 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
OBJECTIVE: Interleukin-13 (IL-13) is a potent pleiotropic cytokine that is produced by activated CD4 T cells. This study was undertaken to determine the relationship between two IL-13 gene single nucleotide polymorphisms (SNP rs1800925 and SNP rs20541) and the incidence of hepatitis B virus-related (HBV) hepatocellular carcinoma (HCC).
METHOD: Three hundred and ninety-eight HBV-positive individuals (192 HCC and 206 patients with chronic hepatitis) and one hundred and ninety-two healthy participants from the First Affiliated Hospital of Guangxi Medical University were enrolled in this study.
RESULTS: The results showed no significant differences between the genotype and allele frequencies of the IL-13 gene rs1800925 and rs20541 polymorphisms and chronic hepatitis B risk after adjusting for age, sex, tobacco use, and alcohol intake using binary logistic regression analyses. Regarding the rs20541 SNP, the GA genotype was significantly related to a decreased risk of HCC after adjusting for age, sex, tobacco use, and alcohol intake using binary logistic regression analyses (The odds ratio (OR) = 0.54, 95% confidence intervals (CI) 0.34-0.87). The adjusted OR for the GA and AA genotypes combined was 0.68 (95% CI 0.39-0.90).
CONCLUSION: This study indicates that the functional IL-13 rs20541 polymorphism may contribute to the risk of HCC and that the rs20541 polymorphism is a protective factor for HCC.

Brunner SM, Rubner C, Kesselring R, et al.
Tumor-infiltrating, interleukin-33-producing effector-memory CD8(+) T cells in resected hepatocellular carcinoma prolong patient survival.
Hepatology. 2015; 61(6):1957-67 [PubMed] Related Publications
UNLABELLED: Interleukin-33 (IL-33), a cytokine with pleiotropic functions, is elevated in serum of patients with hepatocellular carcinoma (HCC). This study investigated the effects of local IL-33 expression in resected HCC on patient survival and on the immunological and molecular tumor microenvironment. Tissue of resected HCCs was stained for hematoxylin and eosin, Masson trichrome, alpha-smooth muscle actin, IL-33, CD8, and IL-13 and analyzed by flow cytometry. Besides histomorphologic evaluation, the immunohistochemical stainings were analyzed for the respective cell numbers separately for tumor area, infiltrative margin, and distant liver stroma. These findings were correlated with clinical data and patient outcome. Further, gene expression of different HCC risk groups was compared using microarrays. In multivariable analysis, infiltration of HCCs by IL-33(+) cells (P = 0.032) and CD8(+) cells (P = 0.014) independently was associated with prolonged patient survival. Flow cytometry demonstrated that cytotoxically active subpopulations of CD8(+) cells, in particular CD8(+) CD62L(-) KLRG1(+) CD107a(+) effector-memory cells, are the main producers of IL-33 in these HCC patients. Using infiltration by IL-33(+) and CD8(+) cells as two separate factors, an HCC immune score was designed and evaluated that stratified patient survival (P = 0.0004). This HCC immune score identified high- and low-risk patients who differ in gene expression profiles (P < 0.001).
CONCLUSION: Infiltration of HCCs by IL-33(+) and CD8(+) cells is independently associated with prolonged patient survival. We suggest that this is due to an induction of highly effective, cytotoxically active CD8(+) CD62L(-) KLRG1(+) CD107a(+) effector-memory cells producing IL-33. Based on these two independent factors, we established an HCC immune score that provides risk stratification for HCC patients and can be used in the clinical setting.

Woods NT, Monteiro AN, Thompson ZJ, et al.
Interleukin polymorphisms associated with overall survival, disease-free survival, and recurrence in non-small cell lung cancer patients.
Mol Carcinog. 2015; 54 Suppl 1:E172-84 [PubMed] Article available free on PMC after 01/10/2017 Related Publications
Biomarkers based on germline DNA variations could have translational implications by identifying prognostic factors and sub-classifying patients to tailored, patient-specific treatment. To investigate the association between germline variations in interleukin (IL) genes and lung cancer outcomes, we genotyped 251 single nucleotide polymorphisms (SNPs) from 33 different IL genes in 651 non-small cell lung cancer (NSCLC) patients. Analyses were performed to investigate overall survival, disease-free survival, and recurrence. Our analyses revealed 24 different IL SNPs significantly associated with one or more of the lung cancer outcomes of interest. The GG genotype of IL16:rs7170924 was significantly associated with disease-free survival (HR = 0.65; 95% CI 0.50-0.83) and was the only SNP that produced a false discovery rate (FDR) of modest confidence that the association is unlikely to represent a false-positive result (FDR = 0.142). Classification and regression tree (CART) analyses were used to identify potential higher-order interactions. We restricted the CART analyses to the five SNPs that were significantly associated with multiple endpoints (IL1A:rs1800587, IL1B:rs1143634, IL8:s12506479, IL12A:rs662959, and IL13:rs1881457) and IL16:rs7170924 which had the lowest FDR. CART analyses did not yield a tree structure for overall survival; separate CART tree structures were identified for recurrence, based on three SNPs (IL13:rs1881457, IL1B:rs1143634, and IL12A:rs662959), and for disease-free survival, based on two SNPs (IL12A:rs662959 and IL16:rs7170924), which may suggest that these candidate IL SNPs have a specific impact on lung cancer progression and recurrence. These data suggest that germline variations in IL genes are associated with clinical outcomes in NSCLC patients.

Yang C, He L, He P, et al.
Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway.
Med Oncol. 2015; 32(2):352 [PubMed] Related Publications
Tumor-associated macrophages (TAMs) appear to be the major component in solid tumor microenvironment, which were reported to play an important role in tumor malignant progression. Recently, TAMs were reported to be associated with drug resistance in some types of solid tumor including breast cancer. However, how TAMs regulate breast tumor resistance remains unknown. In this study, THP-1 cells were stimulated with PMA and IL-4/IL-13 to form M2-like macrophages to study the role of TAMs on chemoresistance. Our results showed that TAMs and its supernatants significantly prevent breast tumor cells from apoptosis caused by paclitaxel. We also found that the high level of IL-10 secreted by TAMS was responsible for drug resistance of breast cancer. The possible TAMs-modulated drug resistance mechanism involved may be associated with elevation of bcl-2 gene expression and up-regulation of STAT3 signaling in tumor cells. Furthermore, the blockage of TAMs-derived IL-10 by neutralizing antibody resulted in attenuation of STAT3 activation and decrease of bcl-2 mRNA expression, consequently enhanced sensitivity of breast cancer cells. Our data suggested that TAMs might induce drug resistance through IL-10/STAT3/bcl-2 signaling pathway, providing possible new targets for breast tumor therapy.

Chen P, Chen C, Chen K, et al.
Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis.
Tumour Biol. 2015; 36(1):121-7 [PubMed] Related Publications
Polymorphisms in interleukin (IL)-4/IL-13 pathway genes have previously been reported to be associated with glioma susceptibility, although results are inconsistent. We therefore performed an updated meta-analysis to determine a more precise estimation of this relationship. Twelve eligible studies were identified by searching PubMed, EMBASE, Web of Science, and the Cochrane Library electronic databases. Nine polymorphisms in genes within the IL-4/IL-13 pathway (IL-4 rs2243250, rs2070874, rs2243248, IL-4R rs1805011, rs1805012, rs1805015, rs1801275, and IL-13 rs20541 and rs1800925) were assessed for their relationship with glioma risk by computing odds ratios (ORs) and corresponding 95 % confidence intervals (CIs). Akaike's information criterion (AIC) was used to identify the best genetic model for each polymorphism. No association between IL-4/IL-13 pathway genetic polymorphisms and glioma risk was observed in the overall population, although a significant association was found between rs2234248 and glioblastoma when stratified by histological subtype (log-additive model, OR 1.57, 95 % CI 1.11-2.24). This meta-analysis therefore suggested that IL-4/IL-13 pathway genetic polymorphisms are not associated with glioma risk.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IL13, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999