Gene Summary

Gene:IL13RA1; interleukin 13 receptor subunit alpha 1
Aliases: NR4, CT19, CD213A1, IL-13Ra
Summary:The protein encoded by this gene is a subunit of the interleukin 13 receptor. This subunit forms a receptor complex with IL4 receptor alpha, a subunit shared by IL13 and IL4 receptors. This subunit serves as a primary IL13-binding subunit of the IL13 receptor, and may also be a component of IL4 receptors. This protein has been shown to bind tyrosine kinase TYK2, and thus may mediate the signaling processes that lead to the activation of JAK1, STAT3 and STAT6 induced by IL13 and IL4. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:interleukin-13 receptor subunit alpha-1
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (6)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Interleukin-13 Receptor alpha1 Subunit
  • Apoptosis
  • Brain Tumours
  • Bacterial Toxins
  • IL4
  • Exotoxins
  • Virulence Factors
  • Base Sequence
  • Genetic Therapy
  • Brain Tumours
  • X Chromosome
  • Cancer Gene Expression Regulation
  • Hodgkin Lymphoma
  • Mutation
  • Interleukin-13
  • ADP Ribose Transferases
  • Adolescents
  • Vaccines, DNA
  • Prostate Cancer
  • Carrier Proteins
  • Cell Division
  • Molecular Sequence Data
  • Transfection
  • STAT6 Transcription Factor
  • Gene Expression
  • Neoplasm Proteins
  • Receptors, Interleukin
  • Glioblastoma
  • Receptors, Interleukin-13
  • Receptors, Interleukin-4
  • Immunotoxins
  • Brain Stem Glioma, Childhood
  • Signal Transduction
  • Biomarkers, Tumor
  • bcl-X Protein
  • Temozolomide
  • Plasmids
  • Messenger RNA
  • Recombinant Fusion Proteins
  • Trans-Activators
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IL13RA1 (cancer-related)

Blasco-Benito S, Moreno E, Seijo-Vila M, et al.
Therapeutic targeting of HER2-CB
Proc Natl Acad Sci U S A. 2019; 116(9):3863-3872 [PubMed] Free Access to Full Article Related Publications
Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at higher risk of resistance and recurrence are therefore warranted. Here, we unveil a mechanism controlling the oncogenic activity of HER2: heteromerization with the cannabinoid receptor CB

Ng Kee Kwong F, Nicholson AG, Pavlidis S, et al.
PGAM5 expression and macrophage signatures in non-small cell lung cancer associated with chronic obstructive pulmonary disease (COPD).
BMC Cancer. 2018; 18(1):1238 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: COPD patients are at increased risk of developing non-small cell lung carcinoma that has a worse prognosis. Oxidative stress contributes to carcinogenesis and is increased in COPD patients due to mitochondrial dysfunction. We determined whether mitochondrial dysfunction is a contributing factor to the reduced survival of COPD patients with non-small cell lung carcinoma (NSCLC).
METHODS: Using a transcriptomic database and outcome data of 3553 NSCLC samples, we selected mitochondrial-related genes whose levels in the tumour correlated with patient mortality. We further selected those genes showing a ≥ 2 fold expression in cancer compared to normal tissue. Cell-type specific expression of these proteins in lung tissue from NSCLC patients who were non-smokers or smokers with or without COPD (healthy smokers) was determined by immunohistochemistry. Gene set variation analysis was used in additional NSCLC datasets to determine the relative expression of specific macrophage transcriptomic signatures within lung cancer tissue.
RESULTS: The expression of 14 mitochondrial-related genes was correlated with patient mortality and these were differentially expressed between cancer and normal lung tissue. We studied further the expression of one of these genes, PGAM5 which is a regulator of mitochondrial degradation by mitophagy. In background lung tissue, PGAM5 was only expressed in alveolar macrophages, with the highest expression in smokers with COPD compared to healthy smokers and non-smokers. In cancerous tissue, only the malignant epithelial cells and associated macrophages at the periphery of the cancer expressed PGAM5. Pre-neoplastic epithelium also showed the expression of PGAM5. There was no difference in expression in cancer tissue between COPD, healthy smoker and non-smoker groups. Macrophages at the edge of the cancer from COPD patients showed a trend towards higher expression of PGAM5 compared to those from the other groups. There was a significant correlation between PGAM5 expression in cancer tissue and the level of expression of 9 out of 49 previously-defined macrophage transcriptomic signatures with a particular one associated with patient mortality (p < 0.05).
CONCLUSION: PGAM5 is expressed in pre-neoplastic tissue and NSCLC, but not in normal epithelium. The association between PGAM5 expression and patient mortality may be mediated through the induction of specific macrophage phenotypes.

Geng B, Pan J, Zhao T, et al.
Chitinase 3-like 1-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through β-catenin/Erk/Akt signaling in gastric cancer.
J Exp Clin Cancer Res. 2018; 37(1):208 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Enzymatically inactive chitinase-like protein CHI3L1 drives inflammatory response and promotes tumor progression. However, its role in gastric cancer (GC) tumorigenesis and metastasis has not yet been fully elucidated. We determined the significance of CHI3L1 expression in patients with GC. We also explored an as-yet unknown receptor of CHI3L1 and investigated the involved signaling in GC metastasis.
METHODS: CHI3L1 expression was evaluated by immunoblotting, tissue microarray-based immunohistochemistry analysis (n = 100), and enzyme linked immunosorbent assay (ELISA) (n = 150). The interactions between CD44 and CHI3L1 or Interleukin-13 receptor alpha 2 (IL-13Rα2) were analyzed by co-immunoprecipitation, immunofluorescence co-localization assay, ELISA, and bio-layer interferometry. The roles of CHI3L1/CD44 axis in GC metastasis were investigated in GC cell lines and experimental animal model by gain and loss of function.
RESULTS: CHI3L1 upregulation occurred during GC development, and positively correlated with GC invasion depth, lymph node status, and tumor staging. Mechanically, CHI3L1 binding to CD44 activated Erk and Akt, along with β-catenin signaling by phosphorylating β-catenin at Ser552 and Ser675. CD44 also interacted with IL-13Rα2 to form a complex. Notably, CD44v3 peptide and protein, but not CD44v6 peptide or CD44s protein, bound to both CHI3L1 and IL-13Rα2. Our in vivo and in vitro data further demonstrated that CHI3L1 promoted GC cell proliferation, migration, and metastasis.
CONCLUSIONS: CHI3L1 binding to CD44v3 activates Erk, Akt, and β-catenin signaling, therefore enhances GC metastasis. CHI3L1 expression is a novel biomarker for the prognosis of GC, and these findings have thus identified CHI3L1/CD44 axis as a vital pathway and potential therapeutic target in GC.

Johnson IT
Cruciferous Vegetables and Risk of Cancers of the Gastrointestinal Tract.
Mol Nutr Food Res. 2018; 62(18):e1701000 [PubMed] Related Publications
Cancers of the oropharyngeal tissues, oesophagus, stomach, and colorectum are amongst the most common causes of death from cancer throughout the world. Higher consumption of fruits and vegetables is thought to be protective, and cruciferous vegetables are of particular interest because of their unique role as a source of biologically active glucosinolate breakdown products. A literature review of primary studies and meta-analyses indicates that higher consumption of cruciferous vegetables probably reduces the risk of colorectal and gastric cancers by approximately 8% and 19%, respectively. Some studies support the hypothesis that the protective effect against colorectal cancer is modified by genetic polymorphisms of genes regulating the expression of enzymes of the glutathione S-transferase family, but due to contradictory findings the evidence is currently inconclusive. Despite these promising findings, future epidemiological research on the protective effects of cruciferous plants will depend critically upon accurate measurement of dietary exposure, both to the vegetables themselves, and to their active constituents. The development of sensitive chemical assays has facilitated the measurement of urinary excretion of isothiocyanate metabolites as an objective biomarker of intake, but sampling strategies need to be optimized in order to assess long-term exposures at the population level.

Abdul-Aziz AM, Shafat MS, Sun Y, et al.
HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia.
Oncogene. 2018; 37(20):2676-2686 [PubMed] Related Publications
Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML.

Iacovazzo D, Flanagan SE, Walker E, et al.
Proc Natl Acad Sci U S A. 2018; 115(5):1027-1032 [PubMed] Free Access to Full Article Related Publications
The β-cell-enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing

Han J, Puri RK
Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme.
J Neurooncol. 2018; 136(3):463-474 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. A variety of targeted agents are being tested in the clinic including cancer vaccines, immunotoxins, antibodies and T cell immunotherapy for GBM. We have previously reported that IL-13 receptor subunits α1 and α2 of IL-13R complex are overexpressed in GBM. We are investigating the significance of IL-13Rα1 and α2 expression in GBM tumors. In order to elucidate a possible relationship between IL-13Rα1 and α2 expression with severity and prognoses of subjects with GBM, we analyzed gene expression (by microarray) and clinical data available at the public The Cancer Genome Atlas (TCGA) database (Currently known as Global Data Commons). More than 40% of GBM samples were highly positive for IL-13Rα2 mRNA (Log2 ≥ 2) while only less than 16% samples were highly positive for IL-13Rα1 mRNA. Subjects with high IL-13Rα1 and α2 mRNA expressing tumors were associated with a significantly lower survival rate irrespective of their treatment compared to subjects with IL-13Rα1 and α2 mRNA negative tumors. We further observed that IL-13Rα2 gene expression is associated with GBM resistance to temozolomide (TMZ) chemotherapy. The expression of IL-13Rα2 gene did not seem to correlate with the expression of genes for other chains involved in the formation of IL-13R complex (IL-13Rα1 or IL-4Rα) in GBM. However, a positive correlation was observed between IL-4Rα and IL-13Rα1 gene expression. The microarray data of IL-13Rα2 gene expression was verified by RNA-Seq data. In depth analysis of TCGA data revealed that immunosuppressive genes (such as FMOD, CCL2, OSM, etc.) were highly expressed in IL-13Rα2 positive tumors, but not in IL-13Rα2 negative tumors. These results indicate a direct correlation between high level of IL-13R mRNA expression and poor patient prognosis and that immunosuppressive genes associated with IL-13Rα2 may play a role in tumor progression. These findings have important implications in understanding the role of IL-13R in the pathogenesis of GBM and potentially other cancers.

Sun Y, Abdul Aziz A, Bowles K, Rushworth S
High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma.
Cancer Lett. 2018; 412:37-45 [PubMed] Related Publications
Multiple myeloma (MM) is an incurable disease characterized by clonal plasma cell proliferation. The stress response transcription factor Nuclear factor erythroid 2 [NF-E2]-related factor 2 (NRF2) is known to be activated in MM in response to proteasome inhibitors (PI). Here, we hypothesize that the transcription factor NRF2 whose physiological role is to protect cells from reactive oxygen species via the regulation of drug metabolism and antioxidant gene plays an important role in MM cells survival and proliferation. We report for the first time that NRF2 is constitutively activated in circa 50% of MM primary samples and all MM cell lines. Moreover, genetic inhibition of constitutively expressed NRF2 reduced MM cell viability. We confirm that PI induced further expression of NRF2 in MM cell lines and primary MM. Furthermore, genetic inhibition of NRF2 of PI treated MM cells increased ER-stress through the regulation of CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, inhibition of NRF2 in combination with PI treatment significantly increased apoptosis in MM cells. Here we identify NRF2 as a key regulator of MM survival in treatment naive and PI treated cells.

Frattaruolo L, Lacret R, Cappello AR, Truman AW
A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity.
ACS Chem Biol. 2017; 12(11):2815-2822 [PubMed] Related Publications
Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

Dacosta C, Bao Y
The Role of MicroRNAs in the Chemopreventive Activity of Sulforaphane from Cruciferous Vegetables.
Nutrients. 2017; 9(8) [PubMed] Free Access to Full Article Related Publications
Colorectal cancer is an increasingly significant cause of mortality whose risk is linked to diet and inversely correlated with cruciferous vegetable consumption. This is likely to be partly attributable to the isothiocyanates derived from eating these vegetables, such as sulforaphane, which is extensively characterised for cytoprotective and tumour-suppressing activities. However, its bioactivities are likely to extend in complexity beyond those currently known; further insight into these bioactivities could aid the development of sulforaphane-based chemopreventive or chemotherapeutic strategies. Evidence suggests that sulforaphane modulates the expression of microRNAs, many of which are known to regulate genes involved at various stages of colorectal carcinogenesis. Based upon existing knowledge, there exist many plausible mechanisms by which sulforaphane may regulate microRNAs. Thus, there is a strong case for the further investigation of the roles of microRNAs in the anti-cancer effects of sulforaphane. There are several different types of approach to the wide-scale profiling of microRNA differential expression. Array-based methods may involve the use of RT-qPCR or complementary hybridisation probe chips, and tend to be relatively fast and economical. Cloning and deep sequencing approaches are more expensive and labour-intensive, but are worth considering where viable, for their greater sensitivity and ability to detect novel microRNAs.

Stankiewicz E, Mao X, Mangham DC, et al.
Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer.
Sci Rep. 2017; 7(1):5124 [PubMed] Free Access to Full Article Related Publications
Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. By analysing prostate cancer bone metastases using high density microarrays, we found a common genomic copy number loss at 6q16.1-16.2, containing the FBXL4 gene, which was confirmed in larger series of bone metastases by fluorescence in situ hybridisation (FISH). Loss of FBXL4 was also detected in primary tumours and it was highly associated with prognostic factors including high Gleason score, clinical stage, prostate-specific antigen (PSA) and extent of disease, as well as poor patient survival, suggesting that FBXL4 loss contributes to prostate cancer progression. We also demonstrated that FBXL4 deletion is detectable in circulating tumour cells (CTCs), making it a potential prognostic biomarker by 'liquid biopsy'. In vitro analysis showed that FBXL4 plays a role in regulating the migration and invasion of prostate cancer cells. FBXL4 potentially controls cancer metastasis through regulation of ERLEC1 levels. Therefore, FBXL4 could be a potential novel prostate cancer suppressor gene, which may prevent cancer progression and metastasis through controlling cell invasion.

Sarper M, Allen MD, Gomm J, et al.
Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function.
Breast Cancer Res. 2017; 19(1):33 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Normal myoepithelial cells (MECs) play an important tumour-suppressor role in the breast but display an altered phenotype in ductal carcinoma in situ (DCIS), gaining tumour-promoter functions. Matrix metalloproteinase-8 (MMP-8) is expressed by normal MECs but is lost in DCIS. This study investigated the function of MMP-8 in MECs and the impact of its loss in DCIS.
METHODS: Primary normal and DCIS-associated MECs, and normal (N-1089) and DCIS-modified myoepithelial (β6-1089) cell lines, were used to assess MMP-8 expression and function. β6-1089 lacking MMP-8 were transfected with MMP-8 WT and catalytically inactive MMP-8 EA, and MMP-8 in N-1089 MEC was knocked down with siRNA. The effect on adhesion and migration to extracellular matrix (ECM), localisation of α6β4 integrin to hemidesmosomes (HD), TGF-β signalling and gelatinase activity was measured. The effect of altering MEC MMP-8 expression on tumour cell invasion was investigated in 2D and 3D organotypic models.
RESULTS: Assessment of primary cells and MEC lines confirmed expression of MMP-8 in normal MEC and its loss in DCIS-MEC. Over-expression of MMP-8 WT but not MMP-8 EA in β6-1089 cells increased adhesion to ECM proteins and reduced migration. Conversely, knock-down of MMP-8 in N-1089 reduced adhesion and increased migration. Expression of MMP-8 WT in β6-1089 led to greater localisation of α6β4 to HD and reduced retraction fibre formation, this being reversed by MMP-8 knock-down in N-1089. Over-expression of MMP-8 WT reduced TGF-β signalling and gelatinolytic activity. MMP-8 knock-down enhanced TGF-β signalling and gelatinolytic activity, which was reversed by blocking MMP-9 by knock-down or an inhibitor. MMP-8 WT but not MMP-8 EA over-expression in β6-1089 reduced breast cancer cell invasion in 2D and 3D invasion assays, while MMP-8 knock-down in N-1089 enhanced cancer cell invasion. Staining of breast cancer cases for MMP-8 revealed a statistically significant loss of MMP-8 expression in DCIS with invasion versus pure DCIS (p = 0.001).
CONCLUSIONS: These data indicate MMP-8 is a vital component of the myoepithelial tumour-suppressor function. It restores MEC interaction with the matrix, opposes TGF-β signalling and MMP-9 proteolysis, which contributes to inhibition of tumour cell invasion. Assessment of MMP-8 expression may help to determine risk of DCIS progression.

Silva VL, Al-Jamal WT
Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy.
J Control Release. 2017; 253:82-96 [PubMed] Related Publications
The tumor microenvironment has been widely exploited as an active participant in tumor progression. Extensive reports have defined the dual role of tumor-associated macrophages (TAMs) in tumor development. The protumoral effect exerted by the M2 phenotype has been correlated with a negative outcome in most solid tumors. The high infiltration of immune cells in the hypoxic cores of advanced solid tumors leads to a chain reaction of stimuli that enhances the expression of protumoral genes, thrives tumor malignancy, and leads to the emergence of drug resistance. Many studies have shown therapeutic targeting systems, solely to TAMs or tumor hypoxia, however, novel therapeutics that target both features are still warranted. In the present review, we discuss the role of hypoxia in tumor development and the clinical outcome of hypoxia-targeted therapeutics, such as hypoxia-inducible factor (HIF-1) inhibitors and hypoxia-activated prodrugs. Furthermore, we review the state-of-the-art of macrophage-based cancer therapy. We thoroughly discuss the development of novel therapeutics that simultaneously target TAMs and tumor hypoxia. Nano-based systems have been highlighted as interesting strategies for dual modality treatments, with somewhat improved tissue extravasation. Such approach could be seen as a promising strategy to overcome drug resistance and enhance the efficacy of chemotherapy in advanced solid and metastatic tumors, especially when exploiting cell-based nanotherapies. Finally, we provide an in-depth opinion on the importance of exploiting the tumor microenvironment in cancer therapy, and how this could be translated to clinical practice.

Prokopchuk O, Steinacker JM, Nitsche U, et al.
IL-4 mRNA Is Downregulated in the Liver of Pancreatic Cancer Patients Suffering from Cachexia.
Nutr Cancer. 2017; 69(1):84-91 [PubMed] Related Publications
BACKGROUND: Interleukin-4 (IL-4) together with interleukin-13 (IL-13) play an important role in inflammation and wound repair, and are known to be upregulated in human skeletal muscle after strenuous physical exercise. Additionally, these cytokines may act as autocrine growth factors in pancreatic cancer cells. We hypothesize that IL-4, IL-13, and their corresponding receptors are involved in mechanism of cancer cachexia.
METHODS: Tissue samples from human skeletal muscle, white fat, liver, healthy pancreas, and pancreatic ductal adenocarcinoma were analyzed by quantitative real-time polymerase chain reaction for mRNA expression levels of IL-4, IL-13, IL-4 receptor α, and IL-13 receptor α1.
RESULTS: We demonstrate for the first time that liver IL-4 mRNA is downregulated in vivo in patients with pancreatic cancer and cachexia. Additionally, IL-4 mRNA in the liver inversely correlated with musculus psoas thickness.
CONCLUSION: We speculate that suppression of IL-4 is involved in cancer cachexia, although the exact mechanisms have to be further elucidated.

Pillinger G, Loughran NV, Piddock RE, et al.
Targeting PI3Kδ and PI3Kγ signalling disrupts human AML survival and bone marrow stromal cell mediated protection.
Oncotarget. 2016; 7(26):39784-39795 [PubMed] Free Access to Full Article Related Publications
Phosphoinositide-3-kinase (PI3K) is an enzyme group, known to regulate key survival pathways in acute myeloid leukaemia (AML). It generates phosphatidylinositol-3,4,5-triphosphate, which provides a membrane docking site for protein kinaseB activation. PI3K catalytic p110 subunits are divided into 4 isoforms; α,β,δ and γ. The PI3Kδ isoform is always expressed in AML cells, whereas the frequency of PI3Kγ expression is highly variable. The functions of these individual catalytic enzymes have not been fully resolved in AML, therefore using the PI3K p110δ and p110γ-targeted inhibitor IPI-145 (duvelisib) and specific p110δ and p110γ shRNA, we analysed the role of these two p110 subunits in human AML blast survival. The results show that PI3Kδ and PI3Kγ inhibition with IPI-145 has anti-proliferative activity in primary AML cells by inhibiting the activity of AKT and MAPK. Pre-treatment of AML cells with IPI-145 inhibits both adhesion and migration of AML blasts to bone marrow stromal cells. Using shRNA targeted to the individual isoforms we demonstrated that p110δ-knockdown had a more significant anti-proliferative effect on AML cells, whereas targeting p110γ-knockdown significantly inhibited AML migration. The results demonstrate that targeting both PI3Kδ and PI3Kγ to inhibit AML-BMSC interactions provides a biologic rationale for the pre-clinical evaluation of IPI-145 in AML.

Green D, Fraser WD, Dalmay T
Transfer RNA-derived small RNAs in the cancer transcriptome.
Pflugers Arch. 2016; 468(6):1041-7 [PubMed] Free Access to Full Article Related Publications
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis. These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity. RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of interest in a 'larger' small RNA, the transfer RNA (tRNA). Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation. Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing.

Chen L, Zhao J, Tang Q, et al.
PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs.
Sci Rep. 2016; 6:24324 [PubMed] Free Access to Full Article Related Publications
Circadian clock dysregulation promotes cancer growth. Here we show that PFKFB3, the gene that encodes for inducible 6-phosphofructo-2-kinase as an essential supporting enzyme of cancer cell survival through stimulating glycolysis, mediates circadian control of carcinogenesis. In patients with tongue cancers, PFKFB3 expression in both cancers and its surrounding tissues was increased significantly compared with that in the control, and was accompanied with dys-regulated expression of core circadian genes. In the in vitro systems, SCC9 tongue cancer cells displayed rhythmic expression of PFKFB3 and CLOCK that was distinct from control KC cells. Furthermore, PFKFB3 expression in SCC9 cells was stimulated by CLOCK through binding and enhancing the transcription activity of PFKFB3 promoter. Inhibition of PFKFB3 at zeitgeber time 7 (ZT7), but not at ZT19 caused significant decreases in lactate production and in cell proliferation. Consistently, PFKFB3 inhibition in mice at circadian time (CT) 7, but not CT19 significantly reduced the growth of implanted neoplasms. Taken together, these findings demonstrate PFKFB3 as a mediator of circadian control of cancer growth, thereby highlighting the importance of time-based PFKFB3 inhibition in cancer treatment.

Behray M, Webster CA, Pereira S, et al.
Synthesis of Diagnostic Silicon Nanoparticles for Targeted Delivery of Thiourea to Epidermal Growth Factor Receptor-Expressing Cancer Cells.
ACS Appl Mater Interfaces. 2016; 8(14):8908-17 [PubMed] Related Publications
The novel thiourea-functionalized silicon nanoparticles (SiNPs) have been successfully synthesized using allylamine and sulforaphane, an important anticancer drug, followed by a hydrosilylation reaction on the surface of hydrogen terminated SiNPs. Their physiochemical properties have been investigated by photoluminescence emission, Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay has been employed to evaluate in vitro toxicity in human colorectal adenocarcinoma (Caco-2) cells and human normal colon epithelial (CCD) cells. The results show significant toxicity of thiourea SiNPs after 72 h of incubation in the cancer cell line, and the toxicity is concentration dependent and saturated for concentrations above 100 μg/mL. Confocal microscopy images have demonstrated the internalization of thiourea-functionalized SiNPs inside the cells. Flow cytometry data has confirmed receptor-mediated targeting in cancer cells. This nanocomposite takes advantage of the epidermal growth factor receptor (EGFR) active targeting of the ligand in addition to the photoluminescence properties of SiNPs for bioimaging purposes. The results suggest that this novel nanosystem can be extrapolated for active targeting of the receptors that are overexpressed in cancer cells such as EGFR using the targeting characteristics of thiourea-functionalized SiNPs and therefore encourage further investigation and development of anticancer agents specifically exploiting the EGFR inhibitory activity of such nanoparticles.

Ross-Adams H, Lamb AD, Dunning MJ, et al.
Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study.
EBioMedicine. 2015; 2(9):1133-44 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome.
METHODS: In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone.
FINDINGS: We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p = 0.0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions.
INTERPRETATION: For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts.

Green D, Dalmay T, Fraser WD
Role of miR-140 in embryonic bone development and cancer.
Clin Sci (Lond). 2015; 129(10):863-73 [PubMed] Related Publications
Bone is increasingly viewed as an endocrine organ with key biological functions. The skeleton produces hormones and cytokines, such as FGF23 and osteocalcin, which regulate an extensive list of homoeostatic functions. Some of these functions include glucose metabolism, male fertility, blood cell production and calcium/phosphate metabolism. Many of the genes regulating these functions are specific to bone cells. Some of these genes can be wrongly expressed by other malfunctioning cells, driving the generation of disease. The miRNAs are a class of non-coding RNA molecules that are powerful regulators of gene expression by suppressing and fine-tuning target mRNAs. Expression of one such miRNA, miR-140, is ubiquitous in chondrocyte cells during embryonic bone development. Activity in cells found in the adult breast, colon and lung tissue can silence genes required for tumour suppression. The realization that the same miRNA can be both normal and detrimental, depending on the cell, tissue and time point, provides a captivating twist to the study of whole-organism functional genomics. With the recent interest in miRNAs in bone biology and RNA-based therapeutics on the horizon, we present a review on the role of miR-140 in the molecular events that govern bone formation in the embryo. Cellular pathways involving miR-140 may be reactivated or inhibited when treating skeletal injury or disorder in adulthood. These pathways may also provide a novel model system when studying cancer biology of other cells and tissues.

Maxwell EG, Colquhoun IJ, Chau HK, et al.
Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression.
Carbohydr Polym. 2015; 132:546-53 [PubMed] Related Publications
Pectin modified with pH, heat or enzymes, has previously been shown to exhibit anti-cancer activity. However, the structural requirements for modified pectin bioactivity have rarely been addressed. In this study several pectin extracts representing different structural components of pectin were assessed for effects against colon cancer cells. Rhamnogalacturonan I (RGI) extracts reduced proliferation of DLD1 and HCT116 colon cancer cells in a dose- and time-dependent manner. RGI reduced ICAM1 gene expression and siRNA-mediated knockdown of ICAM1 expression decreased cell proliferation providing a potential novel mechanism for the anti-cancer activity of pectin. Structural analysis of bioactive and non-bioactive RGIs suggested that a homogalacturonan component is maybe essential for the anti-proliferative activity, furthering the understanding of the structural requirements for pectin bioactivity.

Ellison TS, Atkinson SJ, Steri V, et al.
Suppression of β3-integrin in mice triggers a neuropilin-1-dependent change in focal adhesion remodelling that can be targeted to block pathological angiogenesis.
Dis Model Mech. 2015; 8(9):1105-19 [PubMed] Free Access to Full Article Related Publications
Anti-angiogenic treatments against αvβ3-integrin fail to block tumour growth in the long term, which suggests that the tumour vasculature escapes from angiogenesis inhibition through αvβ3-integrin-independent mechanisms. Here, we show that suppression of β3-integrin in mice leads to the activation of a neuropilin-1 (NRP1)-dependent cell migration pathway in endothelial cells via a mechanism that depends on NRP1's mobilisation away from mature focal adhesions following VEGF-stimulation. The simultaneous genetic targeting of both molecules significantly impairs paxillin-1 activation and focal adhesion remodelling in endothelial cells, and therefore inhibits tumour angiogenesis and the growth of already established tumours. These findings provide a firm foundation for testing drugs against these molecules in combination to treat patients with advanced cancers.

Kelwick R, Desanlis I, Wheeler GN, Edwards DR
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family.
Genome Biol. 2015; 16:113 [PubMed] Free Access to Full Article Related Publications
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.

Dénes J, Swords F, Rattenberry E, et al.
Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort.
J Clin Endocrinol Metab. 2015; 100(3):E531-41 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Pituitary adenomas and pheochromocytomas/paragangliomas (pheo/PGL) can occur in the same patient or in the same family. Coexistence of the two diseases could be due to either a common pathogenic mechanism or a coincidence.
OBJECTIVE: The objective of the investigation was to study the possible coexistence of pituitary adenoma and pheo/PGL.
DESIGN: Thirty-nine cases of sporadic or familial pheo/PGL and pituitary adenomas were investigated. Known pheo/PGL genes (SDHA-D, SDHAF2, RET, VHL, TMEM127, MAX, FH) and pituitary adenoma genes (MEN1, AIP, CDKN1B) were sequenced using next generation or Sanger sequencing. Loss of heterozygosity study and pathological studies were performed on the available tumor samples.
SETTING: The study was conducted at university hospitals.
PATIENTS: Thirty-nine patients with sporadic of familial pituitary adenoma and pheo/PGL participated in the study.
OUTCOME: Outcomes included genetic screening and clinical characteristics.
RESULTS: Eleven germline mutations (five SDHB, one SDHC, one SDHD, two VHL, and two MEN1) and four variants of unknown significance (two SDHA, one SDHB, and one SDHAF2) were identified in the studied genes in our patient cohort. Tumor tissue analysis identified LOH at the SDHB locus in three pituitary adenomas and loss of heterozygosity at the MEN1 locus in two pheochromocytomas. All the pituitary adenomas of patients affected by SDHX alterations have a unique histological feature not previously described in this context.
CONCLUSIONS: Mutations in the genes known to cause pheo/PGL can rarely be associated with pituitary adenomas, whereas mutation in a gene predisposing to pituitary adenomas (MEN1) can be associated with pheo/PGL. Our findings suggest that genetic testing should be considered in all patients or families with the constellation of pheo/PGL and a pituitary adenoma.

Moreno E, Andradas C, Medrano M, et al.
Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling.
J Biol Chem. 2014; 289(32):21960-72 [PubMed] Free Access to Full Article Related Publications
The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology.

Wilhelm T
Phenotype prediction based on genome-wide DNA methylation data.
BMC Bioinformatics. 2014; 15:193 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: DNA methylation (DNAm) has important regulatory roles in many biological processes and diseases. It is the only epigenetic mark with a clear mechanism of mitotic inheritance and the only one easily available on a genome scale. Aberrant cytosine-phosphate-guanine (CpG) methylation has been discussed in the context of disease aetiology, especially cancer. CpG hypermethylation of promoter regions is often associated with silencing of tumour suppressor genes and hypomethylation with activation of oncogenes.Supervised principal component analysis (SPCA) is a popular machine learning method. However, in a recent application to phenotype prediction from DNAm data SPCA was inferior to the specific method EVORA.
RESULTS: We present Model-Selection-SPCA (MS-SPCA), an enhanced version of SPCA. MS-SPCA applies several models that perform well in the training data to the test data and selects the very best models for final prediction based on parameters of the test data.We have applied MS-SPCA for phenotype prediction from genome-wide DNAm data. CpGs used for prediction are selected based on the quantification of three features of their methylation (average methylation difference, methylation variation difference and methylation-age-correlation). We analysed four independent case-control datasets that correspond to different stages of cervical cancer: (i) cases currently cytologically normal, but will later develop neoplastic transformations, (ii, iii) cases showing neoplastic transformations and (iv) cases with confirmed cancer. The first dataset was split into several smaller case-control datasets (samples either Human Papilloma Virus (HPV) positive or negative). We demonstrate that cytology normal HPV+ and HPV- samples contain DNAm patterns which are associated with later neoplastic transformations. We present evidence that DNAm patterns exist in cytology normal HPV- samples that (i) predispose to neoplastic transformations after HPV infection and (ii) predispose to HPV infection itself. MS-SPCA performs significantly better than EVORA.
CONCLUSIONS: MS-SPCA can be applied to many classification problems. Additional improvements could include usage of more than one principal component (PC), with automatic selection of the optimal number of PCs. We expect that MS-SPCA will be useful for analysing recent larger DNAm data to predict future neoplastic transformations.

Johnson IT, Belshaw NJ
The effect of diet on the intestinal epigenome.
Epigenomics. 2014; 6(2):239-51 [PubMed] Related Publications
The colorectal mucosal epithelium is composed of rapidly proliferating crypt cells derived by clonal expansion from stem cells. The aging human colorectal mucosa develops aberrant patterns of DNA methylation that may contribute to its increasing vulnerability to cancer. Various types of evidence suggest that age-dependent loss of global methylation, together with hypermethylation of CpG islands associated with cancer-related genes, may be influenced by nutritional and metabolic factors. Folates are essential for the maintenance of normal DNA methylation, and folate metabolism is known to modify epigenetic mechanisms under experimental conditions. Human intervention trials and cross-sectional studies suggest a role for folates and other nutritional and metabolic factors as determinants of colorectal mucosal DNA methylation. Future studies should focus on the possibility that folic acid fortification may exert unforeseen effects on the human gastrointestinal epigenome. Naturally occurring DNA methyltransferase inhibitors in plant foods may be useful for the manipulation of epigenetic profiles in health and disease.

Jennings BA, Willis G
How folate metabolism affects colorectal cancer development and treatment; a story of heterogeneity and pleiotropy.
Cancer Lett. 2015; 356(2 Pt A):224-30 [PubMed] Related Publications
Folate was identified as an essential micronutrient early in the twentieth century and anti-folate chemotherapy such as 5-fluorouracil (5-FU) has been central to the medical management of solid tumours including colorectal cancer for more than five decades. In the intervening years, evidence has been gathered which shows that folate deficiency leads to many human diseases throughout the life-course. However, we still do not know all of the mechanisms behind functional folate deficiency, or indeed its rescue through supplementation with natural and particularly synthetic folates. There is growing evidence that one adverse effect of folic acid fortification programmes is an increased risk of colorectal cancer within populations. The complexity of folate-dependent, one-carbon metabolism and the heterogeneity that exists between individuals with respect to the enzymes involved in the anabolic pathways, and the catabolism of 5-FU, are explored in this review. The enzyme products of some genes such as MTHFR exert multiple and perhaps unrelated effects on many phenotypes, including cancer development. We describe this pleiotropy and the common genetic variants that affect folate metabolism; and discuss some of the studies that have investigated their potential as predictive biomarkers.

Soond SM, Smith PG, Wahl L, et al.
Novel WWP2 ubiquitin ligase isoforms as potential prognostic markers and molecular targets in cancer.
Biochim Biophys Acta. 2013; 1832(12):2127-35 [PubMed] Related Publications
The WWP2 E3 ubiquitin ligase has previously been shown to regulate TGFβ/Smad signalling activity linked to epithelial-mesenchymal transition (EMT). Whilst inhibitory I-Smad7 was found to be the preferred substrate for full-length WWP2-FL and a WWP2-C isoform, WWP2-FL also formed a stable complex with an N-terminal WWP2 isoform (WWP2-N) in the absence of TGFβ, and rapidly stimulated activating Smad2/3 turnover. Here, using stable knockdown experiments we show that specific depletion of individual WWP2 isoforms impacts differentially on Smad protein levels, and in WWP2-N knockdown cells we unexpectedly find spontaneous expression of the EMT marker vimentin. Re-introduction of WWP2-N into WWP2-N knockout cells also repressed TGFβ-induced vimentin expression. In support of the unique role for WWP2-N in regulating TGFβ/Smad functional activity, we then show that a novel V717M-WWP2 mutant in the MZ7-mel melanoma cell line forms a stable complex with the WWP2-N isoform and promotes EMT by stabilizing Smad3 protein levels. Finally, we report the first analysis of WWP2 expression in cancer cDNA panel arrays using WWP2 isoform-specific probes and identify unique patterns of WWP2 isoform abundance associated with early/advanced disease stages. WWP2-N is significantly downregulated in stage IIIC melanoma and up-regulated in stage II/III prostate cancer, and we also find isolated examples of WWP2-FL and WWP2-C overexpression in early-stage breast cancer. Together, these data suggest that individual WWP2 isoforms, and particularly WWP2-N, could play central roles in tumourigenesis linked to aberrant TGFβ-dependent signalling function, and also have potential as both prognostic markers and molecular therapeutic targets.

Kerr JS, Wilson CH
Nuclear receptor-binding protein 1: a novel tumour suppressor and pseudokinase.
Biochem Soc Trans. 2013; 41(4):1055-60 [PubMed] Related Publications
Pseudokinases are a class of kinases which are structurally designated as lacking kinase activity. Despite the lack of kinase domain sequence conservation, there is increasing evidence that a number of pseudokinases retain kinase activity and/or have critical cellular functions, casting aside previous notions that pseudokinases simply exist as redundant kinases. Moreover, a number of recent studies have implicated pseudokinases as critical components in cancer formation and progression. The present review discusses the interactions and potential functions that nuclear receptor-binding protein 1, a pseudokinase recently described to have a tumour-suppressive role in cancer, may play in cellular homoeostasis and protein regulation. The recent findings highlighted in the present review emphasize the requirement to fully determine the function of pseudokinases in vitro and in vivo, the understanding of which may ultimately uncover new directions for drug discovery.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IL13RA1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999