IL1A

Gene Summary

Gene:IL1A; interleukin 1 alpha
Aliases: IL1, IL-1A, IL1F1, IL1-ALPHA, IL-1 alpha
Location:2q14.1
Summary:The protein encoded by this gene is a member of the interleukin 1 cytokine family. This cytokine is a pleiotropic cytokine involved in various immune responses, inflammatory processes, and hematopoiesis. This cytokine is produced by monocytes and macrophages as a proprotein, which is proteolytically processed and released in response to cell injury, and thus induces apoptosis. This gene and eight other interleukin 1 family genes form a cytokine gene cluster on chromosome 2. It has been suggested that the polymorphism of these genes is associated with rheumatoid arthritis and Alzheimer's disease. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:interleukin-1 alpha
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (40)
Pathways:What pathways are this gene/protein implicaed in?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: IL1A (cancer-related)

Pradhan N, Parbin S, Kausar C, et al.
Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells.
Food Chem Toxicol. 2019; 130:161-173 [PubMed] Related Publications
Aberrant epigenetic modifications are responsible for tumor development and cancer progression; however, readily reversible. Bioactive molecules from diets are promising to cure cancer by modulating epigenetic marks and changing immune response. These compounds specifically target the activity of DNMTs and HDACs to cure various human cancers. In view of this, we investigated the anticancer and epigenetic regulatory activities of an edible-plant Paederia foetida. The efficacy of methanolic extract of P. foetida leaves (MEPL) was tested for the modulation of epigenetic factors in gene silencing, i.e. DNMT and HDAC and expression pattern of certain tumor-suppressor genes. After treatment of prostate cancer cells (PC-3 and DU-145) with MEPL, lupeol and β-sitosterol; induction of apoptosis, decrease in cellular-viability and inhibition of cellular-migration were noticed. Simultaneously there was inhibition of DNMT1, HDACs and pro-inflammatory, IL-6, IL1-β, TNF-α and anti-inflammatory, IL-10 genes in cancer and THP1 cell lines. The DNMT1 protein content, enzyme activity and Bcl2 expression decreased significantly; however, expression of E-cadherin (CDH1) and pro-apoptotic gene Bax increased significantly after the treatment of cells with drugs. We conclude plant-derived compounds can be considered to target epigenetic machineries involved with malignant transformation and can open new avenues for cancer therapeutics provoking immune response.

Münch NS, Fang HY, Ingermann J, et al.
High-Fat Diet Accelerates Carcinogenesis in a Mouse Model of Barrett's Esophagus via Interleukin 8 and Alterations to the Gut Microbiome.
Gastroenterology. 2019; 157(2):492-506.e2 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND & AIMS: Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Progression from BE to cancer is associated with obesity, possibly due to increased abdominal pressure and gastroesophageal reflux disease, although this pathogenic mechanism has not been proven. We investigated whether environmental or dietary factors associated with obesity contribute to the progression of BE to EAC in mice.
METHODS: Tg(ED-L2-IL1RN/IL1B)#Tcw mice (a model of BE, called L2-IL1B mice) were fed a chow (control) or high-fat diet (HFD) or were crossbred with mice that express human interleukin (IL) 8 (L2-IL1B/IL8 mice). Esophageal tissues were collected and analyzed for gene expression profiles and by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. Organoids were established from BE tissue of mice and cultured with serum from lean or obese individuals or with neutrophils from L2-IL1B mice. Feces from mice were analyzed by 16s ribosomal RNA sequencing and compared to 16s sequencing data from patients with dysplasia or BE. L2-IL1B were mice raised in germ-free conditions.
RESULTS: L2-IL1B mice fed an HFD developed esophageal dysplasia and tumors more rapidly than mice fed the control diet; the speed of tumor development was independent of body weight. The acceleration of dysplasia by the HFD in the L2-IL1B mice was associated with a shift in the gut microbiota and an increased ratio of neutrophils to natural killer cells in esophageal tissues compared with mice fed a control diet. We observed similar differences in the microbiomes from patients with BE that progressed to EAC vs patients with BE that did not develop into cancer. Tissues from dysplasias of L2-IL1B mice fed the HFD contained increased levels of cytokines that are produced in response to CXCL1 (the functional mouse homolog of IL8, also called KC). Serum from obese patients caused organoids from L2-IL1B/IL8 mice to produce IL8. BE tissues from L2-IL1B mice fed the HFD and from L2-IL1B/IL8 mice contained increased numbers of myeloid cells and cells expressing Cxcr2 and Lgr5 messenger RNAs (epithelial progenitors) compared with mice fed control diets. BE tissues from L2-IL1B mice raised in germ-free housing had fewer progenitor cells and developed less dysplasia than in L2-IL1 mice raised under standard conditions; exposure of fecal microbiota from L2-IL1B mice fed the HFD to L2-IL1B mice fed the control diet accelerated tumor development.
CONCLUSIONS: In a mouse model of BE, we found that an HFD promoted dysplasia by altering the esophageal microenvironment and gut microbiome, thereby inducing inflammation and stem cell expansion, independent of obesity.

Klein S, Mauch C, Wagener-Ryczek S, et al.
Immune-phenotyping of pleomorphic dermal sarcomas suggests this entity as a potential candidate for immunotherapy.
Cancer Immunol Immunother. 2019; 68(6):973-982 [PubMed] Related Publications
BACKGROUND: Pleomorphic dermal sarcomas (PDS) are sarcomas of the skin with local recurrences in up to 28% of cases, and distant metastases in up to 20%. Although recent evidence provides a strong rational to explore immunotherapeutics in solid tumors, nothing is known about the immune environment of PDS.
METHODS: In the current study, a comprehensive immune-phenotyping of 14 PDS using RNA and protein expression analyses, as well as quantitative assessment of immune cells using an image-analysis tool was performed.
RESULTS: Three out of 14 PDS revealed high levels of CD8-positive tumor-infiltrating T-lymphocytes (TILs), also showing elevated levels of immune-related cytokines such as IL1A, IL2, as well as markers that were very recently linked to enhanced response of immunotherapy in malignant melanoma, including CD27, and CD40L. Using a multivariate analysis, we found a number of differentially expressed genes in the CD8-high group including: CD74, LYZ and HLA-B, while the remaining cases revealed enhanced levels of immune-suppressive cytokines including CXCL14. The "CD8-high" PDS showed strong MHC-I expression and revealed infiltration by PD-L1-, PD-1- and LAG-3-expressing immune cells. Tumor-associated macrophages (TAMs) predominantly consisted of CD68 + , CD163 + , and CD204 + M2 macrophages showing an accentuation at the tumor invasion front.
CONCLUSIONS: Together, we provide first explorative evidence about the immune-environment of PDS tumors that may guide future decisions whether individuals presenting with advanced PDS could qualify for immunotherapeutic options.

Ji H, Lu L, Huang J, et al.
IL1A polymorphisms is a risk factor for colorectal cancer in Chinese Han population: a case control study.
BMC Cancer. 2019; 19(1):181 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide, and genetic variations exert distinct roles in its pathogenesis. Single nucleotide polymorphisms (SNPs) in interleukin 1 alpha (IL1A) were reported to be correlated to the susceptibility of diverse cancers. The aim of this study was to assess the association of IL1A SNPs with the risk of colorectal cancer in a Chinese Han population.
METHODS: To evaluate the correlation between IL1A polymorphisms and CRC risk, Agena MassARRAY platform was used for genotype determination among 248 CRC patients and 463 controls. The relationships between IL1A variants and CRC susceptibility were examined by logistic regression analysis. Stratified analysis was conducted for the association detection in males and females. Haplotype construction and analysis were applied to evaluate the potential relationship between the genetic block and the risk of CRC. SNP functional exploration was performed with available bioinformatics datasets.
RESULTS: After adjusting for age and gender, the "AA" genotype of rs2856838 exhibited a risk association with colorectal cancer in the recessive model (adjusted OR = 1.98, 95% CI: 1.05-3.72, p = 0.036). With stratified analysis, the recessive models of rs3783550 (OR = 2.17, 95% CI: 1.03-4.60, p = 0.043), rs2856838 (OR = 2.58, 95% CI: 1.13-5.87, p = 0.024), rs1609682 (OR = 2.20, 95% CI: 1.04-4.65, p = 0.040), and rs3783521 (OR = 2.13, 95% CI: 1.01-4.49, p = 0.048) revealed significant relationships between these variants and an increased CRC risk only in females. Bioinformatics analysis also revealed the putative functions of the selected SNPs.
CONCLUSIONS: This study demonstrated that rs2856838 could influence the susceptibility to CRC in Chinese Han population from northwest China. IL1A variants rs3783550, rs2856838, rs1609682, and rs3783521 were associated with CRC risk only in females.

Zhu A, Li X, Wu H, et al.
Molecular mechanism of SSFA2 deletion inhibiting cell proliferation and promoting cell apoptosis in glioma.
Pathol Res Pract. 2019; 215(3):600-606 [PubMed] Related Publications
Gliomas are the most common primary brain malignant tumors in humans. Glioblastoma multiforme(GBM) is the most malignant intracranial tumor with a relatively poor prognosis. There promote us to find effective anti-cancer therapies to reduce cancer mortality. By using bioinformatic analysis, we found SSFA2 as a gene with elevated expression in the glioma tissues. We detected the expression of SSFA2 in glioma tissues and in the glioma cell lines, as well as in normal brain tissues. SSFA2 expression was higher in glioma tissues, especially in glioblastoma multiforme than normal brain tissues. Subsequently, we found that down-regulate SSFA2 in glioma cell lines can regulate the cell cycle to reduce the proliferation ability and induce the early apoptosis rate in shSSFA2 cells relative to control cells. Moreover, we found that down-regulate SSFA2 in glioma cell line U87(shSSFA2-U87) inhibited the growth effectiveness compared to the control cell line U87. These result reveals us that SSFA2 may act as oncogene to promote the progression of glioma. For further research specific mechanisms of SSFA2 in gliomas, we used the gene chip to detect the downstream gene in U87. We found that 30 genes also may be as target gene of SSFA2, and we testify the protein expression by western-blot. The result reveal that IL1A, IL1B and CDK6 as target gene of SSFA2 to regulate the progression of glioma. These finding suggest that SSFA2 could be a new therapeutic target for gliomas.

Vetto JT, Hsueh EC, Gastman BR, et al.
Guidance of sentinel lymph node biopsy decisions in patients with T1-T2 melanoma using gene expression profiling.
Future Oncol. 2019; 15(11):1207-1217 [PubMed] Related Publications
AIM: Can gene expression profiling be used to identify patients with T1-T2 melanoma at low risk for sentinel lymph node (SLN) positivity?
PATIENTS & METHODS: Bioinformatics modeling determined a population in which a 31-gene expression profile test predicted <5% SLN positivity. Multicenter, prospectively-tested (n = 1421) and retrospective (n = 690) cohorts were used for validation and outcomes, respectively.
RESULTS: Patients 55-64 years and ≥65 years with a class 1A (low-risk) profile had SLN positivity rates of 4.9% and 1.6%. Class 2B (high-risk) patients had SLN positivity rates of 30.8% and 11.9%. Melanoma-specific survival was 99.3% for patients ≥55 years with class 1A, T1-T2 tumors and 55.0% for class 2B, SLN-positive, T1-T2 tumors.
CONCLUSION: The 31-gene expression profile test identifies patients who could potentially avoid SLN biopsy.

Gundamaraju R, Vemuri R, Chong WC, et al.
Bilirubin Attenuates ER Stress-Mediated Inflammation, Escalates Apoptosis and Reduces Proliferation in the LS174T Colonic Epithelial Cell Line.
Int J Med Sci. 2019; 16(1):135-144 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Mildly elevated serum unconjugated bilirubin (UCB) concentrations are associated with protection against disease conditions underpinned by cellular and metabolic stress. To determine the potential therapeutic efficacy of UCB we tested it in an

Haralambiev L, Wien L, Gelbrich N, et al.
Effects of Cold Atmospheric Plasma on the Expression of Chemokines, Growth Factors, TNF Superfamily Members, Interleukins, and Cytokines in Human Osteosarcoma Cells.
Anticancer Res. 2019; 39(1):151-157 [PubMed] Related Publications
BACKGROUND/AIM: Therapeutic options for osteosarcoma (OS) are still limited. Cold atmospheric plasma (CAP) leads to inhibition of tumor growth and metastasis, but underlying mechanisms are not fully understood. The aim of this study was to investigate CAP-induced changes in cytokine expression in OS cells.
MATERIALS AND METHODS: OS cell lines (U2-OS, MNNG/HOS) were treated with CAP and administered to an RT2 Profiler PCR Array (Qiagen, Hilden, Germany) detecting 84 chemokines, growth factors, TNF superfamily members, interleukins, and cytokines.
RESULTS: The analyses showed that 15 factors (C5, CCL5, CNTF, CSF1, CSF3, CXCL1, IL-1A, IL-1B, IL-18, IL-22, IL23A, MSTN, NODAL, TGFβ2, THPO) were induced, but only one factor (VEGFA) was suppressed after CAP treatment.
CONCLUSION: No extensive systemic cell response with presumably far-reaching consequences for neighboring cells was detectable after CAP treatment. Since the antitumoral effect of CAP on OS cells has already been demonstrated, intraoperative treatment with CAP represents a promising and systemic safe option for the therapy of OS.

Li N, Wang J, Yu W, et al.
MicroRNA‑146a inhibits the inflammatory responses induced by interleukin‑17A during the infection of Helicobacter pylori.
Mol Med Rep. 2019; 19(2):1388-1395 [PubMed] Related Publications
Helicobacter pylori (H. pylori) infection is the major cause of chronic active gastritis and peptic ulcer disease. Upregulation of IL‑17A is associated with H. pylori infection in the gastric mucosa; however, the factors involved in the regulation of interleukin (IL)‑17A‑induced inflammatory responses in H. pylori‑associated gastritis remain unknown. MicroRNAs (miRNAs) serve as key post‑transcriptional regulators of gene expression and are associated with the H. pylori infection. The present study aimed to analyze the effects of IL‑17A on the expression of miR‑146a upon infection with H. pylori, as well as to identify the possible impact of miR‑146a dysregulation on the inflammatory response in vivo and in vitro. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression levels of miR‑146a in gastric epithelial cells upon IL‑17A stimulation. The effects of miR‑146a mimics on IL‑17A‑induced inflammatory responses in SGC‑7901 cells were evaluated. The effects of miR‑146a mimics on the expression levels of IL‑1 receptor‑associated kinase 1 (IRAK1) and tumor necrosis factor receptor‑associated factor 6 (TRAF6) upon IL‑17A treatment were analyzed, and the IL‑17A‑stimulated inflammation following the silencing of IRAK1 and TRAF6 was observed. In addition, the correlation between miR‑146a and IL‑17A in human gastric mucosa with H. pylori was examined. The results indicated that IL‑17A‑induced miR‑146a may regulate the inflammatory response during the infection of H. pylori in a nuclear factor‑κB‑dependent manner. Furthermore, the expression of miR‑146a and IL‑17A are positively correlated in human gastric mucosa infected with H. pylori. These data suggested that miR‑146a may serve as a biomarker or therapeutic target in gastritis therapy.

Zhou D, Li Z, Bai X
BRAF V600E and RET/PTC Promote the Activity of Nuclear Factor-κB, Inflammatory Mediators, and Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Study of 50 Patients in Inner Mongolia.
Med Sci Monit. 2018; 24:6795-6808 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND The aim of this study was to investigate the expression of the BRAF V600E gene mutation and the RET/PTC gene rearrangement in the progression of papillary thyroid carcinoma (PTC) in 50 patients from Inner Mongolia. MATERIAL AND METHODS Clinical data, blood, and tissue samples were obtained from 50 patients with PTC and ten patients with benign thyroid adenoma. Expression of BRAF V600E, RET/PTC, nuclear factor-κB (NF-κB), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, C-X-C motif chemokine ligand (CXCL)1, CXCL2, C-C motif chemokine ligand (CCL)2, and CCL3 were measured using polymerase chain reaction (PCR), immunohistochemistry, and an enzyme-linked immunosorbent assay (ELISA). RESULTS Of the 50 patients with PTC, 37 patients expressed the BRAF V600E gene mutation, eight patients expressed RET/PTC, and five patients showed concomitant BRAF V600E and RET/PTC. Time to recurrence for patients with PTC with BRAF V600E was significantly increased compared with patients with concomitant BRAF V600E mutation and RET/PTC rearrangement (P<0.05). Expression of BRAF V600E, RET/PTC, and concomitant expression of BRAF V600E and RET/PTC were significantly associated with patient age and lymph node metastasis (P<0.05). Serum levels of NF-κB, IL-1β, IL-6, TNF-α, TGF-β and CCL3, and tumor tissue levels of IL-1β, IL-6, TNF-α, TGF-β, CXCL2 and CCL2 in patients with PTC were significantly increased compared with patients with benign thyroid adenoma, before and after surgery (P<0.05). CONCLUSIONS Expression of the BRAF V600E mutation and RET/PTC translocation promoted the activity of NF-κB, expression of inflammatory mediators, and lymph node metastases in patients with PTC.

Kirchmeyer M, Servais FA, Hamdorf M, et al.
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets.
J Leukoc Biol. 2018; 104(5):987-1002 [PubMed] Related Publications
Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis. Much is known about the regulation of protein-coding genes by cytokines whereas their effects on the miRNome is less well understood. We performed a microarray screen to identify microRNAs (miRNAs) in human hepatocytes which are modulated by IL-6-type cytokines. Using samples of 2 donors, 27 and 68 miRNAs (out of 1,733) were found to be differentially expressed upon stimulation with hyper-IL-6 (HIL-6) for up to 72 h, with an overlap of 15 commonly regulated miRNAs. qPCR validation revealed that miR-146b-5p was also consistently up-regulated in hepatocytes derived from 2 other donors. Interestingly, miR-146b-5p (but not miR-146a-5p) was induced by IL-6-type cytokines (HIL-6 and OSM) in non-transformed liver-derived PH5CH8 and THLE2 cells and in Huh-7 hepatoma cells, but not in HepG2 or Hep3B hepatoma cells. We did not find evidence for a differential regulation of miR-146b-5p expression by promoter methylation, also when analyzing the TCGA data set on liver cancer samples. Inducible overexpression of miR-146b-5p in PH5CH8 cells followed by RNA-Seq analysis revealed effects on multiple mRNAs, including those encoding IRAK1 and TRAF6 crucial for Toll-like receptor signaling. Indeed, LPS-mediated signaling was attenuated upon overexpression of miR-146b-5p, suggesting a regulatory loop to modulate inflammatory signaling in hepatocytes. Further validation experiments suggest DNAJC6, MAGEE1, MPHOSPH6, PPP2R1B, SLC10A3, SNRNP27, and TIMM17B to be novel targets for miR-146b-5p (and miR-146a-5p).

Tak KH, Yu GI, Lee MY, Shin DH
Association Between Polymorphisms of Interleukin 1 Family Genes and Hepatocellular Carcinoma.
Med Sci Monit. 2018; 24:3488-3495 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies occurring worldwide and is most frequent type of liver cancer. The risk for developing HCC increases with the severity of inflammation and fibrosis. The members of the interleukin-1 (IL-1) family are primarily proinflammatory cytokines due to their ability to stimulate the expression of genes associated with inflammation and autoimmune diseases. Several studies have suggested that some proinflammatory cytokines, such as the IL-1 family (IL-1α, IL-1β, and IL-1 receptor antagonist) are involved in the pathogenesis of HCC. MATERIAL AND METHODS This study aimed to determine whether polymorphisms in the IL-1 family of genes are associated with HCC. We analyzed 178 HCC patients and 397 controls to investigate the association between polymorphisms in IL-1α, IL-1β, and IL-1 receptor antagonist (IL-1RA) genes and HCC in the Korean population. All subjects were genotyped for the selected SNPs in IL-1α, IL-1β, and IL-1RA genes by Golden-Gate SNP Genotyping Assay. RESULTS Statistical analysis revealed a significant association at IL-1β between HCC and controls. Three individual polymorphisms (rs1143633, rs3917356, and rs1143627) were found to be associated with HCC. The SNPs of IL-1b gene (rs1143633A>G and rs1143627T>C) protected against HCC in the dominant model (p=0.027, OR=0.59, 95% CI=0.37-0.94; p=0.019, OR=0.56, 95% CI=0.34-0.91). The SNP of IL-1β gene (rs3917356G>A) increased the risk of HCC in the recessive model (p<0.001, OR=2.58, 95% CI=1.53-4.33), whereas other SNPs in IL-1α and IL-1RA showed no significant association between HCC patients and controls. CONCLUSIONS These results suggest that IL-1β in the IL-1 family contributes to HCC susceptibility.

Chen X, Sun X, Wang Z, et al.
Involvement of acid-sensing ion channel 1a in gastric carcinoma cell migration and invasion.
Acta Biochim Biophys Sin (Shanghai). 2018; 50(5):440-446 [PubMed] Related Publications
Acidic microenvironment, particularly acid-sensing ion channel 1a (ASIC1a), has been reported to promote carcinoma cell proliferation as well as migration. In this study, we explored the effect of ASIC1a on migration and invasion of gastric carcinoma (GC). ASIC1a expression levels were examined in paired GC and adjacent normal tissues from 16 patients by immunohistochemistry. Reverse transcription real-time PCR and immunoblotting were conducted to assess the ASIC1a expression levels in the GC cell line AGS after transfection with ASIC1a small hairpin RNA (shRNA). Wound healing and transwell invasion assays were utilized to detect metastasis and invasion following ASIC1a silencing. Tumor formation was used to detect the role of ASIC1a in tumorigenicity in vivo. It was found that ASIC1a expression level was significantly higher in GC tissues showing postoperative metastasis compared with non-metastasis and non-tumor tissues. Moreover, silencing of ASIC1a with shRNA significantly down-regulated ASIC1a expression and reduced GC cell migration and invasion. A moderately acidic extracellular environment inhibited GC cell viability. Furthermore, ASIC1a shRNA caused inhibition of tumorigenicity in vivo. Our study is the first report of attenuating the malignant phenotype of GC in vitro and in vivo by suppressing ASIC1a, and suggests a novel approach to study the relationship between ASICs and GC cell migration and invasion.

Apps JR, Carreno G, Gonzalez-Meljem JM, et al.
Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target.
Acta Neuropathol. 2018; 135(5):757-777 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.

Chiyonobu N, Shimada S, Akiyama Y, et al.
Fatty Acid Binding Protein 4 (FABP4) Overexpression in Intratumoral Hepatic Stellate Cells within Hepatocellular Carcinoma with Metabolic Risk Factors.
Am J Pathol. 2018; 188(5):1213-1224 [PubMed] Related Publications
Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC); however, tumor-specific biomarkers still remain unclear. We performed cross-species analysis to compare gene signatures of HCC from human patients and melanocortin 4 receptor-knockout mice, which develop HCC with obesity, insulin resistance, and dyslipidemia. Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and melanocortin 4 receptor-knockout mice into two distinct subgroups, one of which included mouse HCC and was causatively associated with metabolic risk factors. Nine genes commonly overexpressed in human and mouse metabolic disease-associated HCC were identified; fatty acid binding protein 4 (FABP4) was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Subclones constitutively expressing FABP4 were established from a human HSC cell line in which expression levels of inflammatory chemokines, including IL-1A and IL-6, were up-regulated through NF-κB nuclear translocation, resulting in recruitment of macrophages. An immunohistochemical validation study of 106 additional human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and the FABP4-high group consisted of patients with nonviral and nonalcoholic HCC (P = 0.027) and with multiple metabolic risk factors (P < 0.001) compared with the FABP4-low group. Thus, FABP4 overexpression in HSCs may contribute to hepatocarcinogenesis in patients with metabolic risk factors by modulation of inflammatory pathways.

Spalinger MR, Manzini R, Hering L, et al.
PTPN2 Regulates Inflammasome Activation and Controls Onset of Intestinal Inflammation and Colon Cancer.
Cell Rep. 2018; 22(7):1835-1848 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Variants in the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with inflammatory disorders, including inflammatory bowel diseases, rheumatoid arthritis, and type 1 diabetes. The anti-inflammatory role of PTPN2 is highlighted by the fact that PTPN2-deficient mice die a few weeks after birth because of systemic inflammation and severe colitis. However, the tissues, cells, and molecular mechanisms that contribute to this phenotype remain unclear. Here, we demonstrate that myeloid cell-specific deletion of PTPN2 in mice (PTPN2-LysMCre) promotes intestinal inflammation but protects from colitis-associated tumor formation in an IL-1β-dependent manner. Elevated levels of mature IL-1β production in PTPN2-LysMCre mice are a consequence of increased inflammasome assembly due to elevated phosphorylation of the inflammasome adaptor molecule ASC. Thus, we have identified a dual role for myeloid PTPN2 in directly regulating inflammasome activation and IL-1β production to suppress pro-inflammatory responses during colitis but promote intestinal tumor development.

Zhang X, Liu L, Yang X, et al.
Expression of TP53 and IL-1α in unicystic ameloblastoma predicts the efficacy of marsupialization treatment.
Medicine (Baltimore). 2018; 97(6):e9795 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
In this study, we evaluated the effects of marsupialization in treating unicystic ameloblastoma (UA) and investigated the relationship between TP53 and interleukin 1 α (IL-1α) expression and the clinical outcome of UA treated with marsupialization.Consecutive patients treated with marsupialization and curettage at Shanghai Ninth People's Hospital were included. According to the unified standard, 48 patients were included in this study. Of these, 20 showed a good response, 10 a partial response, and 18 no response, based on the outcome of the marsupialization procedure. The expression of proteins TP53 and IL-1α was detected with immunohistochemistry (IHC). The clinical and pathological characteristics of the patients were analyzed.Analysis of the clinical and pathological characteristics showed that the effects of marsupialization treatment were significantly associated with lesion location (P < .001) and tumor diameter (P = .01). IHC showed that TP53 expression was significantly higher in the good-response group than in the partial- or no-response group (P = .02), and IL-1α expression was significantly higher in the good-response group than in the partial- and no-response groups (P = .03).Marsupialization is an effective preliminary procedure for treating UA before curettage and peripheral ostectomy. The expression of the TP53 and IL-1α proteins correlates directly with the outcome of UA treated with marsupialization.

Eaton KD, Romine PE, Goodman GE, et al.
Inflammatory Gene Polymorphisms in Lung Cancer Susceptibility.
J Thorac Oncol. 2018; 13(5):649-659 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
INTRODUCTION: Chronic inflammation has been implicated in carcinogenesis, with increasing evidence of its role in lung cancer. We aimed to evaluate the role of genetic polymorphisms in inflammation-related genes in the risk for development of lung cancer.
METHODS: A nested case-control study design was used, and 625 cases and 625 well-matched controls were selected from participants in the β-Carotene and Retinol Efficacy Trial, which is a large, prospective lung cancer chemoprevention trial. The association between lung cancer incidence and survival and 23 polymorphisms descriptive of 11 inflammation-related genes (interferon gamma gene [IFNG], interleukin 10 gene [IL10], interleukin 1 alpha gene [IL1A], interleukin 1 beta gene [IL1B], interleukin 2 gene [IL2], interleukin 4 receptor gene [IL4R], interleukin 4 gene [IL4], interleukin 6 gene [IL6], prostaglandin-endoperoxide synthase 2 gene [PTGS2] (also known as COX2), transforming growth factor beta 1 gene [TGFB1], and tumor necrosis factor alpha gene [TNFA]) was evaluated.
RESULTS: Of the 23 polymorphisms, two were associated with risk for lung cancer. Compared with individuals with the wild-type (CC) variant, individuals carrying the minor allele variants of the IL-1β-511C>T promoter polymorphism (rs16944) (CT and TT) had decreased odds of lung cancer (OR = 0.74, [95% confidence interval (CI): 0.58-0.94] and OR = 0.71 [95% CI: 0.50-1.01], respectively, p = 0.03). Similar results were observed for the IL-1β-1464 C>G promoter polymorphism (rs1143623), with presence of the minor variants CG and CC having decreased odds of lung cancer (OR = 0.75 [95% CI: 0.59-0.95] and OR = 0.69 [95% CI: 0.46-1.03], respectively, p = 0.03). Survival was not influenced by genotype.
CONCLUSIONS: This study provides further evidence that IL1B promoter polymorphisms may modulate the risk for development of lung cancer.

Liu S, Lee JS, Jie C, et al.
HER2 Overexpression Triggers an IL1α Proinflammatory Circuit to Drive Tumorigenesis and Promote Chemotherapy Resistance.
Cancer Res. 2018; 78(8):2040-2051 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Systemic inflammation in breast cancer correlates with poor prognosis, but the molecular underpinnings of this connection are not well understood. In this study, we explored the relationship between HER2 overexpression, inflammation, and expansion of the mammary stem/progenitor and cancer stem-like cell (CSC) population in breast cancer. HER2-positive epithelial cells initiated and sustained an inflammatory milieu needed to promote tumorigenesis. HER2 induced a feedforward activation loop of IL1α and IL6 that stimulated NFκB and STAT3 pathways for generation and maintenance of breast CSC. In mice, Il1a genetic deficiency delayed MMTV-Her2-induced tumorigenesis and reduced inflammatory cytokine expression as well as CSC in primary tumors. In clinical specimens of human breast tumor tissues, tissue microarray analysis revealed a strong positive correlation between IL1α/IL6 expression and CSC-positive phenotype. Pharmacologic blockade of IL1α signaling reduced the CSC population and improved chemotherapeutic efficacy. Our findings suggest new therapeutic or prevention strategies for HER2-positive breast cancers.

Cavalcante GC, Amador MA, Ribeiro Dos Santos AM, et al.
Analysis of 12 variants in the development of gastric and colorectal cancers.
World J Gastroenterol. 2017; 23(48):8533-8543 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
AIM: To evaluate the relation between 12 polymorphisms and the development of gastric cancer (GC) and colorectal cancer (CRC).
METHODS: In this study, we included 125 individuals with GC diagnosis, 66 individuals with CRC diagnosis and 475 cancer-free individuals. All participants resided in the North region of Brazil and authorized the use of their samples. The 12 polymorphisms (in
RESULTS: After statistical analyses with the control of confounding factors, such as genetic ancestry, three markers (rs79071878 in
CONCLUSION: These findings are important for the comprehension of gastric and CRC development, particularly in highly admixed populations, such as the Brazilian population.

Deswaerte V, Nguyen P, West A, et al.
Inflammasome Adaptor ASC Suppresses Apoptosis of Gastric Cancer Cells by an IL18-Mediated Inflammation-Independent Mechanism.
Cancer Res. 2018; 78(5):1293-1307 [PubMed] Related Publications
Inflammasomes are key regulators of innate immunity in chronic inflammatory disorders and autoimmune diseases, but their role in inflammation-associated tumorigenesis remains ill-defined. Here we reveal a protumorigenic role in gastric cancer for the key inflammasome adaptor apoptosis-related speck-like protein containing a CARD (ASC) and its effector cytokine IL18. Genetic ablation of ASC in the

Harada M, Morimoto K, Kondo T, et al.
Quinacrine Inhibits ICAM-1 Transcription by Blocking DNA Binding of the NF-κB Subunit p65 and Sensitizes Human Lung Adenocarcinoma A549 Cells to TNF-α and the Fas Ligand.
Int J Mol Sci. 2017; 18(12) [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Quinacrine has been used for therapeutic drugs in some clinical settings. In the present study, we demonstrated that quinacrine decreased the expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) α in human lung adenocarcinoma A549 cells. Quinacrine inhibited ICAM-1 mRNA expression and nuclear factor κB (NF-κB)-responsive luciferase reporter activity following a treatment with TNF-α and IL-1α. In the NF-κB signaling pathway, quinacrine did not markedly affect the TNF-α-induced degradation of the inhibitor of NF-κB or the TNF-α-induced phosphorylation of the NF-κB subunit, p65, at Ser-536 and its subsequent translocation to the nucleus. In contrast, a chromatin immunoprecipitation assay showed that quinacrine prevented the binding of p65 to the ICAM-1 promoter following TNF-α stimulation. Moreover, TNF-α and the Fas ligand effectively reduced the viability of A549 cells in the presence of quinacrine only. Quinacrine down-regulated the constitutive and TNF-α-induced expression of c-FLIP and Mcl-1 in A549 cells. These results revealed that quinacrine inhibits ICAM-1 transcription by blocking the DNA binding of p65 and sensitizes A549 cells to TNF-α and the Fas ligand.

Sun W, Qiu Z, Huang W, Cao M
Gene expression profiles and protein‑protein interaction networks during tongue carcinogenesis in the tumor microenvironment.
Mol Med Rep. 2018; 17(1):165-171 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Oral tongue squamous cell carcinoma (OTSCC) has a high incidence and is associated with a high mortality rate. Studies regarding the potential molecular mechanism of OTSCC in the tumor microenvironment (TME) are required. The present study aimed to perform bioinformatic analysis to identify important nodes, clusters and functional pathways during tongue carcinogenesis in the TME. After downloading the gene expression data of GSE42780, differentially expressed genes (DEGs) among carcinoma, dysplastic and normal samples in epithelia and fibroblasts were identified using the affy and limma packages with R version 3.3. Subsequently, the Database for Annotation, Visualization and Integrated Discovery was employed to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, a protein‑protein interaction (PPI) network was constructed by using the Search Tool for the Retrieval of Interacting Genes/Proteins and analyzed by Cytoscape software. In total, 85 DEGs were identified for tongue epithelia and 46 DEGs were identified for fibroblasts. Neutrophil chemotaxis and inflammatory response from GO, and cytokine‑cytokine receptor interaction from KEGG were enriched for epithelia and fibroblasts. The PPI network revealed that C‑X‑C motif chemokine ligand (Cxcl)1, Cxcl10, Cxcl13, Cxcl2 and pro‑platelet basic protein were a key cluster for epithelia, and interleukin (Il)1β, Il1 receptor 2, Il1a and Il1 receptor antagonist were a key cluster for fibroblasts. Therefore, the results indicate that fibroblasts and cytokines associated with an inflammatory immune response contributed substantially to tongue carcinogenesis in the TME, which is useful for the development of OTSCC targeted therapy. However, further investigation is required to elucidate the molecular and cellular mechanisms underlying the inflammatory immune network in the TME.

Semango G, Heinhuis B, Plantinga TS, et al.
Exploring the Role of IL-32 in HIV-Related Kaposi Sarcoma.
Am J Pathol. 2018; 188(1):196-203 [PubMed] Related Publications
The intracellular proinflammatory mediator IL-32 is associated with tumor progression; however, the mechanisms remain unknown. We studied IL-32 mRNA expression as well as expression of other proinflammatory cytokines and mediators, including IL-1α, IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, the proangiogenic and antiapoptotic enzyme cyclooxygenase-2, the IL-8 receptor C-X-C chemokine receptor (CXCR) 1, and the intracellular kinase focal adhesion kinase-1. The interaction of IL-32 expression with expression of IL-6, TNF-α, IL-8, and cyclooxygenase-2 was also investigated. Biopsy specimens of 11 HIV-related, 7 non-HIV-related Kaposi sarcoma (KS), and 7 normal skin tissues (NSTs) of Dutch origin were analyzed. RNA was isolated from the paraffin material, and gene expression levels of IL-32 α, β, and γ isoforms, IL1a, IL1b, IL6, IL8, TNFA, PTGS2, CXCR1, and PTK2 were determined using real-time quantitative PCR. Significantly higher expression of IL-32β and IL-32γ isoforms was observed in HIV-related KS biopsy specimens compared with non-HIV-related KS and NST. The splicing ratio of the IL-32 isoforms showed IL-32γ as the highest expressed isoform, followed by IL-32β, in HIV-related KS cases compared with non-HIV-related KS and NST. Our data suggest a possible survival mechanism by the splicing of IL-32γ to IL-32β and also IL-6, IL-8, and CXCR1 signaling pathways to reverse the proapoptotic effect of the IL-32γ isoform, leading to tumor cell survival and thus favoring tumor progression.

Legason ID, Pfeiffer RM, Udquim KI, et al.
Evaluating the Causal Link Between Malaria Infection and Endemic Burkitt Lymphoma in Northern Uganda: A Mendelian Randomization Study.
EBioMedicine. 2017; 25:58-65 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Plasmodium falciparum (Pf) malaria infection is suspected to cause endemic Burkitt Lymphoma (eBL), but the evidence remains unsettled. An inverse relationship between sickle cell trait (SCT) and eBL, which supports that between malaria and eBL, has been reported before, but in small studies with low power. We investigated this hypothesis in children in a population-based study in northern Uganda using Mendelian Randomization.
METHODS: Malaria-related polymorphisms (SCT, IL10, IL1A, CD36, SEMA3C, and IFNAR1) were genotyped in 202 eBL cases and 624 controls enrolled during 2010-2015. We modeled associations between genotypes and eBL or malaria using logistic regression.
FINDINGS: SCT was associated with decreased risk of eBL (adjusted odds ratio [OR] 0·37, 95% CI 0·21-0·66; p=0·0003). Decreased risk of eBL was associated with IL10 rs1800896-CT (OR 0·73, 95% CI 0·50-1·07) and -CC genotypes (OR 0·53, 95% CI 0·29-0·95, p
INTERPRETATION: Our results support a causal effect of malaria infection on eBL.

Hashemi M, Bahari G, Sarhadi S, et al.
4-bp insertion/deletion (rs3783553) polymorphism within the 3'UTR of IL1A contributes to the risk of prostate cancer in a sample of Iranian population.
J Cell Biochem. 2018; 119(3):2627-2635 [PubMed] Related Publications
Growing evidence demonstrated the presence of an association between IL1A rs3783553 polymorphism and the risk of various cancers. We aimed to evaluate whether the 4-bp insertion/deletion polymorphism (rs3783553) within the 3' untranslated region (3'UTRs) of IL1A was associated to the risk of prostate cancer (PCa) in a sample of Iranian population. A case-control study, including 150 prostate cancer patients and 155 healthy men, was done to examine the possible association between IL1A 4-bp ins/del polymorphism and PCa risk in a sample of southeast Iranian population. Mismatched polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was designed for genotyping the studied variant. Our findings showed that 4-bp ins/del polymorphism significantly increased the risk of PCa in codominant, recessive and allelic inheritance model. We also evaluated the association between the IL1A 4-bp ins/del polymorphism and clinicopathological characteristics of the patients, and found a significant association between 4-bp ins/del variant and stage, perineural invasion and surgical margin of tumor samples. Bioinformatics analysis revealed that the ins/del variant affected the IL1A mRNA stability leading to a structural shift in IL1A mRNA and has-miR-125a-3p hybrid. In conclusion, our findings proposed an association between IL1A 4-bp ins/del polymorphism and PCa risk. Additional studies with enlarged sample size and diverse ethnicities are required to validate our finding.

Klymenko T, Gu Q, Herbert I, et al.
RNA-Seq Analysis of Differentiated Keratinocytes Reveals a Massive Response to Late Events during Human Papillomavirus 16 Infection, Including Loss of Epithelial Barrier Function.
J Virol. 2017; 91(24) [PubMed] Article available free on PMC after 01/08/2020 Related Publications
The human papillomavirus (HPV) replication cycle is tightly linked to epithelial cell differentiation. To examine HPV-associated changes in the keratinocyte transcriptome, RNAs isolated from undifferentiated and differentiated cell populations of normal, spontaneously immortalized keratinocytes (NIKS) and NIKS stably transfected with HPV16 episomal genomes (NIKS16) were compared using next-generation sequencing (RNA-Seq). HPV16 infection altered expression of 2,862 cellular genes. Next, to elucidate the role of keratinocyte gene expression in late events during the viral life cycle, RNA-Seq was carried out on triplicate differentiated populations of NIKS (uninfected) and NIKS16 (infected). Of the top 966 genes altered (>log

Ellsworth SG, Rabatic BM, Chen J, et al.
Principal component analysis identifies patterns of cytokine expression in non-small cell lung cancer patients undergoing definitive radiation therapy.
PLoS One. 2017; 12(9):e0183239 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND/PURPOSE: Radiation treatment (RT) stimulates the release of many immunohumoral factors, complicating the identification of clinically significant cytokine expression patterns. This study used principal component analysis (PCA) to analyze cytokines in non-small cell lung cancer (NSCLC) patients undergoing RT and explore differences in changes after hypofractionated stereotactic body radiation therapy (SBRT) and conventionally fractionated RT (CFRT) without or with chemotherapy.
METHODS: The dataset included 141 NSCLC patients treated on prospective clinical protocols; PCA was based on the 128 patients who had complete CK values at baseline and during treatment. Patients underwent SBRT (n = 16), CFRT (n = 18), or CFRT (n = 107) with concurrent chemotherapy (ChRT). Levels of 30 cytokines were measured from prospectively collected platelet-poor plasma samples at baseline, during RT, and after RT. PCA was used to study variations in cytokine levels in patients at each time point.
RESULTS: Median patient age was 66, and 22.7% of patients were female. PCA showed that sCD40l, fractalkine/C3, IP10, VEGF, IL-1a, IL-10, and GMCSF were responsible for most variability in baseline cytokine levels. During treatment, sCD40l, IP10, MIP-1b, fractalkine, IFN-r, and VEGF accounted for most changes in cytokine levels. In SBRT patients, the most important players were sCD40l, IP10, and MIP-1b, whereas fractalkine exhibited greater variability in CFRT alone patients. ChRT patients exhibited variability in IFN-γ and VEGF in addition to IP10, MIP-1b, and sCD40l.
CONCLUSIONS: PCA can identify potentially significant patterns of cytokine expression after fractionated RT. Our PCA showed that inflammatory cytokines dominate post-treatment cytokine profiles, and the changes differ after SBRT versus CFRT, with vs without chemotherapy. Further studies are planned to validate these findings and determine the clinical significance of the cytokine profiles identified by PCA.

Wang S, Liu B, Zhang J, et al.
Centromere protein U is a potential target for gene therapy of human bladder cancer.
Oncol Rep. 2017; 38(2):735-744 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
To investigate the role of centromere protein U (CENPU) in human bladder cancer (BCa), CENPU gene expression was evaluated in human BCa tissues. We used real-time quantitative PCR (qPCR) and found that CENPU gene expression in human BCa tissues was higher compared to that observed in cancer-adjacent normal tissues. High CENPU expression was found to be strongly correlated with tumor size and TNM stage. Kaplan-Meier survival analysis indicated that high CENPU levels were associated with reduced survival. We used a lentivirus to silence endogenous CENPU gene expression in the BCa T24 cell line. CENPU knockdown was confirmed by qPCR. Cellomic imaging and BrdU assays showed that cell proliferation was significantly reduced in the CENPU-silenced cells compared to that noted in the control cells. Flow cytometry revealed that in the CENPU-silenced cells the cell cycle was arrested at the G1 phase relative to that in the control cells. In addition, apoptosis was significantly increased in the CENPU-silenced cells. Giemsa staining showed that CENPU-silenced cells, compared to control cells, displayed a significantly lower number of cell colonies. The genome-wide effect of CENPU knockdown showed that a total of 1,274 differentially expressed genes was found, including 809 downregulated genes and 465 upregulated genes. Network analysis by Ingenuity Pathway Analysis (IPA) resulted in 25 distinct signaling pathways, including the top-ranked network: 'Cellular compromise, organismal injury and abnormalities, skeletal and muscular disorders'. In-depth IPA analysis revealed that CENPU was associated with the HMGB1 signaling pathway. qPCR and western blot analysis demonstrated that in the HMGB1 signaling pathway, CENPU knockdown downregulated expression levels of ILB, CXCL8, RAC1 and IL1A. In conclusion, our data may provide a potential pathway signature for therapeutic targets with which to treat BCa.

Xuan Y, Wang YN
Hypoxia/IL-1α axis promotes gastric cancer progression and drug resistance.
J Dig Dis. 2017; 18(9):511-520 [PubMed] Related Publications
OBJECTIVE: The microenvironment of tumors constitutes a unique niche that promotes cancer metastasis and resistance. Two remarkable characteristics of this microenvironment are hypoxia and inflammation. Interleukin-1α (IL-1α), an important inflammatory factor, is frequently upregulated in a variety of cancers. This study aimed to investigate the expression of IL-1α in gastric cancer (GC) and explore the relationship between IL-1α and hypoxia.
METHODS: Reverse-transcription polymerase chain reaction was performed to characterize IL-1α expression in different GC cell lines under normoxia or hypoxia. IL-1α expression was characterized in relation to tumor stage and lymph node metastasis of GC and the survival of patients. The effect of IL-1α knockdown under normoxia or hypoxia on cell proliferation, migration and sensitivity to cisplatin was also evaluated. Additionally, hypoxia-inducible factor-1α (HIF-1α) expression in KATO-III cells was either upregulated by ectopic HIF-1α expression or downregulated through shHIF-1α transfection, the effects of which on IL-1α expression was subsequently evaluated.
RESULTS: There was a positive correlation between IL-1α, which was upregulated during hypoxia, and tumor stage, lymph node metastasis and resistance to cisplatin in GC. IL-1α was regulated by HIF1α, and a change in HIF1α expression altered the tumor-promoting effect of IL-1α.
CONCLUSION: The IL-1α/hypoxia axis may be a valuable target for diagnosis and treatment of GC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IL1A, Cancer Genetics Web: http://www.cancer-genetics.org/IL1A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999