ITGAX

Gene Summary

Gene:ITGAX; integrin subunit alpha X
Aliases: CD11C, SLEB6
Location:16p11.2
Summary:This gene encodes the integrin alpha X chain protein. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. This protein combines with the beta 2 chain (ITGB2) to form a leukocyte-specific integrin referred to as inactivated-C3b (iC3b) receptor 4 (CR4). The alpha X beta 2 complex seems to overlap the properties of the alpha M beta 2 integrin in the adherence of neutrophils and monocytes to stimulated endothelium cells, and in the phagocytosis of complement coated particles. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:integrin alpha-X
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (11)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Carcinoma, Lobular
  • Leukemic Gene Expression Regulation
  • Young Adult
  • Integrin alpha4
  • Chromosome 16
  • Chronic Lymphocytic Leukemia
  • Neoplasm Invasiveness
  • Cluster Analysis
  • Chromosomes, Artificial, Bacterial
  • 1-Acylglycerophosphocholine O-Acyltransferase
  • Antigens, CD11c
  • Quantitative Trait Loci
  • Melanoma
  • Integrins
  • Cardiovascular Diseases
  • Cancer Gene Expression Regulation
  • Long Noncoding RNA
  • Genetic Predisposition
  • Retinoic Acid
  • Missense Mutation
  • Genome-Wide Association Study
  • HOTAIR long untranslated RNA, human
  • Cell Proliferation
  • Models, Molecular
  • Adolescents
  • Inflammation
  • Haplotypes
  • Ribonuclease H
  • Structural Homology, Protein
  • Disease Models, Animal
  • Cell Differentiation
  • Breast Cancer
  • Protein Structure, Tertiary
  • Oligonucleotide Array Sequence Analysis
  • Polycystic Ovary Syndrome
  • Cancer DNA
  • Granulosa Cells
  • Gene Knockdown Techniques
  • Case-Control Studies
  • Hairy Cell Leukemia
  • Cell Cycle
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ITGAX (cancer-related)

Ohno Y, Kitamura H, Takahashi N, et al.
IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells.
Cancer Immunol Immunother. 2016; 65(2):193-204 [PubMed] Related Publications
Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4(+) T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b(+)CD11c(+) cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1, CTSL, COX2, and IL6 were higher in tumor-infiltrating CD11b(+)CD11c(+) cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b(+)CD11c(+) cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4(+) T and CD8(+) T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy.

Paiva B, Corchete LA, Vidriales MB, et al.
Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance.
Blood. 2016; 127(15):1896-906 [PubMed] Related Publications
Persistence of chemoresistant minimal residual disease (MRD) plasma cells (PCs) is associated with inferior survival in multiple myeloma (MM). Thus, characterization of the minor MRD subclone may represent a unique model to understand chemoresistance, but to our knowledge, the phenotypic and genetic features of the MRD subclone have never been investigated. Here, we compared the antigenic profile of MRD vs diagnostic clonal PCs in 40 elderly MM patients enrolled in the GEM2010MAS65 study and showed that the MRD subclone is enriched in cells overexpressing integrins (CD11a/CD11c/CD29/CD49d/CD49e), chemokine receptors (CXCR4), and adhesion molecules (CD44/CD54). Genetic profiling of MRD vs diagnostic PCs was performed in 12 patients; 3 of them showed identical copy number alterations (CNAs), in another 3 cases, MRD clonal PCs displayed all genetic alterations detected at diagnosis plus additional CNAs that emerged at the MRD stage, whereas in the remaining 6 patients, there were CNAs present at diagnosis that were undetectable in MRD clonal PCs, but also a selected number of genetic alterations that became apparent only at the MRD stage. The MRD subclone showed significant downregulation of genes related to protein processing in endoplasmic reticulum, as well as novel deregulated genes such as ALCAM that is prognostically relevant in MM and may identify chemoresistant PCs in vitro. Altogether, our results suggest that therapy-induced clonal selection could be already present at the MRD stage, where chemoresistant PCs show a singular phenotypic signature that may result from the persistence of clones with different genetic and gene expression profiles. This trial was registered atwww.clinicaltrials.gov as #NCT01237249.

Rastogi P, Naseem S, Varma N, Varma S
Nucleophosmin mutation in de-novo acute myeloid leukemia.
Asia Pac J Clin Oncol. 2016; 12(1):77-85 [PubMed] Related Publications
OBJECTIVE: Acute myeloid leukemia (AML) with mutated nucleophosmin gene (NPM1) has distinctive clinical, hematological and molecular features, and is included as a provisional entity in 2008 World Health Organization classification. In this study, we analyzed the frequency and features of AML with mutated NPM1 in Indian patients.
METHODS: One-hundred consecutive patients of de-novo AML were evaluated for NPM1 mutation and their features were compared with unmutated NPM1 patients.
RESULTS: AML with mutated NPM1 was seen in 21% cases. There was female preponderance with median age of 51 years. Distinguishing Features in mutated group were less bleeding manifestations and bone pains; more lymphadenopathy; higher median total leukocyte and platelet count; less frequency of pancytopenia and more preserved megakaryocytes. Morphologically, cup-shaped nuclei in peripheral blood blasts correlated with NPM1 mutation (p <0.01), but not bone marrow blasts. Among the French-American-British subtypes, NPM1 mutation was seen in M1, M4 and M2 subtypes but not in M0 and M3. Immunophenotypically, there was statistically significant negativity for CD34, strong association with monocytic markers (especially CD11c), CD123 was seen at higher frequency and higher mean fluorescence intensity (MFI) values for CD33 were observed in mutated cases.
CONCLUSIONS: Important findings in this study that have not been highlighted in detail in previous studies in NPM1-mutated cases include less bleeding manifestations and bone pains, lower frequency of pancytopenia and more preserved magakaryocytes, higher CD123 expression and higher MFI values for CD33. Presence of blasts with cup-shaped nuclei correlated with NPM1 mutation.

Matutes E, Martínez-Trillos A, Campo E
Hairy cell leukaemia-variant: Disease features and treatment.
Best Pract Res Clin Haematol. 2015; 28(4):253-63 [PubMed] Related Publications
Hairy cell leukaemia-variant (HCL-V) is a rare B-cell malignancy that affects elderly males and manifests with splenomegaly, lymphocytosis and cytopenias without monocytopenia. The neoplastic cells have morphological features of prolymphocytes and hairy cells. The immunophenotype is that of a clonal B-cell CD11c and CD103 positive but, unlike classical HCL, CD25, CD123 and CD200 negative. The spleen histology is similar to classical HCL and the pattern of bone marrow infiltration is interstitial and/or intrasinusoidal. Mutations of the immunoglobulin heavy chain (IGVH) are seen in two thirds of cases with a preferential VH4-34 family usage. There is no distinct chromosomal abnormality but del17p13 and mutations of the TP53 gene are frequent. Mutations in the MAP2K1 gene have been documented in half of the cases. The course is chronic with median survivals of 7-9 years. Patients are refractory to purine analogues and the most effective therapy is the combination of 2-chlorodeoxyadenosine and Rituximab.

Wotherspoon A, Attygalle A, Mendes LS
Bone marrow and splenic histology in hairy cell leukaemia.
Best Pract Res Clin Haematol. 2015; 28(4):200-7 [PubMed] Related Publications
Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic diffuse red pulp small B-cell lymphoma and hairy cell leukaemia variant. This can be done by assessment of the spleen but as this is now rarely performed in this disorder distinction is almost always possible by a combination of morphological and immunophenotypic studies on bone marrow trephine biopsy, which can be supplemented by assessment of BRAF-V600E mutation assessment in borderline cases.

Karyampudi L, Lamichhane P, Krempski J, et al.
PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-κB.
Cancer Res. 2016; 76(2):239-50 [PubMed] Free Access to Full Article Related Publications
The PD-1:PD-L1 immune signaling axis mediates suppression of T-cell-dependent tumor immunity. PD-1 expression was recently found to be upregulated on tumor-infiltrating murine (CD11c(+)CD11b(+)CD8(-)CD209a(+)) and human (CD1c(+)CD19(-)) myeloid dendritic cells (TIDC), an innate immune cell type also implicated in immune escape. However, there is little knowledge concerning how PD-1 regulates innate immune cells. In this study, we examined the role of PD-1 in TIDCs derived from mice bearing ovarian tumors. Similar to lymphocytes, TIDC expression of PD-1 was associated with expression of the adapter protein SHP-2, which signals to NF-κB; however, in contrast to its role in lymphocytes, we found that expression of PD-1 in TIDC tonically paralyzed NF-κB activation. Further mechanistic investigations showed that PD-1 blocked NF-κB-dependent cytokine release in a SHP-2-dependent manner. Conversely, inhibition of NF-κB-mediated antigen presentation by PD-1 occurred independently of SHP-2. Collectively, our findings revealed that PD-1 acts in a distinct manner in innate immune cells compared with adaptive immune cells, prompting further investigations of the signaling pathways controlled by this central mediator of immune escape in cancer.

Pham LV, Lu G, Tamayo AT, et al.
Establishment and characterization of a novel MYC/BCL2 "double-hit" diffuse large B cell lymphoma cell line, RC.
J Hematol Oncol. 2015; 8:121 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoid malignancy worldwide. Approximately 5 % of cases of DLBCL are so-called double-hit lymphomas (DHL), defined by a chromosomal translocation or rearrangement involving MYC/8q24.2 in combination with another recurrent breakpoint, usually BCL2/18q21.3. Patients with MYC/BCL2 DHL are resistant to standard front-line therapy, and currently, there is no consensus for a therapeutic strategy to treat these patients. Lack of clinically relevant or validated human experimental DHL models of any type that would improve our understanding of the biologic basis of MYC/BCL2 DHL pathophysiology continues to hamper identification of valid therapeutic targets. We describe a unique MYC/BCL2 DHL cell line with morphologic features of DLBCL that we have established, designated as RC.
METHODS: We used tissue culture techniques to establish the RC cell line from primary DLBCL cells. We also utilized molecular and cellular biological techniques including flow cytometry, polymerase chain reaction (PCR), DNA fingerprinting, reverse-phase protein array, conventional cytogenetics, and fluorescence in situ hybridization (FISH) analysis to characterize the RC cell line. NSG-severe combined immunodeficiency (SCID) mice were utilized as a model for xeno-transplantation of RC cells.
RESULTS: RC cells had the following immunophenotype: positive for CD10, CD19, CD20, CD22, CD38, CD43, CD44, and CD79b and negative for CD3, CD4, CD5, CD8, CD11c, CD14, CD30, CD56, and CD200, which was identical to the primary tumor cells. Conventional cytogenetic analysis showed a t(2;8)(p12;q24.2) and t(14;18)(q32;q21.3), corresponding to MYC and BCL2 gene rearrangements, respectively. DNA fingerprinting authenticated the RC cell line to be of the same clone as the primary tumor cells. In addition, RC cells were established in SCID mice as an in vivo model for translational therapeutics studies. Proteomic analysis showed activation of the mTOR signaling pathway in RC cells that can be targeted with an mTOR inhibitor.
CONCLUSION: The data presented confirm the validity of the RC cell line as a representative model of MYC/BCL2 DHL that will be useful for both in vitro and in vivo studies of DHL pathogenesis and therapeutics.

Tähtinen S, Grönberg-Vähä-Koskela S, Lumen D, et al.
Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor.
Cancer Immunol Res. 2015; 3(8):915-25 [PubMed] Related Publications
Despite the rapid progress in the development of novel adoptive T-cell therapies, the clinical benefits in treatment of established tumors have remained modest. Several immune evasion mechanisms hinder T-cell entry into tumors and their activity within the tumor. Of note, oncolytic adenoviruses are intrinsically immunogenic due to inherent pathogen-associated molecular patterns. Here, we studied the capacity of adenovirus to overcome resistance of chicken ovalbumin-expressing B16.OVA murine melanoma tumors to adoptive ovalbumin-specific CD8(+) T-cell (OT-I) therapy. Following intraperitoneal transfer of polyclonally activated OT-I lymphocytes, control of tumor growth was superior in mice given intratumoral adenovirus compared with control mice, even in the absence of oncolytic virus replication. Preexisting antiviral immunity against serotype 5 did not hinder the therapeutic efficacy of the combination treatment. Intratumoral adenovirus injection was associated with an increase in proinflammatory cytokines, CD45(+) leukocytes, CD8(+) lymphocytes, and F4/80(+) macrophages, suggesting enhanced tumor immunogenicity. The proinflammatory effects of adenovirus on the tumor microenvironment led to expression of costimulatory signals on CD11c(+) antigen-presenting cells and subsequent activation of T cells, thus breaking the tumor-induced peripheral tolerance. An increased number of CD8(+) T cells specific for endogenous tumor antigens TRP-2 and gp100 was detected in combination-treated mice, indicating epitope spreading. Moreover, the majority of virus/T-cell-treated mice rejected the challenge of parental B16.F10 tumors, suggesting that systemic antitumor immunity was induced. In summary, we provide proof-of-mechanism data on combining adoptive T-cell therapy and adenovirotherapy for the treatment of cancer.

Jóźwik M, Okungbowa OE, Lipska A, et al.
Surface antigen expression on peripheral blood monocytes in women with gynecologic malignancies.
BMC Cancer. 2015; 15:129 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Of many specialized blood cells, monocytes are gaining increasing attention for their role in neoplastic disorders. The purpose of the present investigation was to determine the expression of selected peripheral blood monocyte surface antigens in cases of cervical, endometrial, and ovarian cancers. In addition, our aim was to validate the diagnostic value of two artificial coefficients recently proposed for the diagnosis of gynecologic malignancies: Neutrophil to Lymphocyte Ratio (NLR), and Multiplication of Neutrophil and Monocyte Counts (MNM).
METHODS: We studied 69 white Caucasian women with histopathologic confirmation of endometrial (N = 42), cervical (N = 13), and ovarian (N = 14) cancers. Reference Group I were women suspected of cancer but histologically nullified (N = 20), and Group II were healthy blood donors (N = 23). Expression of CD11a, CD11b, CD11c, CD16, CD54 (ICAM-1), CD62 L (L-selectin), CD64, and HLA-DR was measured with immunofluorescence in a flow cytometer.
RESULTS: CD54 expression increased by ≥35.6% (p < 0.001) whilst HLA-DR decreased by ≥10.8% (p < 0.001) in all cancer subgroups and Group I as compared to blood donors. A correlation (p < 0.05) between CD54 and CD62 L was stronger in all cancers studied than in healthy subjects. There was no difference in the NLR values between any of these subgroups. Moreover, we observed an increase in MNM parameter in cases of cervical and endometrial cancer and in the Reference Group I.
CONCLUSIONS: In the studied gynecologic malignancies, CD54 expression on peripheral blood monocytes is enhanced, indicating a higher transmigrational potential present in such patients, and HLA-DR expression diminished, indicating a decreased readiness of the immune system to recognize foreign antigens. The more pronounced correlation for the expression of CD54 and CD62 L in cancer suggests that monocytes uptake from the bloodstream and their local adhesion increase the pool of tumor-associated macrophages. This study challenged the suggested credibility and usefulness of the artificial parameters of MNM and NLR for the differential diagnosis of gynecologic malignancies.

Hashimoto H, Ueda R, Narumi K, et al.
Type I IFN gene delivery suppresses regulatory T cells within tumors.
Cancer Gene Ther. 2014; 21(12):532-41 [PubMed] Related Publications
Type I interferon (IFN) is a pleiotropic cytokine regulating the cancer cell death and immune response. IFN-α can, as we have also reported, effectively induce an antitumor immunity by the activation of tumor-specific T cells and maturation of dendritic cells in various animal models. Unknown, however, is how the type I IFN alters the immunotolerant microenvironment in the tumors. Here, we found that intratumoral IFN-α gene transfer significantly decreased the frequency of regulatory T cells (Tregs) per CD4(+) T cells in tumors. The concentration of a Treg-inhibitory cytokine, interleukin (IL)-6, was correlated with the IFN-α expression level in tumors, and intratumoral CD11c(+) cells produced IL-6 in response to IFN-α stimulation. To confirm the role of IL-6 in the suppression of Tregs in tumors, an anti-IL-6 receptor antibody was administered in IFN-α-treated mice. The antibody increased the frequency of Tregs in the tumors, and attenuated systemic tumor-specific immunity induced by IFN-α. Furthermore, the IFN-α-mediated IL-6 production increased the frequency of Th17 cells in the tumors, which may be one of the mechanisms for the reduction of Tregs. The study demonstrated that IFN-α gene delivery creates an environment strongly supporting the enhancement of antitumor immunity through the suppression of Tregs.

Williams KA, Lee M, Hu Y, et al.
A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.
PLoS Genet. 2014; 10(11):e1004809 [PubMed] Free Access to Full Article Related Publications
Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.

Horna P, Zhang L, Sotomayor EM, et al.
Diagnostic immunophenotype of acute promyelocytic leukemia before and early during therapy with all-trans retinoic acid.
Am J Clin Pathol. 2014; 142(4):546-52 [PubMed] Related Publications
OBJECTIVES: To study the immunophenotypic changes of acute promyelocytic leukemia (APL) in patients who recently received all-trans retinoic acid (ATRA) and to assess the diagnostic utility of flow cytometry in this setting.
METHODS: Flow cytometry was performed on 29 newly diagnosed APLs and 93 other acute myeloid leukemias, including 25 HLA-DR- or CD34- cases. Clinical notes from referring institutions were reviewed to assess for recent ATRA administration.
RESULTS: Recent ATRA therapy was documented in 17 (59%) of 29 patients with APL. The main features of untreated APL were preserved with ATRA therapy, including CD34- (83% vs 82%), HLA-DR- (83% vs 100%), and CD117+ (100% vs 77%). CD11b and CD11c were negative in all untreated APLs but positive in 76% and 88% of ATRA-treated APLs, respectively. Optimal diagnostic criteria for untreated APL (CD34- or HLA-DR- and CD11b- and CD11c-) showed 100% sensitivity and 98% specificity but were not useful after ATRA administration. The best interpretative approach to ATRA-treated APL (CD34- or HLA-DR-) showed 100% sensitivity but limited specificity (73%).
CONCLUSIONS: Information about recent ATRA administration is critical for adequate interpretation of the flow cytometric findings in patients with suspected APL.

Berbegall AP, Villamón E, Tadeo I, et al.
Neuroblastoma after childhood: prognostic relevance of segmental chromosome aberrations, ATRX protein status, and immune cell infiltration.
Neoplasia. 2014; 16(6):471-80 [PubMed] Free Access to Full Article Related Publications
Neuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations, α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years) formed part of the cohort. We performed single nucleotide polymorphism arrays, immunohistochemistry for immune markers (CD4, CD8, CD20, CD11b, CD11c, and CD68), and ATRX protein expression. Assorted genetic profiles were found with a predominant presence of a segmental chromosome aberration (SCA) profile. Preadolescent and adolescent NB tumors showed a higher number of SCA, including 17q gain and 11q deletion. There was also a marked infiltration of immune cells, mainly high and heterogeneous, in young and middle-aged adult tumors. ATRX negative expression was present in the tumors. The characteristics of preadolescent, adolescent, young adult, and middle-aged adult NB tumors are different, not only from childhood NB tumors but also from each other. Similar examinations of a larger number of such tumor tissues from cooperative groups should lead to a better older age-dependent tumor pattern and to innovative, individual risk-adapted therapeutic approaches for these patients.

Hirako N, Nakano H, Takahashi S
A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.
PLoS One. 2014; 9(7):e103282 [PubMed] Free Access to Full Article Related Publications
We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT) 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE) cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT) reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M) induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

Zhao W, Zou K, Farasyn T, et al.
Generation and characterization of a JAK2V617F-containing erythroleukemia cell line.
PLoS One. 2014; 9(7):e99017 [PubMed] Free Access to Full Article Related Publications
The JAK2V617F mutation is found in the majority of patients with myeloproliferative neoplasms (MPNs). Transgenic expression of the mutant gene causes MPN-like phenotypes in mice. We have produced JAK2V617F mice with p53 null background. Some of these mice developed acute erythroleukemia. From one of these mice, we derived a cell line designated J53Z1. J53Z1 cells were stained positive for surface markers CD71 and CD117 but negative for Sca-1, TER-119, CD11b, Gr-1, F4/80, CD11c, CD317, CD4, CD8a, CD3e, B220, CD19, CD41, CD42d, NK-1.1, and FceR1. Real time PCR analyses demonstrated expressions of erythropoietin receptor EpoR, GATA1, and GATA2 in these cells. J53Z1 cells grew rapidly in suspension culture containing fetal bovine serum with a doubling time of ∼18 hours. When transplanted into C57Bl/6 mice, J53Z1 cells induced acute erythroleukemia with massive infiltration of tumor cells in the spleen and liver. J53Z1 cells were responsive to stimulation with erythropoietin and stem cell factor and were selectively inhibited by JAK2 inhibitors which induced apoptosis of the cells. Together, J53Z1 cells belong to the erythroid lineage, and they may be useful for studying the role of JAK2V617F in proliferation and differentiation of erythroid cells and for identifying potential therapeutic drugs targeting JAK2.

Cornet E, Delmer A, Feugier P, et al.
Recommendations of the SFH (French Society of Haematology) for the diagnosis, treatment and follow-up of hairy cell leukaemia.
Ann Hematol. 2014; 93(12):1977-83 [PubMed] Free Access to Full Article Related Publications
Hairy cell leukaemia (HCL) is a rare haematological malignancy, with approximately 175 new incident cases in France. Diagnosis is based on a careful examination of the blood smear and immunophenotyping of the tumour cells, with a panel of four markers being used specifically to screen for hairy cells (CD11c, CD25, CD103 and CD123). In 2011, the V600E mutation of the BRAF gene in exon 15 was identified in HCL; being present in HCL, it is absent in the variant form of HCL (HCL-v) and in splenic red pulp lymphoma (SRPL), two entities related to HCL. The management of patients with HCL has changed in recent years. A poorer response to purine nucleoside analogues (PNAs) is observed in patients with more marked leukocytosis, bulky splenomegaly, an unmutated immunoglobulin variable heavy chain (IgVH) gene profile, use of VH4-34 or with TP53 mutations. We present the recommendations of a group of 11 experts belonging to a number of French hospitals. This group met in November 2013 to examine the criteria for managing patients with HCL. The ideas and proposals of the group are based on a critical analysis of the recommendations already published in the literature and on an analysis of the practices of clinical haematology departments with experience in managing these patients. The first-line treatment uses purine analogues: cladribine or pentostatin. The role of BRAF inhibitors, whether or not combined with MEK inhibitors, is discussed. The panel of French experts proposed recommendations to manage patients with HCL, which can be used in a daily practice.

Zhang X, Weissman SM, Newburger PE
Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells.
RNA Biol. 2014; 11(6):777-87 [PubMed] Free Access to Full Article Related Publications
HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.

Wu XM, Liu X, Jiao QF, et al.
Cytotoxic T lymphocytes elicited by dendritic cell-targeted delivery of human papillomavirus type-16 E6/E7 fusion gene exert lethal effects on CaSki cells.
Asian Pac J Cancer Prev. 2014; 15(6):2447-51 [PubMed] Related Publications
Human papillomavirus (HPV) is the primary etiologic agent of cervical cancer. Consideration of safety and non human leukocyte antigen restriction, protein vaccine has become the most likely form of HPV therapeutic vaccine, although none have so far been reported as effective. Since tumor cells consistently express the two proteins E6 and E7, most therapeutic vaccines target one or both of them. In this study, we fabricated DC vaccines by transducing replication-defective recombinant adenoviruses expressing E6/E7 fusion gene of HPV-16, to investigate the lethal effects of specific cytotoxic T lymphocytes (CTL) against CaSki cells in vitro. Mouse immature dendritic cells (DC) were generated from bone marrow, and transfected with pAd-E6/E7 to prepare a DC vaccine and to induce specific CTL. The surface expression of CD40, CD68, MHC II and CD11c was assessed by flow cytometry (FCM), and the lethal effects of CTL against CaSki cells were determined by DAPI, FCM and CCK-8 methods. Immature mouse DC was successfully transfected by pAd-E6/E7 in vitro, and the transfecting efficiency was 40%-50%. A DC vaccine was successfully prepared and was used to induce specific CTL. Experimental results showed that the percentage of apoptosis and killing rate of CaSki cells were significantly increased by coculturing with the specific CTL (p <0.05). These results illustrated that a DC vaccine modified by HPV-16 E6/E7 gene can induce apoptosis of CaSki cells by inducing CTL, which may be used as a new strategy for biological treatment of cervical cancer.

Di Carlo E, Sorrentino C, Zorzoli A, et al.
The antitumor potential of Interleukin-27 in prostate cancer.
Oncotarget. 2014; 5(21):10332-41 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) is of increasing significance worldwide as a consequence of the population ageing. Fragile elderly patients may particularly benefit from noninvasive and well tolerable immunotherapeutic approaches. Preclinical studies have revealed that the immune-regulatory cytokine IL-27 may exert anti-tumor activities in a variety of tumor types without discernable toxicity. We, thus, investigated whether IL-27 may function as anti-tumor agent in human (h) PCa and analyzed the rationale for its clinical application. In vitro, IL-27 treatment significantly inhibited proliferation and reduced the angiogenic potential of hPCa cells by down-regulating the pro-angiogenesis-related genes fms-related tyrosine kinase (FLT)1, prostaglandin G/H synthase 1/cyclooxygenase-1 (PTGS1/COX-1) and fibroblast growth factor receptor (FGFR)3. In addition, IL-27 up-regulated the anti-angiogenesis-related genes such as CXCL10 and TIMP metallopeptidase inhibitor 3 (TIMP3). In vivo, IL-27 reduced proliferation and vascularization in association with ischemic necrosis of tumors developed after PC3 or DU145 cell injection in athymic nude mice. In patients' prostate tissues, IL-27R was expressed by normal epithelia and low grade PCa and lost by high tumor grade and stages. Nevertheless, IL-27R was expressed by CD11c(+), CD4(+) and CD8(+) leukocytes infiltrating the tumor and draining lymph nodes. These data lead to the conclusion that i) IL-27's anti-PCa potential may be fully exploited in patients with well-differentiated, localized IL-27R positive PCa, since in this case it may act on both cancerous epithelia and the tumor microenvironment; ii) PCa patients bearing high grade and stage tumor that lack IL-27R may benefit, however, from IL-27's immune-stimulatory properties.

Maliniemi P, Hahtola S, Ovaska K, et al.
Molecular characterization of subcutaneous panniculitis-like T-cell lymphoma reveals upregulation of immunosuppression- and autoimmunity-associated genes.
Orphanet J Rare Dis. 2014; 9:160 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Subcutaneous panniculitis-like T cell lymphomas represent a rare and difficult to diagnose entity of cutaneous T cell lymphomas. SPTL affects predominantly young adults and presents with multifocal subcutaneous nodules and frequently associated autoimmune features. The pathogenesis of SPTL is not completely understood.
METHODS: The aim of this study was to unravel molecular pathways critical to the SPTL pathogenesis. Therefore, we analyzed 23 skin samples from 20 newly diagnosed SPTL patients and relevant control samples of adipose and non-malignant panniculitis tissue by using gene expression microarray, quantitative PCR, and two-colour immunohistochemistry.
RESULTS: Interestingly, indoleamine 2,3-dioxygenase (IDO-1), an immunotolerance-inducing enzyme, was among the most highly overexpressed genes in all comparisons. The expression of Th1-specific cytokines, known to be associated with autoimmune inflammation (i.e. IFNG, CXCR3, CXCL9, CXCL10, CXCL11, and CCL5), were also significantly increased. Confirmed using immunohistochemistry, the morphologically malignant lymphocytes expressed CXCR3 and CXCL9. IDO-1 expression was found both in some morphologically malignant lymphocytes rimming the adipocytes and in surrounding CD11c(-) CD68(-) cells but not in CD11c(+) dendritic cells in the microenvironment. The proportion of FoxP3+ cells in SPTL exceeded that in the benign panniculitis samples.
CONCLUSIONS: Our results indicate that the up regulation of the tolerogenic IDO-1 together with the up regulation of IFNG, CXCR3 ligands, and CCL5 are features of SPTL lesions. We anticipate that the IFNG-inducible IDO-1 expression contributes to the formation of an immunosuppressive microenvironment, favorable for the malignant T cells. This study provides a relevant molecular basis for further studies exploring novel therapeutic means for subcutaneous T cell lymphoma.

Osaki Y, Yokohama A, Saito A, et al.
Characterization of CD56+ dendritic-like cells: a normal counterpart of blastic plasmacytoid dendritic cell neoplasm?
PLoS One. 2013; 8(11):e81722 [PubMed] Free Access to Full Article Related Publications
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy. Plasmacytoid DCs (pDCs), which are defined as lineage marker (Lin)(-)HLA-DR(+)CD56(-)CD123(+)CD11c(-) cells, are considered to be the normal counterpart of BPDCNs. However, BPDCN can be distinguished from pDCs by uniform expression of CD56. In this study, to identify a normal counterpart of BPDCN, we searched for a Lin(-)HLA-DR(+)CD56(+) population and focused on a minor subpopulation of Lin(-)DR(+)CD56(+)CD123(+)CD11c(-) cells that we designated as pDC-like cells (pDLCs). pDLC constituted 0.03% of peripheral blood mononuclear cells (PBMCs), and the pDLC/pDC ratio was higher in bone marrow cells than in PBMCs. pDLC clearly expressed BDCA2, BDCA4, and myeloid antigens, which are frequently expressed by BPDCN. pDLCs exhibited modest expression of Toll-like receptors and produced less interferon-α after CpG stimulation, but presented very low endocytic ability unlike mDCs. These functional differences were attributed to the expression profile of transcriptional factors. After in vitro culture with Flt3-ligand and GM-CSF, pDLCs expressed CD11c and BDCA1. These data suggested that pDLCs are a distinct subpopulation, with an immunophenotype similar to BPDCNs. Moreover, our results indicate that pDLCs might be immature DCs and might contribute to the immunophenotypical diversity of BPDCNs.

Huang PY, Best OG, Almazi JG, et al.
Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia.
Leuk Lymphoma. 2014; 55(9):2085-92 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) is clinically heterogeneous. While some patients have indolent disease for many years, 20-30% will progress and ultimately die of their disease. CLL may be classified by the Rai or Binet staging system, mutational status of the immunoglobulin variable heavy-chain gene (IGVH), ZAP-70 overexpression, cytogenetic abnormalities (13q-, + 12, 11q-, 17p-) and expression of several cell surface antigens (CD38, CD49d) that correlate with risk of disease progression. However, none of these markers identify all cases of CLL at risk. In a recent review, we summarized those CD antigens known to correlate with the prognosis of CLL. The present study has identified surface profiles of CD antigens that distinguish clinically progressive CLL from slow-progressive and stable CLL. Using an extended DotScan(™) CLL antibody microarray (Version 3; 182 CD antibodies), and with refined analysis of purified CD19 + B-cells, the following 27 CD antigens were differentially abundant for progressive CLL: CD11a, CD11b, CD11c, CD18, CD19, CD20 (two epitopes), CD21, CD22, CD23, CD24, CD25, CD38, CD40, CD43, CD45, CD45RA, CD52, CD69, CD81, CD84, CD98, CD102, CD148, CD180, CD196 and CD270. The extensive surface profiles obtained provide disease signatures with an accuracy of 79.2%, a sensitivity of 83.9% and a specificity of 72.5% that could provide the basis for a rapid test to triage patients with CLL according to probability of clinical progression and potential earlier requirement for treatment.

Pandya J, Ortiz L, Ling C, et al.
Rationally designed capsid and transgene cassette of AAV6 vectors for dendritic cell-based cancer immunotherapy.
Immunol Cell Biol. 2014; 92(2):116-23 [PubMed] Related Publications
Dendritic cell (DC)-based immunotherapy has recently demonstrated a great potential for clinical applications; however, additional progress in the methods of tumor-specific antigen delivery to DCs is necessary for the further development of anti-tumor vaccines. To this end, a capsid-optimized adeno-associated virus serotype 6 (AAV6-T492V+S663V) vector was developed by site-directed mutagenesis of surface-exposed serine (S) and threonine (T) residues, which have a critical role in intracellular trafficking of AAV vectors. This double-mutant AAV6 vector had ∼ 5-fold greater transduction efficiency in monocyte-derived DCs (moDCs) compared with wild-type (WT)-AAV6 vectors. The increase in the transduction efficiency correlated with the improved nuclear translocation of AAV6-T492V+S663V over that of the WT-AAV6 vector. Additional studies of the CD11c promoter identified critical regulatory elements that fit into the AAV expression cassette and drive EGFP expression in moDCs. Development of a chimeric promoter (chmCD11c) that contains functional modules of CD11c and a Simian virus (SV40) enhancer element dramatically increased the EGFP expression in moDCs. MoDCs transduced by the capsid-optimized AAV6 vector carrying human prostate-specific antigen (hPSA) driven by CBA (AAV6-T492V+S663V-CBA-hPSA) or chmCd11c (AAV6-T492V+S663V-chmCD11c-hPSA) generated specific T-cell clone proliferation and superior cytotoxic T lymphocytes (CTLs) with higher killing capability against human prostate adenocarcinoma cells, LNCaP, compared with WT-AAV6 induced CTLs. Taken together, these studies suggest that optimization of capsid and promoter components of AAV vectors can be a useful approach for efficient targeting of moDCs and may prove to be a promising tool for cancer immunotherapy.

Randen U, Trøen G, Tierens A, et al.
Primary cold agglutinin-associated lymphoproliferative disease: a B-cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma.
Haematologica. 2014; 99(3):497-504 [PubMed] Free Access to Full Article Related Publications
Primary chronic cold agglutinin disease is a rare hemolytic disease mediated by monoclonal IGHV4-34-encoded cold agglutinins with a predominant specificity for the blood group antigen I. Bone marrow from 54 patients was studied to type the underlying lymphoproliferative disorder better. Bone marrow biopsies showed circumscribed intra-parenchymatous nodules with small monotonous monoclonal B cells in 40/54 patients (median infiltration: 10% of marrow cells) with a CD20(+), IgMs(+), IgDs(+), CD27(+), CD5(-/+), CD11c(-), CD23(-), CD38(-) immunophenotype. Neither plasmacytoid cytological features nor expression of plasma cell differentiation-associated transcription factors MUM1, XBP1 and BLIMP1 were noted in these B cells. However, a limited number of mature monoclonal IgM(+), IgD(-) plasma cells were present outside the lymphoid nodules and were diffusely scattered throughout the marrow. Of interest, the MYD88 L265P mutation, typical of lymphoplasmacytic lymphoma, was not detected (17/17 cases). Somatically mutated monoclonal IGHV4-34 gene rearrangement was demonstrated in eight patients with frozen samples (mean sequence homology 95.4%). However, mutations of BCL6 intron 1 were not demonstrated, except in one patient, suggesting that the lymphoma cells had not matured in the germinal center. In conclusion, cold agglutinin-associated lymphoproliferative disease displays homogeneous histological and immunophenotypic features. The absence of plasmacytoid cells, the presence of plasma cells predominantly outside the nodular lymphoid infiltrates, IGHV4-34 restriction and absence of MYD88 L265P mutation strongly suggest that cold agglutinin-associated lymphoproliferative disease is a distinct entity that is different from lymphoplasmacytic lymphoma.

Riediger C, Wingender G, Knolle P, et al.
Fms-like tyrosine kinase 3 receptor ligand (Flt3L)-based vaccination administered with an adenoviral vector prevents tumor growth of colorectal cancer in a BALB/c mouse model.
J Cancer Res Clin Oncol. 2013; 139(12):2097-110 [PubMed] Related Publications
PURPOSE: Colorectal cancer is the third most frequent cancer in industrial nations. Therapeutic strategies to treat metastatic disease and prevent recurrence are needed. Anti-tumor immunity can be induced by dendritic cells. Dendritic cells can be expanded by the fms-like tyrosine kinase 3 ligand (Flt3L) in vivo. The aim of this study was to develop an adenoviral-based immune-gene therapy of colorectal cancer with Flt3L in a BALB/c mouse model.
METHODS: A new Flt3L-encoding adenoviral vector (pAdFlt3L) was administered in two approaches in a CT26 colon cancer model in female BALB/c mice. In the therapeutic approach, pAdFlt3L was injected into the tail vein or directly into subcutaneous CT26 colon carcinoma tumors in BALB/c mice. In the vaccination protocol, mice were vaccinated with CT26 cell lysate and pAdFlt3L subcutaneous prior to subcutaneous application of vital CT26 cells.
RESULTS: Application of pAdFlt3L led to high levels of Flt3L in vitro and in vivo. Significant expansion of dendritic cells after application of pAdFlt3L in vivo was confirmed by the use of CD11c and CD11b surface markers in immunohistochemistry and flow cytometry (p = 0.019). In the therapeutic approach, neither intravenous nor intratumoral treatments with pAdFlt3L lead to regression of CT26 tumors. In the vaccination protocol, vaccination completely prevented tumor growth and resulted in superior survival compared to control mice (p < 0.001).
CONCLUSIONS: Our results demonstrate that immunostimulatory therapy with pAdFlt3L is effective to prevent tumor development through vaccination and may represent a therapeutic tool to prevent metastatic disease.

Zhou S, Chen L, Qin J, et al.
Depletion of CD4+ CD25+ regulatory T cells promotes CCL21-mediated antitumor immunity.
PLoS One. 2013; 8(9):e73952 [PubMed] Free Access to Full Article Related Publications
CCL21 is known to attract dendritic cells (DCs) and T cells that may reverse tumor-mediated immune suppression. The massive infiltration of tumors by regulatory T cells (Tregs) prevents the development of a successful helper immune response. In this study, we investigated whether elimination of CD4(+) CD25(+) Tregs in the tumor microenvironment using anti-CD25 monoclonal antibodies (mAbs) was capable of enhancing CCL21-mediated antitumor immunity in a mouse hepatocellular carcinoma (HCC) model. We found that CCL21 in combination with anti-CD25 mAbs (PC61) resulted in improved antitumor efficacy and prolonged survival, not only inhibited tumor angiogenesis and cell proliferation, but also led to significant increases in the frequency of CD4(+), CD8(+) T cells and CD11c(+) DCs within the tumor, coincident with marked induction of tumor-specific CD8(+) cytotoxic T lymphocytes (CTLs) at the local tumor site. The intratumoral immune responses were accompanied by the enhanced elaboration of IL-12 and IFN-γ, but reduced release of the immunosuppressive mediators IL-10 and TGF-β1. The results indicated that depletion of Tregs in the tumor microenvironment could enhance CCL21-mediated antitumor immunity, and CCL21 combined with anti-CD25 mAbs may be a more effective immunotherapy to promote tumor rejection.

Yurtsever A, Haydaroglu A, Biray Avci C, et al.
Assessment of genetic markers and glioblastoma stem-like cells in activation of dendritic cells.
Hum Cell. 2013; 26(3):105-13 [PubMed] Related Publications
Glioblastoma (GBM) is the most common and aggressive intraparenchymal primary brain tumor in adults. The principal reasons for the poor outcomes of GBM are the high rates of recurrence and resistance to chemotherapy. The aim of this study was to determine the role of tailored cellular therapy for GBM with a poor prognosis and compare the activity of dendritic cells (DCs) that have encountered GBM cells. Detecting the correlations between methylation and expression of MGMT and PTEN genes and GBM cancer stem cells (CSCs) markers after co-cultures with a mononuclear cell cocktail are also aims for this study. Allogenic umbilical cord blood (UCB)-derived DCs were labeled with the CD11a and CD123 for immature DCs, and CD80 and CD11c for mature DCs. CD34, CD45, and CD56 cells were isolated from allogenic UCB for using in DCs maturation. GBM CSCs were detected with CD133/1 and CD111 antibodies after co-culture studies. DC activation was carried out via GBM cells including CD133 and CD111 cells and a mononuclear cells cocktail including CD34, CD45, and CD56 natural killer cells. Real-time PCR was performed to detect the expression and promoter methylation status of PTEN and MGMT genes. The expression of CSCs markers was found in all GBM cases, and a statistically significant correlation was found among them after co-culture studies. The most pronounced affinity of DCs to GBM cells was observed at dilutions between 1/4 and 1/256 in co-cultures. There was a statistically significant correlation between cellularity and granularity ratios for CD123 and CD11c. PTEN and MGMT gene expression and methylation values were evaluated with respect to CSCs expression and no statistical significance was found. Activation of DCs might associate with CSCs and the mononuclear cells cocktail including CD34, CD45, and CD56 cells which were obtained from allogenic UCB.

Mittal D, Kassianos AJ, Tran LS, et al.
Indoleamine 2,3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7.
J Invest Dermatol. 2013; 133(12):2686-94 [PubMed] Free Access to Full Article Related Publications
Chronic infection of anogenital epithelium with human papillomavirus (HPV) promotes development of cancer. Many pathogens evoke immunosuppressive mechanisms to enable persistent infection. We have previously shown that grafted skin expressing HPV16 E7 oncoprotein from a keratin-14 promoter (K14E7) is not rejected by a syngeneic, immunocompetent host. In this study we show that indoleamine 2,3-dioxygenase (IDO) 1, an IFN-γ-inducible immunoregulatory molecule, is more highly expressed by langerin(-ve) dermal dendritic cells (DCs) from K14E7 skin than nontransgenic control skin. Furthermore, inhibiting IDO activity using 1-methyl-dl-tryptophan (1-D/L-MT) promotes K14E7 skin graft rejection. Increased IDO1 expression and activity in K14E7 skin requires IFN-γ and invariant natural killer T (iNKT) cells, both of which have been shown to negatively regulate T-cell effector function and suppress K14E7 graft rejection. Furthermore, DCs from K14E7 skin express higher levels of IFN-γ receptor (IFN-γR) than DCs from control skin. K14E7 transgenic skin recruits significantly higher numbers of DCs, independent of IFN-γ and IFN-γR expression. Consistent with these observations in a murine model, we found higher expression of IDO1 and IFN-γ but not IDO2 in the cervical epithelium of patients with HPV-associated cervical intraepithelial neoplasia (CIN) 2/3. Our data support a hypothesis that induction of IDO1 in HPV-infected skin contributes to evasion of host immunity.

Ibberson M, Bron S, Guex N, et al.
TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.
Clin Cancer Res. 2013; 19(13):3439-49 [PubMed] Related Publications
PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs.
EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas.
RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells.
CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response.

Rickmann M, Macke L, Sundarasetty BS, et al.
Monitoring dendritic cell and cytokine biomarkers during remission prior to relapse in patients with FLT3-ITD acute myeloid leukemia.
Ann Hematol. 2013; 92(8):1079-90 [PubMed] Free Access to Full Article Related Publications
Relapse occurs frequently after treatment of acute myeloid leukemia (AML) patients with the FMS-like tyrosine kinase 3-internal tandem duplication (ITD) mutation. The availability of immunologic biomarkers to predict patients at high risk could allow clinicians to accelerate alternative treatments such as stem cell transplantation, immunotherapy, or novel drugs. We have previously reported that first diagnostic (FD) ITD(+) AML showed immunophenotypic and functional characteristics of arrested dendritic cell (DC) precursors. In this study, we show that the high frequency of precursor DCs in 16 FD ITD(+) AML samples (Lin(-)/HLA-DR(+)/CD11c(+)/CD123(+)) was associated with a lack of terminal DCs (myeloid DCs: BDCA-1(+) or BDCA-3(+); plasmacytoid DC: BDCA-2(+)). We further evaluated prospectively the peripheral blood complete remission (CR) samples obtained from 11 ITD(+) AML patients after chemotherapy regarding the frequency of DCs and their pattern of cytokine production. Whereas the aberrant frequencies of precursor and terminal plasmacytoid DCs resolved during remission, the myeloid DC compartment did not fully recover. For an available cohort of patients (n = 4) who could be monitored over a period of >15 months after FD, we identified IL-10, TNF-α, IL-6, and IL-1β as cytokines produced by the CR samples at high levels a few months prior to relapse. Cell-free supernatant of an FD ITD(+) AML sample stimulated monocytes obtained from two healthy donors to secrete IL-10, TNF-α, IL-6, and IL-1β. Thus, we hypothesize that ITD(+) AML minimal residual disease can act directly as dysfunctional antigen-presenting cells or indirectly by production of factors that convert monocytes into myeloid-derived suppressor cells secreting cytokines that promote immune evasion. Monitoring these immunologic biomarkers could improve prediction of relapse.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ITGAX, Cancer Genetics Web: http://www.cancer-genetics.org/ITGAX.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999