CEACAM6

Gene Summary

Gene:CEACAM6; carcinoembryonic antigen related cell adhesion molecule 6
Aliases: NCA, CEAL, CD66c
Location:19q13.2
Summary:This gene encodes a protein that belongs to the carcinoembryonic antigen (CEA) family whose members are glycosyl phosphatidyl inositol (GPI) anchored cell surface glycoproteins. Members of this family play a role in cell adhesion and are widely used as tumor markers in serum immunoassay determinations of carcinoma. This gene affects the sensitivity of tumor cells to adenovirus infection. The protein encoded by this gene acts as a receptor for adherent-invasive E. coli adhesion to the surface of ileal epithelial cells in patients with Crohn's disease. This gene is clustered with genes and pseudogenes of the cell adhesion molecules subgroup of the CEA family on chromosome 19. [provided by RefSeq, Apr 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:carcinoembryonic antigen-related cell adhesion molecule 6
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CEACAM6 (cancer-related)

Sieber KB, Gajer P, Dunning Hotopp JC
Modeling the integration of bacterial rRNA fragments into the human cancer genome.
BMC Bioinformatics. 2016; 17:134 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown.
RESULTS: Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures.
CONCLUSIONS: The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

Jayavelu ND, Bar N
Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
BMC Genomics. 2015; 16:1077 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that regulate genes at the post-transcriptional level in spatiotemporal manner. Several miRNAs are identified as prognostic and diagnostic markers in many human cancers. Estimation of the temporal activities of the miRNAs is an important step in the way to understand the complex interactions of these important regulatory elements with transcription factors (TFs) and target genes (TGs). However, current research on miRNA activities excludes network dynamics from the studies, disregarding the important element of time in the regulatory network analysis.
RESULTS: In the current study, we combined experimentally verified miRNA-TG interactions with breast cancer microarray TG expression data to identify key miRNAs and compute their temporal activity using network component analysis (NCA). The computed activities showed that miRNAs were regulated in a time dependent manner. Our results allowed constructing a synergistic network of miRNAs using the computed miRNA activities and their shared regulation of TGs. We further extended this network by incorporating miRNA-TG, miRNA-TF, TF-miRNA and TF-TG regulations in the context of breast cancer. Our integrated network identified several miRNAs known to be involved in breast cancer regulation and revealed several novel miRNAs. Our further analysis detected substantial involvement of the miRNAs miR-324, miR-93, miR-615 and miR-1 in breast cancer, which was not known previously. Next, combining our integrated networks with functional annotation of differentially expressed genes resulted in new sub-networks. These sub-networks allowed us to identify the key miRNAs and their interactions with TFs and TGs of several biological processes involved in breast cancer. The identified markers are validated for their potential as prognostic markers for breast cancer through survival analysis.
CONCLUSIONS: Our dynamical analysis of the miRNA interactions greatly helps to discover new network based markers, and is highly applicable (but not limited) to cancer research.

Yan L, Wang Y, Wang ZZ, et al.
Cell motility and spreading promoted by CEACAM6 through cyclin D1/CDK4 in human pancreatic carcinoma.
Oncol Rep. 2016; 35(1):418-26 [PubMed] Related Publications
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) belongs to the human carcino-embryonic antigen (CEA) family. Numerous lines of studies have indicated that altered expression of CEACAM6 may have a role in carcinogenesis and development. However, few studies have defined functional roles and mechanisms of action. In the present study, the relationship between clinical and pathological parameters was also analyzed. The relative CEACAM6 protein expression of pancreatic carcinoma was significantly higher than that in non-cancerous tissue. Different clinical stages and lymph node metastasis between groups were significantly different (P<0.05). We used siRNA and forced-expression in multiple cell lines to define the role of CEACAM6 in the regulation of proliferation of pancreatic carcinoma in vitro and in vivo. Knockdown of endogenous CEACAM6 decreased proliferation of BxPC-3 and SW1990 cells. These changes significantly reduced cyclin D1 and CDK4 protein levels. Conversely, overexpression of CEACAM6 in MIA PaCa-2 cells stimulated proliferation and increased cyclin D1 and CDK4 protein levels. Our results confirm that CEACAM6 promoted cell proliferation, and these changes were mediated by cyclin D1/CDK4. These observations contribute to our understanding of the important roles of CEACAM6 in pancreatic carcinoma development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of pancreatic carcinoma.

Kim J, Kim S, Ko S, et al.
Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples.
Genes Chromosomes Cancer. 2015; 54(11):681-91 [PubMed] Related Publications
Relatively few recurrent gene fusion events have been associated with breast cancer to date. In an effort to uncover novel fusion transcripts, we performed whole-transcriptome sequencing of 120 fresh-frozen primary breast cancer samples and five adjacent normal breast tissues using the Illumina HiSeq2000 platform. Three different fusion-detecting tools (deFuse, Chimerascan, and TopHatFusion) were used, and the results were compared. These tools detected 3,831, 6,630 and 516 fusion transcripts (FTs) overall. We primarily focused on the results obtained using the deFuse software. More FTs were identified from HER2 subtype breast cancer samples than from the luminal or triple-negative subtypes (P < 0.05). Seventy fusion candidates were selected for validation, and 32 (45.7%) were confirmed by RT-PCR and Sanger sequencing. Of the validated fusions, six were recurrent (found in 2 or more samples), three were in-frame (PRDX1-AKR1A1, TACSTD2-OMA1, and C2CD2-TFF1) and three were off-frame (CEACAM7-CEACAM6, CYP4X1-CYP4Z2P, and EEF1DP3-FRY). Notably, the novel read-through fusion, EEF1DP3-FRY, was identified and validated in 6.7% (8/120) of the breast cancer samples. This off-frame fusion results in early truncation of the FRY gene, which plays a key role in the structural integrity during mitosis. Three previously reported fusions, PPP1R1B-STARD3, MFGE8-HAPL, and ETV6-NTRK3, were detected in 8.3, 3.3, and 0.8% of the 120 samples, respectively, by both deFuse and Chimerascan. The recently reported MAGI3-AKT3 fusion was not detected in our analysis. Although future work will be needed to examine the biological significance of our new findings, we identified a number of novel fusions and confirmed some previously reported fusions.

Cai X, Luo J, Yang X, et al.
In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion.
Oncotarget. 2015; 6(26):22905-17 [PubMed] Free Access to Full Article Related Publications
We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity.

Zhang F, Zhang X, Meng J, et al.
ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer.
Oncotarget. 2015; 6(18):16239-52 [PubMed] Free Access to Full Article Related Publications
The proteins of the Inhibitor of Growth (ING) candidate tumor suppressor family are involved in multiple cellular functions such as cell cycle regulation, apoptosis, and chromatin remodeling. ING5 is the new member of the family whose actual role in tumor suppression is not known. Here we show that ING5 overexpression in lung cancer A549 cells inhibited cell proliferation and invasiveness, while ING5 knockdown in lung cancer H1299 cells promoted cell aggressiveness. ING5 overexpression also abrogated tumor growth and invasive abilities of lung cancer cells in mouse xenograft models. Further study showed that ING5 overexpression inhibited EMT indicated by increase of E-cadherin and decrease of N-cadherin, Snail and slug at mRNA and protein levels, which was accompanied with morphological changes. cDNA microarray and subsequent qRT-PCR validation revealed that ING5 significantly downregulated expression of EMT (epithelial to mesenchymal transition)-inducing genes including CEACAM6, BMP2 and CDH11. Clinical study by tissue microarray showed that nuclear ING5 negatively correlated with clinical stages and lymph node metastasis of lung cancer. Furthermore, high level of nuclear ING5 was associated with a better prognosis. Taken together, these findings uncover an important role for ING5 as a potent tumor suppressor in lung cancer growth and metastasis.

Jin C, Liu Y, Zhu J, et al.
Recombinant Salmonella-based CEACAM6 and 4-1BBL vaccine enhances T-cell immunity and inhibits the development of colorectal cancer in rats: In vivo effects of vaccine containing 4-1BBL and CEACAM6.
Oncol Rep. 2015; 33(6):2837-44 [PubMed] Related Publications
The present study aimed to determine the effect of recombinant Salmonella (SL3261)-based CEACAM6 and 4-1BB ligand (4-1BBL) vaccine on the development of colorectal cancer in rats and the potential immune mechanisms involved. Attenuated Salmonella typhimurium (vaccine strain)‑carrying plasmids pIRES-CEACAM6, pIRES‑4‑1BBL and pIRES-CEACAM6-4-1BBL were constructed. The rats were administered subcutaneous injections of 1,2-dimethyl-hydrazine (DMH) once a week for 18 weeks. Eight weeks after the first injection, the rats were divided into the pIRES/SL3261, pIRES-4-1BBL/SL3261, pIRES-CEACAM6/SL3261 and pIRES-CEACAM6-4-1BBL/SL3261 groups, and fed with corresponding vaccine strains. The rats were then sacrificed, the number of colon tumors were recorded, and the Dukes' stage were evaluated. CD3, CD4, CD8, CD56, FOXP3 and CEACAM6 expression in tumor tissues was determined by immunohistochemical staining. Compared with the expression levels in the pIRES/SL3261 group, similar levels of CD3+, CD8+ and CD56+ expression were identified for the pIRES-CEACAM6/SL3261 group of rats. Additionally, a comparable number of tumors was detected in the pIRES-4-1BBL/SL3261 and pIRES-CEACAM6/SL3261 groups. By contrast, a significantly fewer number of tumors, albeit with a higher density of CD3+CD8+, CD56+ and a lower density of Foxp3+ tumor-infiltrating lymphocyte (TIL) cells was detected in the pIRES-CEACAM6-4-1BBL/SL3261 group of rats. The results indicated that vaccination with recombinant attenuated Salmonella harboring the CEACAM6 and 4-1BBL gene efficiently increased the number of CD3+CD8+ TIL and NK cells, decreased the number of FOXP3 cells and inhibited the development of DMH-induced colorectal cancer in rats.

Gebauer F, Wicklein D, Horst J, et al.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer.
PLoS One. 2014; 9(11):e113023 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 in pancreatic adenocarcinoma (PDAC).
EXPERIMENTAL DESIGN: CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC) and by enzyme linked immunosorbent assays.
RESULTS: Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC) and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS). The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group.
CONCLUSION: The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.

Deng X, Liu P, Zhao Y, Wang Q
Expression profiling of CEACAM6 associated with the tumorigenesis and progression in gastric adenocarcinoma.
Genet Mol Res. 2014; 13(3):7686-97 [PubMed] Related Publications
Carcinoembryonic antigen-related cellular adhesion molecule 6 (CEACAM6) is a member of the immunoglobulin superfamily and has been recently reported to affect the neoplastic, metastatic, and invasive ability of malignant cells by regulating intracellular signaling pathways during tumorigenesis and progression. We investigated the expression and amplification of CEACAM6 in relation to the clinicopathological and biological significance of gastric adenocarcinoma. Expression of CEACAM6 mRNA in 75 primary gastric adenocarcinom and 20 adjacent tissues compared to normal gastric mucosas were explored using real-time quantitative-polymerase chain reaction. Immunohistochemical assays were conducted to evaluate the expression and tissue distribution of CEACAM6 protein. Overexpression of CEACAM6 mRNA in both gastric adenocarcinoma (2.513 ± 0.869) and adjacent tissues (1.171 ± 0.428) was significantly higher than the relative expressions in non-neoplastic specimens (0.594 ± 0.513) (P < 0.01). CEACAM6 protein was present in 52 (69.33%) gastric adenocarcinomas, but not in normal gastric tissues. Adenocarcinomas with elevated CEACAM6 expression were significantly associated with lymph node metastases and advanced stages. There were no relationships between CEACAM6 expression and tumor size, histological differentiation, or different subtypes, respectively. Moreover, higher expression of CEACAM6 was found to be correlated with short postoperative survival time of patients with gastric cancer. Amplification and upregulation of CEACAM6 expression was observed in human gastric adenocarcinomas, which may be correlated with the generation or transformation of malignant cells, tumor aggressive progression, and clinical outcome. CEACAM6 may be a valuable biomarker screening for gastric tumor and novel predictor for patients in advanced stages of gastric cancer.

Wakabayashi-Nakao K, Hatakeyama K, Ohshima K, et al.
Carcinoembryonic antigen-related cell adhesion molecule 4 (CEACAM4) is specifically expressed in medullary thyroid carcinoma cells.
Biomed Res. 2014; 35(4):237-42 [PubMed] Related Publications
Carcinoembryonic antigen (CEA), an oncofetal cell surface glycoprotein, has been widely used as a human tumor marker due to its high expression in tumors and secretion to serum. It belongs to the immunoglobulin superfamily named CEA-related cell adhesion molecule (CEACAM) family. Members of this family are detected in various cancers and have been shown to be involved in cancer growth and invasion. In this study, we examined the mRNA expression profiles of CEACAM family members including CEACAM1, CEACAM3, CEACAM4, CEACAM5 (CEA), CEACAM6, CEACAM7, and CEACAM8 in various tumor cell lines. Our screening data indicated that the mRNA expression patterns of CEACAMs in TT cells, which are derived from medullary thyroid carcinoma (MTC), were distinct from other tumor cell lines. Additionally, CEACAM4 was only expressed in TT cells, in which two novel splice variants of CEACAM4 were expressed. These findings suggested that production of CEA and CEA-related molecules in MTC may be distinct from other tumor-based production of those molecules and that the specific expression of CEACAM4 would make possible to differentiate between MTC and other CEA-producing tumors.

Raisch J, Buc E, Bonnet M, et al.
Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation.
World J Gastroenterol. 2014; 20(21):6560-72 [PubMed] Free Access to Full Article Related Publications
AIM: To provide further insight into the characterization of mucosa-associated Escherichia coli (E. coli) isolated from the colonic mucosa of cancer patients.
METHODS: Phylogroups and the presence of cyclomodulin-encoding genes of mucosa-associated E. coli from colon cancer and diverticulosis specimens were determined by PCR. Adhesion and invasion experiments were performed with I-407 intestinal epithelial cells using gentamicin protection assay. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression in T84 intestinal epithelial cells was measured by enzyme-linked immunosorbent assay and by Western Blot. Gut colonization, inflammation and pro-carcinogenic potential were assessed in a chronic infection model using CEABAC10 transgenic mice. Cell proliferation was analyzed by real-time mRNA quantification of PCNA and immunohistochemistry staining of Ki67.
RESULTS: Analysis of mucosa-associated E. coli from colon cancer and diverticulosis specimens showed that whatever the origin of the E. coli strains, 86% of cyclomodulin-positive E. coli belonged to B2 phylogroup and most harbored polyketide synthase (pks) island, which encodes colibactin, and/or cytotoxic necrotizing factor (cnf) genes. In vitro assays using I-407 intestinal epithelial cells revealed that mucosa-associated B2 E. coli strains were poorly adherent and invasive. However, mucosa-associated B2 E. coli similarly to Crohn's disease-associated E. coli are able to induce CEACAM6 expression in T84 intestinal epithelial cells. In addition, in vivo experiments using a chronic infection model of CEACAM6 expressing mice showed that B2 E. coli strain 11G5 isolated from colon cancer is able to highly persist in the gut, and to induce colon inflammation, epithelial damages and cell proliferation.
CONCLUSION: In conclusion, these data bring new insights into the ability of E. coli isolated from patients with colon cancer to establish persistent colonization, exacerbate inflammation and trigger carcinogenesis.

Molina-Pinelo S, Gutiérrez G, Pastor MD, et al.
MicroRNA-dependent regulation of transcription in non-small cell lung cancer.
PLoS One. 2014; 9(3):e90524 [PubMed] Free Access to Full Article Related Publications
Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

Xiao L, Tu C, Chen S, et al.
LRRC4 haplotypes are associated with pituitary adenoma in a Chinese population.
Med Oncol. 2014; 31(4):888 [PubMed] Related Publications
Pituitary adenoma results from accumulation of multiple genetic and/or epigenetic aberrations such as GNAS, MEN1, CNC, and FIPA. LRRC4 is relatively tissue-specific expressed gene in the normal brain and downregulated expression in glioma (87.5%), meningioma (80.9%), and pituitary adenoma (85.5%). It has been suggested that the aberrant expression of LRRC4 contributes to tumorigenesis in glioma. However, little is known yet about association between LRRC4 and risk of pituitary adenoma. In this study, we genotyped three LRRC4 haplotype-tagging SNPs (htSNP) by direct sequencing in case-control studies, which included 183 Han Chinese patients diagnosed with pituitary adenoma and 183 age-, gender-matched, and geographically matched Han Chinese controls. Haplotypes were reconstructed according to the genotyping data and linkage disequilibrium status of the htSNP. We observed statistically significant differences regarding the genotype TT + CT of rs6944446 in the NCA. Haplotype AC of rs3823994-rs6944446 is suggested to have a protective effect in the development of pituitary adenoma (OR 0.339; 95% CI 0.123-0.934). However, haplotype GT of rs3808058-rs6944446 (OR 1.575; 95% CI 1.048-2.368) and AGT of rs3823994-rs6944446-rs3808058 (OR 1.673; 95% CI 1.056-2.651) might be a risk factor for pituitary adenoma development. In a brief, the results support the hypothesis that polymorphisms or haplotypes in the LRRC4 may have important research significance and could be used to predict the risk of pituitary adenoma.

Zhang Y, Zang M, Li J, et al.
CEACAM6 promotes tumor migration, invasion, and metastasis in gastric cancer.
Acta Biochim Biophys Sin (Shanghai). 2014; 46(4):283-90 [PubMed] Related Publications
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) shows increased expression in a wide variety of human cancers, and its over-expression is associated with enhanced migration, invasion, and in vivo metastasis. Here, we reported that CEACAM6 was up-regulated in gastric cancer (GC) cell lines and tumor tissues. Over-expression of CEACAM6 in MKN-45 and SGC-7901 GC cells promoted migration and invasion in vitro and metastasis in athymic mice, whereas migration and invasion of MKN-28 and SNU-16 GC cells were suppressed by knockdown of CEACAM6. We also observed that steroid receptor coactivator (C-SRC) phosphorylation was increased when CEACAM6 was over-expressed in SGC-7901 cells. Taken together, these results suggested that CEACAM6 functions as an oncoprotein in GC and may be an important metastatic biomarker and therapeutic target.

Doni Jayavelu N, Bar N
Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells.
PLoS One. 2014; 9(1):e78349 [PubMed] Free Access to Full Article Related Publications
Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.

Chen X, Xuan J, Wang C, et al.
Reconstruction of transcriptional regulatory networks by stability-based network component analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Nov-Dec; 10(6):1347-58 [PubMed] Free Access to Full Article Related Publications
Reliable inference of transcription regulatory networks is a challenging task in computational biology. Network component analysis (NCA) has become a powerful scheme to uncover regulatory networks behind complex biological processes. However, the performance of NCA is impaired by the high rate of false connections in binding information. In this paper, we integrate stability analysis with NCA to form a novel scheme, namely stability-based NCA (sNCA), for regulatory network identification. The method mainly addresses the inconsistency between gene expression data and binding motif information. Small perturbations are introduced to prior regulatory network, and the distance among multiple estimated transcript factor (TF) activities is computed to reflect the stability for each TF's binding network. For target gene identification, multivariate regression and t-statistic are used to calculate the significance for each TF-gene connection. Simulation studies are conducted and the experimental results show that sNCA can achieve an improved and robust performance in TF identification as compared to NCA. The approach for target gene identification is also demonstrated to be suitable for identifying true connections between TFs and their target genes. Furthermore, we have successfully applied sNCA to breast cancer data to uncover the role of TFs in regulating endocrine resistance in breast cancer.

Sandhu R, Rivenbark AG, Mackler RM, et al.
Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer.
Int J Oncol. 2014; 44(2):563-72 [PubMed] Free Access to Full Article Related Publications
Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR‑26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2‑enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation‑sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal-like breast cancers with reduced expression of multiple regulatory miRs express aberrant DNA hypermethylation. Together, these findings strongly suggest that the molecular mechanism governing the DNMT3b-mediated aberrant DNA hypermethylation in primary breast cancer involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs.

Kiyokawa N, Iijima K, Tomita O, et al.
Significance of CD66c expression in childhood acute lymphoblastic leukemia.
Leuk Res. 2014; 38(1):42-8 [PubMed] Related Publications
Upon analyzing 696 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cases, we identified the characteristics of CD66c expression. In addition to the confirmation of strong correlation with BCR-ABL positivity and hyperdiploid, we further observed that CD66c is frequently expressed in CRLF2-positive (11/15, p<0.01 against chimeric gene-negative) as well as hypodiploid cases (3/4), whereas it is never expressed in ETV6-RUNX1, MLL-AF4, MLL-AF9, MLL-ENL, and E2A-PBX1-positive cases. Although the expression of CD66c itself is not directly linked to the prognosis, the accompanying genetic abnormalities are important prognostic factors for BCP-ALL, indicating the importance of CD66c expression in the initial diagnosis of BCP-ALL.

Roll JD, Rivenbark AG, Sandhu R, et al.
Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation.
Exp Mol Pathol. 2013; 95(3):276-87 [PubMed] Related Publications
A subset of human breast cancer cell lines exhibits aberrant DNA hypermethylation that is characterized by hyperactivity of the DNA methyltransferase enzymes, overexpression of DNMT3b, and concurrent methylation-dependent silencing of numerous epigenetic biomarker genes. The objective of this study was to determine if this aberrant DNA hypermethylation (i) is found in primary breast cancers, (ii) is associated with specific breast cancer molecular subtypes, and (iii) influences patient outcomes. Analysis of epigenetic biomarker genes (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3) identified a gene expression signature characterized by reduced expression levels or loss of expression among a cohort of primary breast cancers. The breast cancers that express this gene expression signature are enriched for triple-negative subtypes - basal-like and claudin-low breast cancers. Methylation analysis of primary breast cancers showed extensive promoter hypermethylation of epigenetic biomarker genes among triple-negative breast cancers, compared to other breast cancer subclasses where promoter hypermethylation events were less frequent. Furthermore, triple-negative breast cancers either did not express or expressed significantly reduced levels of protein corresponding to methylation-sensitive biomarker gene products. Together, these findings suggest strongly that loss of epigenetic biomarker gene expression is frequently associated with gene promoter hypermethylation events. We propose that aberrant DNA hypermethylation is a common characteristic of triple-negative breast cancers and may represent a fundamental biological property of basal-like and claudin-low breast cancers. Kaplan-Meier analysis of relapse-free survival revealed a survival disadvantage for patients with breast cancers that exhibit aberrant DNA hypermethylation. Identification of this distinguishing trait among triple-negative breast cancers forms the basis for development of new rational therapies that target the epigenome in patients with basal-like and claudin-low breast cancers.

Beauchemin N, Arabzadeh A
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis.
Cancer Metastasis Rev. 2013; 32(3-4):643-71 [PubMed] Related Publications
The discovery of the carcinoembryonic antigen (CEA) as a tumor marker for colorectal cancer some 50 years ago became the first step in the identification of a much larger family of 12 carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) with surprisingly diverse functions in cell adhesion, in intracellular and intercellular signaling, and during complex biological processes such as cancer progression, inflammation, angiogenesis, and metastasis. The development of proper molecular and biochemical tools and mouse models has enabled bidirectional translation of the CEACAM network biology. Indeed, CEACAM1, CEACAM5, and CEACAM6 are now considered valid clinical biomarkers and promising therapeutic targets in melanoma, lung, colorectal, and pancreatic cancers. These fascinating proteins illustrate how a better understanding of the CEACAM family of cell adhesion molecules reveals their functional link to the underlying disease and lead to new monitoring and targeting opportunities.

Chen J, Li Q, An Y, et al.
CEACAM6 induces epithelial-mesenchymal transition and mediates invasion and metastasis in pancreatic cancer.
Int J Oncol. 2013; 43(3):877-85 [PubMed] Related Publications
Pancreatic cancer is a disease with an extremely poor prognosis. The acquisition of invasion properties in pancreatic cancer is accompanied by the process of epithelial-mesenchymal transition (EMT). Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is emerging as an important determinant of the malignant phenotype in a range of cancers, including pancreatic cancer. Therefore, the aim of this study was to evaluate the potential involvement of CEACAM6 in the invasion and metastasis of pancreatic cancer cells via EMT regulation. The results of our study showed a positive association between CEACAM6 expression and poor prognosis of pancreatic cancer, differentiation and lymph node metastasis. Elevated levels of CEACAM6 in pancreatic cancer cells promoted EMT, migration and invasion in vitro and metastasis in animal models, whereas shRNA-mediated CEACAM6 knockdown had the opposite effect. Furthermore, we demonstrated that miR-29a/b/c specific for CEACAM6 could regulate its expression at the post-transcriptional level. Collectively, our findings identified CEACAM6, which is regulated by miR-29a/b/c, as an important positive regulator of EMT in pancreatic cancer offering an explanation for how elevated levels of CEACAM6 are likely to contribute to the highly metastatic phenotype of pancreatic cancer.

Witzens-Harig M, Hose D, Jünger S, et al.
Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6.
Blood. 2013; 121(22):4493-503 [PubMed] Related Publications
Although functionally competent cytotoxic, T cells are frequently observed in malignant diseases, they possess little ability to react against tumor cells. This phenomenon is particularly apparent in multiple myeloma. We here demonstrate that cytotoxic T cells reacted against myeloma antigens when presented by autologous dendritic cells, but not by myeloma cells. We further show by gene expression profiling and flow cytometry that, similar to many other malignant tumors, freshly isolated myeloma cells expressed several carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) at varying proportions. Binding and crosslinking of CEACAM-6 by cytotoxic T cells inhibited their activation and resulted in T-cell unresponsiveness. Blocking of CEACAM-6 on the surface of myeloma cells by specific monoclonal antibodies or CEACAM-6 gene knock down by short interfering RNA restored T-cell reactivity against malignant plasma cells. These findings suggest that CEACAM-6 plays an important role in the regulation of CD8+ T-cell responses against multiple myeloma; therefore, therapeutic targeting of CEACAM-6 may be a promising strategy to improve myeloma immunotherapy.

Mukhopadhyay A, Khoury T, Stein L, et al.
Prostate derived Ets transcription factor and Carcinoembryonic antigen related cell adhesion molecule 6 constitute a highly active oncogenic axis in breast cancer.
Oncotarget. 2013; 4(4):610-21 [PubMed] Free Access to Full Article Related Publications
We previously reported overexpression of Prostate derived Ets transcription factor (PDEF) in breast cancer and its role in breast cancer progression, supporting PDEF as an attractive target in this cancer. The goal of this research was to identify specific PDEF induced molecules that, like PDEF, show overexpression in breast tumors and a role in breast tumor progression. PDEF expression was down regulated by shRNA in MCF-7 human breast tumor cell line, and probes from PDEF down-regulated and control MCF-7 cells were used to screen the HG-U133A human gene chips. These analyses identified 1318 genes that were induced two-fold or higher by PDEF in MCF-7 cells. Further analysis of three of these genes, namely CEACAM6, S100A7 and B7-H4, in relation to PDEF in primary breast tumors showed that in 82% of ER+, 67% of Her2 overexpressing and 24% of triple-negative breast tumors both PDEF and CEACAM6 expression was elevated 10-fold or higher in comparison to normal breast tissue. Overall, 72% (94 of 131) of the primary breast tumors showed 10-fold or higher expression of both PDEF and CEACAM6. In contrast, S100A7 and B7-H4 failed to show concordant elevated expression with PDEF in primary tumors. To determine the significance of elevated PDEF and CEACAM6 expression to tumor phenotype, their expression was down regulated by specific siRNAs in human breast tumor cell lines. This resulted in the loss of viability of tumor cells in vitro, supporting an oncogenic role for both PDEF and CEACAM6 in breast cancer. Together, these findings show that PDEF-CEACAM6 is a highly active oncogenic axis in breast cancer and suggest that targeting of these molecules should provide novel treatments for most breast cancer patients.

Govindan SV, Cardillo TM, Sharkey RM, et al.
Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers.
Mol Cancer Ther. 2013; 12(6):968-78 [PubMed] Related Publications
CD74 is an attractive target for antibody-drug conjugates (ADC), because it internalizes and recycles after antibody binding. CD74 mostly is associated with hematologic tumors but is expressed also in solid cancers. Therefore, ADCs of the humanized anti-CD74 antibody, milatuzumab, were examined for the therapy of CD74-expressing solid tumors. Milatuzumab-doxorubicin and two milatuzumab-SN-38 conjugates with cleavable linkers, differing in their stability in serum and how they release SN-38 in the lysosome, were prepared. CD74 expression was determined by flow cytometry and immunohistology. In vitro cytotoxicity and in vivo therapeutic studies were conducted in the human cancer cell lines A-375 (melanoma), HuH-7 and Hep-G2 (hepatoma), Capan-1 (pancreatic), NCI-N87 (gastric), and Raji Burkitt lymphoma. The milatuzumab-SN-38 ADC was compared with SN-38 ADCs prepared with anti-Trop-2 and anti-CEACAM6 antibodies in xenografts expressing their target antigens. Milatuzumab-doxorubicin was most effective in the lymphoma model, whereas in A-375 and Capan-1 solid tumors, only milatuzumab-SN-38 showed a therapeutic benefit. Despite much lower surface expression of CD74 than Trop-2 or CEACAM6, milatuzumab-SN-38 had similar efficacy in Capan-1 as anti-Trop-2-SN-38, but in NCI-N87, anti-CEACAM6 and anti-Trop-2 conjugates were superior. Studies in two hepatoma lines at a single dose level showed significant benefit over saline controls but not against an irrelevant immunoglobulin G conjugate. CD74 is a suitable target for ADCs in some solid tumor xenografts, with efficacy largely influenced by uniformity of CD74 expression and with SN-38 conjugates providing the best therapeutic responses; SN-38 conjugates were preferable in solid cancers, whereas doxorubicin ADC was better in lymphoma tested.

Kobayashi M, Miki Y, Ebina M, et al.
Carcinoembryonic antigen-related cell adhesion molecules as surrogate markers for EGFR inhibitor sensitivity in human lung adenocarcinoma.
Br J Cancer. 2012; 107(10):1745-53 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung adenocarcinoma (LADCA) patients with epidermal growth factor receptor (EGFR) mutations are in general associated with relatively high clinical response rate to EGFR-tyrosine kinase inhibitors (TKIs) but not all responded to TKI. It has therefore become important to identify the additional surrogate markers regarding EGFR-TKI sensitivity.
METHODS: We first examined the effects of EGFR-TKIs, gefitinib and erlotinib, upon cell proliferation of lung adenocarcinoma cell lines. We then evaluated the gene profiles related to EGFR-TKI sensitivity using a microarray analysis. Results of microarray analysis led us to focus on carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, CEACAM 3, 5, 6, 7, and 19, as potential further surrogate markers of EGFR-TKI sensitivity. We then examined the correlation between the status of CEACAM 3, 5, 6, 7, and 19 immunoreactivity in LADCA and clinicopathological parameters of individual cases.
RESULTS: In the cases with EGFR mutations, the status of all CEACAMs examined was significantly higher than that in EGFR wild-type patients, but there were no significant differences in the status of CEACAMs between TKI responder and nonresponder among 22 patients who received gefitinib therapy. However, among 115 EGFR mutation-negative LADCA patients, both CEACAM6 and CEACAM3 were significantly associated with adverse clinical outcome (CEACAM6) and better clinical outcome (CEACAM3).
CONCLUSION: CEACAMs examined in this study could be related to the presence of EGFR mutation in adenocarcinoma cells but not represent the effective surrogate marker of EGFR-TKI in LADCA patients. However, immunohistochemical evaluation of CEACAM3/6 in LADCA patients could provide important information on their clinical outcome.

Gemei M, Mirabelli P, Di Noto R, et al.
CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo.
Cancer. 2013; 119(4):729-38 [PubMed] Related Publications
BACKGROUND: Despite the well recognized expression of the cell surface markers cluster of differentiation 44 (homing cell adhesion molecule) and CD133 (Prominin 1) on human colorectal cancer stem cells (CCSCs), these molecules do not appear to be effective targets for stem cell-directed therapies. Because the surface marker CD66c (also known as carcinoembryonic antigen-related cell adhesion molecule 6) has demonstrated promise as a therapeutic target in pancreatic malignancy, the authors evaluated its potential as a target for stem cell-directed treatment of colorectal cancer.
METHODS: First, the authors characterized CD66c expression by flow cytometry and immunohistochemistry in colon cancer samples and in normal colon tissues. Then, the coexpression of CD66c and CD133 was evaluated on putative CCSCs. CD66c expression also was measured in stem cell-enriched colon spheres. Finally, the effects of small-interfering RNA-mediated CD66c silencing on the in vitro and in vivo growth of Caco2 colon cancer cells were evaluated.
RESULTS: CD66c expression was significantly higher in colon cancers than in contiguous normal colon tissues and paralleled cancer stage. CD66c was absent in CD133-positive cells that were isolated from normal colon, whereas its expression was brightest (CD66c(bright) ) in CD133-positive cells from colon cancer samples. In vitro experiments demonstrated that colon spheres were considerably enriched in a CD66c(bright) population in a fashion comparable to the enrichment observed in fresh liver metastases. In vitro proliferation and clonogenic potential were hampered when CD66c was silenced in Caco2 cells. Finally, in vivo xenograft experiments demonstrated that CD66c silencing almost completely abrogated the tumorigenic potential of Caco2 cells.
CONCLUSIONS: CD66c(bright) expression was associated with colon cancer stem cells and CD66c silencing blocked tumor growth, thereby opening the way to a potential new treatment for colon cancer.

Cameron S, de Long LM, Hazar-Rethinam M, et al.
Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis.
Mol Cancer. 2012; 11:74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Overexpression of CEACAM6 has been reported for a number of malignancies. However, the mechanism of how CEACAM6 contributes to cancer formation and its role in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, we examined the role of CEACAM6 in head and neck squamous cell carcinoma (HNSCC).
METHODS: CEACAM6 expression was examined in normal squamous epithelia as well as a number of patient HNSCC samples and tumours derived from HNSCC cell lines injected into NOD/SCID mice. CEACAM6 expression was manipulated in HNSCC cell lines by shRNA-mediated CEACAM6 knockdown or virally-delivered overexpression of CEACAM6. The role of CEACAM6 in tumour growth and chemotherapeutic sensitivity was then assessed in vivo and in vitro respectively.
RESULTS: CEACAM6 expression was significantly increased in highly tumourigenic HNSCC cell lines when compared to poorly tumourigenic HNSCC cell lines. Moreover, HNSCC patient tumours demonstrated focal expression of CEACAM6. Functional investigation of CEACAM6, involving over-expression and knock down studies, demonstrated that CEACAM6 over-expression could enhance tumour initiating activity and tumour growth via activation of AKT and suppression of caspase-3 mediated cell death.
CONCLUSION: We report that CEACAM6 is focally overexpressed in a large fraction of human HNSCCs in situ. We also show that over-expression of CEACAM6 increases tumour growth and tumour initiating activity by suppressing PI3K/AKT-dependent apoptosis of HNSCC in a xenotransplant model of HNSCC. Finally, our studies indicate that foci of CEACAM6 expressing cells are selectively ablated by treatment of xenotransplant tumours with pharmacological inhibitors of PI3K/AKT in vivo.

Kim KS, Kim JT, Lee SJ, et al.
Overexpression and clinical significance of carcinoembryonic antigen-related cell adhesion molecule 6 in colorectal cancer.
Clin Chim Acta. 2013; 415:12-9 [PubMed] Related Publications
BACKGROUND: Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) inhibits anoikis and affects the malignant phenotype of cancer cells. In this study, we analyzed CEACAM6 as a gene that is highly upregulated in colon cancer tissues, and examined the assertion that CEACAM6 might be a suitable candidate tumor marker for the diagnosis of colon cancer.
METHODS: CEACAM6 gene expression in human colon tissues was performed by tissue microarray and analyzed using RT-PCR (each of normal and tumor tissue, n=40) and immunohistochemical and clinicopathological (colon cancer patients, n=143) analyses.
RESULTS: CEACAM6 transcriptional and translational levels were significantly upregulated in human tumor tissues compared to non-tumor regions, and clinicopathological analysis revealed a significant correlation between CEACAM6 protein expression and Dukes' stage (p<0.001). High expression levels of CEACAM6 were significantly associated with lower overall survival (p<0.001) and shorter recurrence-free survival (p<0.001). We demonstrated that knockdown of CEACAM6 with CEACAM6-specific small interfering RNA in colorectal cancer cells attenuated invasivity (35%); conversely, the overexpression of CEACAM6 increased invasiveness.
CONCLUSIONS: CEACAM6 is significantly upregulated in colon cancer tissues and is closely associated with poor prognosis, indicating that CEACAM6 might be used as a tumor biomarker and a potential therapeutic target for colon cancer.

Shao L, Wang L, Wei Z, et al.
Dynamic network of transcription and pathway crosstalk to reveal molecular mechanism of MGd-treated human lung cancer cells.
PLoS One. 2012; 7(5):e31984 [PubMed] Free Access to Full Article Related Publications
Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA) and Pathway Crosstalk Analysis (PCA) to construct a regulatory network in human lung cancer (A549) cells which were treated with 50 uM motexafin gadolinium (MGd), a metal cation-containing chemotherapeutic drug for 4, 12, and 24 hours. We identified a set of key TFs, known target genes for these TFs, and signaling pathways involved in regulatory networks. Our work showed that putative interactions between these TFs (such as ESR1/Sp1, E2F1/Sp1, c-MYC-ESR, Smad3/c-Myc, and NFKB1/RELA), between TFs and their target genes (such as BMP41/Est1, TSC2/Myc, APE1/Sp1/p53, RARA/HOXA1, and SP1/USF2), and between signaling pathways (such as PPAR signaling pathway and Adipocytokines signaling pathway). These results will provide insights into the regulatory mechanism of MGd-treated human lung cancer cells.

Ding J, Xiao C, He C, et al.
Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery.
Nanotechnology. 2011; 22(49):494012 [PubMed] Related Publications
A novel pH-responsive poly(amino acid) grafted with oligocation was prepared through the combination of ring-opening polymerization (ROP) and subsequent atom transfer radical polymerization (ATRP). Firstly, poly(γ-2-chloroethyl-L-glutamate) (PCELG) with a pendent 2-chloroethyl group was synthesized through ROP of γ-2-chloroethyl-L-glutamate N-carboxyanhydride (CELG NCA) using n-hexylamine as the initiator. Then, PCELG was used to initiate the ARTP of 2-aminoethyl methacrylate hydrochloride (AMA), yielding poly(L-glutamate)-graft-oligo(2-aminoethyl methacrylate hydrochloride) (PLG-g-OAMA). The pK(a) of PLG-g-OAMA was 7.3 established by the acid-base titration method. The amphiphilic poly(amino acid) could directly self-assemble into a vesicle in PBS. The vesicle was characterized by TEM and DLS. Hydrophilic DOX·HCl was loaded into the hollow core of the vesicle. The in vitro release behavior of DOX·HCl from the vesicle in PBS could be adjusted by the solution pH. In vitro cell experiments revealed that the vesicle could reduce the toxicity of the DOX·HCl. In addition, the preliminary gel retardation assay displayed that PLG-g-OAMA could efficiently bind DNA at a PLG-g-OAMA/DNA weight ratio of 0.3 or above, indicating its potential use as a gene carrier. More in-depth studies of the PLG-g-OAMA vesicle for drug and gene co-delivery in vitro and in vivo are in progress.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CEACAM6, Cancer Genetics Web: http://www.cancer-genetics.org/CEACAM6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999