ITGB1

Gene Summary

Gene:ITGB1; integrin subunit beta 1
Aliases: CD29, FNRB, MDF2, VLAB, GPIIA, MSK12, VLA-BETA
Location:10p11.22
Summary:Integrins are heterodimeric proteins made up of alpha and beta subunits. At least 18 alpha and 8 beta subunits have been described in mammals. Integrin family members are membrane receptors involved in cell adhesion and recognition in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic diffusion of tumor cells. This gene encodes a beta subunit. Multiple alternatively spliced transcript variants which encode different protein isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:integrin beta-1
Source:NCBIAccessed: 14 March, 2017

Ontology:

What does this gene/protein do?
Show (86)
Pathways:What pathways are this gene/protein implicaed in?
Show (23)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 14 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Neoplasm Metastasis
  • RNA, Transfer, Leu
  • Down-Regulation
  • Messenger RNA
  • Angiogenesis
  • Squamous Cell Carcinoma
  • Prostate Cancer
  • Transduction
  • ITGB1 (CD29)
  • Western Blotting
  • Vault Ribonucleoprotein Particles
  • Cell Movement
  • Cell Survival
  • Phosphorylation
  • Breast Cancer
  • Fibronectins
  • Lung Cancer
  • Transcription
  • Tissue Array Analysis
  • Chromosome 10
  • Gene Expression
  • Cancer Gene Expression Regulation
  • Cell Adhesion
  • Apoptosis
  • Gene Expression Profiling
  • Immunohistochemistry
  • Extracellular Matrix
  • Protein Binding
  • Tumor Microenvironment
  • Cell Proliferation
  • Thyroid Cancer
  • Neoplasm Invasiveness
  • Testosterone
  • Skin
  • Survival Rate
  • Gene Knockdown Techniques
  • Integrins
  • Adenocarcinoma
  • Focal Adhesion Protein-Tyrosine Kinases
  • Neoplasm Proteins
Tag cloud generated 14 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ITGB1 (cancer-related)

Yang D, Shi J, Fu H, et al.
Integrinβ1 modulates tumour resistance to gemcitabine and serves as an independent prognostic factor in pancreatic adenocarcinomas.
Tumour Biol. 2016; 37(9):12315-12327 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies because of its broad resistance to chemotherapy. Numerous evidence indicates that integrinβ1 is upregulated in some human cancers, and it is correlated with resistance to various therapies. However, the role of integrinβ1 in chemotherapy is not clear in pancreatic cancer. The present study evaluates the potential of integrinβ1 to predict chemoresistance and prognosis in patients and to modulate resistance to gemcitabine in PDAC cells. Primary drug-resistance (DR) cancer cells were isolated, and DR cells from MiaPaCa-2 and AsPC-1 parent cell lines (PCL) were selected. Integrinβ1 expression was determined using immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and Western blotting. Changes in drug response after knockdown of integrinβ1 via RNA interference (RNAi) were evaluated using the viability of cancer cells as colon formation, proliferation using Western blot of Ki-67 and apoptosis using cleaved caspase-3 immunofluorescence. qRT-PCR and Western blot also detected variations in the activities of cdc42 and AKT after integrinβ1 suppression. Patient survival and relative factors were assessed using Kaplan-Meier and Cox regression analyses. Integrinβ1 expression was upregulated in PDAC, which was significantly associated with intrinsic and acquired gemcitabine resistance and worse outcomes. The downregulation of integrinβ1 attenuated PDAC chemoresistance, and this attenuation partially correlated with reduced Cdc42 and AKT activity, which are target molecules of integrinβ1 in some human cancers. These findings identified integrinβ1 as a special marker of drug resistance and a serious prognosis, and they furthermore support the use of integrinβ1 as a novel potential therapeutic target to overcome chemotherapy resistance. The results also suggest a possible drug-resistant signalling pathway of integrinβ1 in PDAC.

Gong C, Yang Z, Wu F, et al.
miR-17 inhibits ovarian cancer cell peritoneal metastasis by targeting ITGA5 and ITGB1.
Oncol Rep. 2016; 36(4):2177-83 [PubMed] Related Publications
An essential step in the peritoneal spread of ovarian cancer is the adhesion and implantation of tumor cells to the mesothelium layer. Integrin α5 and β1 have been reported to mediate the initial adhesion process and to correlate with disease survival in ovarian cancer. However, the molecular mechanism of integrin α5β1 dysregulation in tumorigenesis and metastasis remained enigmatic. In the present study, using the US NCI60 database, we identified miR-17 as a candidate regulator targeting both integrin α5 and β1. The level of miR-17 was evidently inversely correlated with that of α5 and β1 in ovarian cancer cell lines. Specifically, miR-17 bound directly to the 3' untranslated region (3'UTR) of α5 and β1 and suppressed their expression. Forced expression of miR-17 led to markedly diminished adhesion and invasion of ovarian cancer cells in vitro, and notably reduced metastatic nodules inside the peritoneal cavity in in vivo SKOV3 xenografts model. Moreover, ectopic expression of miR-17 in ovarian cancer cells resulted in repressed ILK phosphorylation as well as decreased production of active matrix metalloproteinase-2 (MMP-2). Our results indicated that miR-17 hampered ovarian cancer peritoneal propagation by targeting integrin α5 and β1. These findings supported the utility of miR-17/α5β1 to be considered as valuable marker for metastatic potential of ovarian cancer cells, or a therapeutic target in ovarian cancer treatment.

Sun L, Wang D, Li X, et al.
Extracellular matrix protein ITGBL1 promotes ovarian cancer cell migration and adhesion through Wnt/PCP signaling and FAK/SRC pathway.
Biomed Pharmacother. 2016; 81:145-51 [PubMed] Related Publications
Despite the advances in cancer treatment and the progresses in tumor biological, ovarian cancer remains a bad situation. In current study, we found a novel extracellular matrix protein, ITGBL1, which is highly expressed in ovarian cancer tissues by immunohistochemistry examination. The expression pattern of ITGBL1 in malignant tissues inspired us to investigate its role in ovarian cancer progression. Both loss- and gain-function assays revealed that ITGBL1 could promote ovarian cancer cell migration and adhesion. As it's a secreted protein, we further used recombinant ITGBL1 protein treated cancer cells and found that ITGBL1 promotes cell migration and adhesion in a concentration dependent manner. Furthermore, we found that ITGBL1 not only influences the activity of Wnt/PCP signaling but also affects FAK/src pathway in vitro. Taken together, our results suggest that highly expressed ITGBL1 could promotes cancer cell migration and adhesion in ovarian cancer and as a secreted protein, ITGBL1 might be a novel biomarker for ovarian cancer diagnosis.

Li W, Wang H, Zhang J, et al.
miR-199a-5p regulates β1 integrin through Ets-1 to suppress invasion in breast cancer.
Cancer Sci. 2016; 107(7):916-23 [PubMed] Free Access to Full Article Related Publications
Increasing evidence has revealed that miR-199a-5p is actively involved in tumor invasion and metastasis as well as in the decline of breast cancer tissues. In this research, overexpression of miR-199a-5p weakened motility and invasion of breast cancer cells MCF-7 and MDA-MB-231. Upregulation of Ets-1 increased breast cancer cell invasion, but the mechanism by which miR-199a-5p modulates activation of Ets-1 in breast cancer was not clarified. We investigated the relationship between miR-199a-5p and Ets-1 on the basis of 158 primary breast cancer case specimens, and the results showed that Ets-1 expression was inversely correlated with endogenous miR-199a-5p. Overexpression of miR-199a-5p reduced the mRNA and protein levels of Ets-1 in MCF-7 and MDA-MB-231 cells, whereas anti-miR-199a-5p elevated Ets-1. siRNA-mediated Ets-1 knockdown phenocopied the inhibition invasion of miR-199a-5p in vitro. Moreover, luciferase reporter assay revealed that miR-199a-5p directly targeted 3'-UTR of Ets-1 mRNA. This research revealed that miR-199a-5p could descend the levels of β1 integrin by targeting 3'-UTR of Ets-1 to alleviate the invasion of breast cancer via FAK/Src/Akt/mTOR signaling pathway. Our results provide insight into the regulation of β1 integrin through miR-199a-5p-mediated Ets-1 silence and will help in designing new therapeutic strategies to inhibit signal pathways induced by miR-199a-5p in breast cancer invasion.

Kundu M, Mahata B, Banerjee A, et al.
Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.
Biochim Biophys Acta. 2016; 1863(7 Pt A):1472-89 [PubMed] Related Publications
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.

Xu Y, Jin X, Huang Y, et al.
Inhibition of peritoneal metastasis of human gastric cancer cells by dextran sulphate through the reduction in HIF-1α and ITGβ1 expression.
Oncol Rep. 2016; 35(5):2624-34 [PubMed] Free Access to Full Article Related Publications
The aim of the present study was to investigate the effects of dextran sulphate (DS) on HIF-1α and integrin β1 (ITGβ1) expression in human gastric cancer cells, the correlation between HIF-1α and ITGβ1 expression and the influence of DS on the peritoneal metastasis of human gastric cancer cells. In in vitro experiments, BGC-823 cells in the experimental and control groups were administered DS and PBS, respectively, and exposed to hypoxic conditions for different periods. Immunocytochemistry, western blot and RT-PCR analyses were used to evaluate HIF-1α and ITGβ1 expression levels. In in vivo experiments, an animal model was established by injecting BGC-823 cells into nude mice. The experimental and control groups received DS and PBS injections, respectively. The mice were euthanized at different times, and the number of tumor nodules in the celiac implantation was recorded. Immunohistochemistry, RT-PCR and western blot analyses were used to detect HIF-1α and ITGβ1 expression in the tumor nodules of the greater omentum. The in vitro and in vivo results revealed that HIF-1α and ITGβ1 expression levels in the experimental group were significantly lower than those in the control group (P<0.05), and the expression levels of these factors were positively correlated with each other. The number of tumor nodules in the in vivo experiments was notably less in the experimental group than that noted in the control group (P<0.01). In conclusion, DS may act through inhibition of HIF-1α expression, which decreased ITGβ1 expression, consequently reducing tumor metastasis.

Sun Y, Yang X, Liu M, Tang H
B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells.
Cancer Lett. 2016; 375(2):284-92 [PubMed] Related Publications
β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for the generation of poly-N-acetyllactosamine and is involved in tumorigenesis. However, B4GALT3-dysregulation and its role in cervical cancer cells are unknown. Herein, we found that B4GALT3 was upregulated in cervical cancer tissues compared to adjacent non-tumor tissues. B4GALT3-overexpression promoted, whereas B4GALT3-knockdown suppressed the cellular migration, invasion and EMT of HeLa and C33A cervical cancer cells. To explore the mechanism of dysregulation, B4GALT3 was predicted to be a target of miR-27a. EGFP and pGL3-promoter reporter assay showed miR-27a binds to B4GALT3 3'UTR region but enhanced its expression. RT-qPCR showed miR-27a was also upregulated and presented positive correlation with B4GALT3-expression in cervical cancer tissues. miR-27a-overexpression promoted, but blocking-miR-27a repressed these malignancies in HeLa and C33A cells. Furthermore, shR-B4GALT3 counteracted the promotion of malignancies induced by miR-27a, suggesting miR-27a upregulates B4GALT3 to enhance tumorigenic activities. In addition, we found that B4GALT3 significantly enhances β1-integrin stability, thus mediating promotion of B4GALT3 on malignancy in cervical cancer cells. Altogether, our findings evidenced that B4GALT3 upregulated by miR-27a contributes to the tumorigenic activities by β1-integrin pathway and might provide potential biomarkers for cervical cancer.

Wanderi C, Kim E, Chang S, et al.
Ginsenoside 20(S)-Protopanaxadiol Suppresses Viability of Human Glioblastoma Cells via Down-regulation of Cell Adhesion Proteins and Cell-cycle Arrest.
Anticancer Res. 2016; 36(3):925-32 [PubMed] Related Publications
BACKGROUND: Pharmacologically active components of ginseng, particularly protopanaxadiol (PPD)-type ginsenosides, have potent anticancer effects, although their effects on highly malignant glioblastoma multiforme (GBM) have not been systemically evaluated. Identification of effective anticancer ginsenosides and further delineation of their mechanisms of action may provide valuable information that aids in the development of alternative or adjuvant therapy for malignant cancer.
MATERIALS AND METHODS: We examined the viability of human GBM U251-MG and U87-MG cells treated with structurally related PPD-type ginsenosides, including F2, Rh2, compound K (C-K), and PPD.
RESULTS: Incubation with PPD, C-K, and Rh2 significantly reduced the viability of U251-MG and U87-MG cells in a dose- and time-dependent manner. The cytotoxic effect of PPD was accompanied by reduced expression of cell adhesion proteins, including N-cadherin and integrin β1, which led to reduced phosphorylation of focal adhesion kinase. Furthermore, incubation with PPD reduced the expression of cyclin D1 and subsequently induced cell-cycle arrest at the G1 phase.
CONCLUSION: These results collectively indicate that PPD might provide a new strategy for treating malignant GBM, which is quite resistant to conventional anticancer treatment.

Hedrick E, Lee SO, Doddapaneni R, et al.
NR4A1 Antagonists Inhibit β1-Integrin-Dependent Breast Cancer Cell Migration.
Mol Cell Biol. 2016; 36(9):1383-94 [PubMed] Free Access to Full Article Related Publications
Overexpression of the nuclear receptor 4A1 (NR4A1) in breast cancer patients is a prognostic factor for decreased survival and increased metastasis, and this has been linked to NR4A1-dependent regulation of transforming growth factor β (TGF-β) signaling. Results of RNA interference studies demonstrate that basal migration of aggressive SKBR3 and MDA-MB-231 breast cancer cells is TGF-β independent and dependent on regulation of β1-integrin gene expression by NR4A1 which can be inhibited by the NR4A1 antagonists 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) and a related p-carboxymethylphenyl [1,1-bis(3'-indolyl)-1-(p-carboxymethylphenyl)methane (DIM-C-pPhCO2Me)] analog. The NR4A1 antagonists also inhibited TGF-β-induced migration of MDA-MB-231 cells by blocking nuclear export of NR4A1, which is an essential step in TGF-β-induced cell migration. We also observed that NR4A1 regulates expression of both β1- and β3-integrins, and unlike other β1-integrin inhibitors which induce prometastatic β3-integrin, NR4A1 antagonists inhibit expression of both β1- and β3-integrin, demonstrating a novel mechanism-based approach for targeting integrins and integrin-dependent breast cancer metastasis.

He B, Xiao YF, Tang B, et al.
hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a.
Sci Rep. 2016; 6:21955 [PubMed] Free Access to Full Article Related Publications
Human telomerase reverse transcriptase (hTERT) plays a key role in tumor invasion and metastasis, but the mechanism of its involvement in these processes is not clear. The purpose of this study is to investigate the possible molecular mechanism of hTERT in the promotion of gastric cancer (GC) metastasis. We found that the up-regulation of hTERT in gastric cancer cells could inhibit the expression of miR-29a and enhance the expression of Integrin β1 (ITGB1). In addition, the invasive capacity of gastric cancer cells was also highly increased after hTERT overexpression. Our study also found that the restoration of miR-29a suppressed the expression of ITGB1 and inhibited GC cell metastasis both in vitro and in vivo. Taken together, our results suggested that hTERT may promote GC metastasis through the hTERT-miR-29a-ITGB1 regulatory pathway.

Gao SG, Liu RM, Zhao YG, et al.
Integrative topological analysis of mass spectrometry data reveals molecular features with clinical relevance in esophageal squamous cell carcinoma.
Sci Rep. 2016; 6:21586 [PubMed] Free Access to Full Article Related Publications
Combining MS-based proteomic data with network and topological features of such network would identify more clinically relevant molecules and meaningfully expand the repertoire of proteins derived from MS analysis. The integrative topological indexes representing 95.96% information of seven individual topological measures of node proteins were calculated within a protein-protein interaction (PPI) network, built using 244 differentially expressed proteins (DEPs) identified by iTRAQ 2D-LC-MS/MS. Compared with DEPs, differentially expressed genes (DEGs) and comprehensive features (CFs), structurally dominant nodes (SDNs) based on integrative topological index distribution produced comparable classification performance in three different clinical settings using five independent gene expression data sets. The signature molecules of SDN-based classifier for distinction of early from late clinical TNM stages were enriched in biological traits of protein synthesis, intracellular localization and ribosome biogenesis, which suggests that ribosome biogenesis represents a promising therapeutic target for treating ESCC. In addition, ITGB1 expression selected exclusively by integrative topological measures correlated with clinical stages and prognosis, which was further validated with two independent cohorts of ESCC samples. Thus the integrative topological analysis of PPI networks proposed in this study provides an alternative approach to identify potential biomarkers and therapeutic targets from MS/MS data with functional insights in ESCC.

Wu J, Zhao S, Zhang J, et al.
Over-expression of survivin is a factor responsible for differential responses of ovarian cancer cells to S-allylmercaptocysteine (SAMC).
Exp Mol Pathol. 2016; 100(2):294-302 [PubMed] Related Publications
While investigating the inhibitory effect of S-allylmercaptocysteine (SAMC), a garlic derivative, on ovarian cancer, we subjected three ovarian cancer cell lines, HO8910, HO8910PM, and SKOV3, to SAMC treatment. In vivo and in vitro experiments showed that only HO8910 and SKOV3 cells were highly sensitive to SAMC, whereas HO8910PM cells were resistant to SAMC. Subsequently, we examined the apoptosis-related genes in the three cell lines. We found that survivin gene was highly expressed in HO8910PM cells. Down regulation of survivin gene in HO8910PM cells with small interference RNA (siRNA), resulted in increased sensitivity to SAMC together with a decrease in invasiveness of tumor cells. We therefore concluded that the S-allylmercaptocysteine suppresses both the proliferation and distant metastasis of epithelial ovarian cancer cells, insensitivity of HO8910PM cells to SAMC was closely related to the high level of survivin expression and that combination of SAMC treatment together with survivin knockdown might be a potential strategy for treatment of certain variants of ovarian cancers.

Zhou P, Ma L, Zhou J, et al.
miR-17-92 plays an oncogenic role and conveys chemo-resistance to cisplatin in human prostate cancer cells.
Int J Oncol. 2016; 48(4):1737-48 [PubMed] Related Publications
The mir-17-92 cluster consists of six mature miRNAs and is implicated in diverse human cancers by targeting mRNAs involved in distinct pathways that either promote or inhibit carcinogenesis. However, the molecular mechanism underlying the mir-17-92 cluster-mediated pro-tumorigenic or anti-tumorigenic effects has not been clearly elucidated in prostate cancer. In the present study, the role of the mir-17-92 cluster in diverse aspects of prostate cancer cells has been thoroughly investigated. Forced introduction of the mir-17-92 cluster into the androgen-independent DU145 prostate cancer cells evidently promoted cell growth due to disruption of the balance between cellular proliferation and apoptosis. Overexpression of the mir-17-92 cluster significantly improved the migration and invasion of the DU145 cells, attributed to the induction of integrin β-1. Notably, the mir-17-92 cluster conveyed chemo-resistance to cisplatin. We demonstrated that the mir-17-92 cluster suppressed the expression of inhibitor of the AKT signaling pathway and activated the AKT pathway subsequently, which played a central role in regulating cellular proliferation, apoptosis and chemo-resistance. Continuously activated ERK1/2 signaling also contributed importantly to these processes. The present study provides key evidence for crucial oncogenic role of the miR-17-92 cluster in prostate cancer cells. Further investigations are warranted to determine whether miR-17-92 cluster can be targeted for future treatment of human prostate cancer.

Hermann MR, Jakobson M, Colo GP, et al.
Integrins synergise to induce expression of the MRTF-A-SRF target gene ISG15 for promoting cancer cell invasion.
J Cell Sci. 2016; 129(7):1391-403 [PubMed] Related Publications
Integrin-mediated activation of small GTPases induces the polymerisation of G-actin into various actin structures and the release of the transcriptional co-activator MRTF from G-actin. Here we report that pan-integrin-null fibroblasts seeded on fibronectin and expressing β1- and/or αV-class integrin contained different G-actin pools, nuclear MRTF-A (also known as MKL1 or MAL) levels and MRTF-A-SRF activities. The nuclear MRTF-A levels and activities were highest in cells expressing both integrin classes, lower in cells expressing β1 integrins and lowest in cells expressing the αV integrins. Quantitative proteomics and transcriptomics analyses linked the differential MRTF-A activities to the expression of the ubiquitin-like modifier interferon-stimulated gene 15 (ISG15), which is known to modify focal adhesion and cytoskeletal proteins. The malignant breast cancer cell line MDA-MB-231 expressed high levels of β1 integrins, ISG15 and ISGylated proteins, which promoted invasive properties, whereas non-invasive MDA-MB-468 and MCF-7 cell lines expressed low levels of β1 integrins, ISG15 and ISGylated proteins. Our findings suggest that integrin-adhesion-induced MRTF-A-SRF activation and ISG15 expression constitute a newly discovered signalling circuit that promotes cell migration and invasion.

Lotti R, Palazzo E, Petrachi T, et al.
Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo.
Int J Mol Sci. 2016; 17(1) [PubMed] Free Access to Full Article Related Publications
Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β₁-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in Ras(G12V)-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

Mukai H, Muramatsu A, Mashud R, et al.
PKN3 is the major regulator of angiogenesis and tumor metastasis in mice.
Sci Rep. 2016; 6:18979 [PubMed] Free Access to Full Article Related Publications
PKN, a conserved family member related to PKC, was the first protein kinase identified as a target of the small GTPase Rho. PKN is involved in various functions including cytoskeletal arrangement and cell adhesion. Furthermore, the enrichment of PKN3 mRNA in some cancer cell lines as well as its requirement in malignant prostate cell growth suggested its involvement in oncogenesis. Despite intensive research efforts, physiological as well as pathological roles of PKN3 in vivo remain elusive. Here, we generated mice with a targeted deletion of PKN3. The PKN3 knockout (KO) mice are viable and develop normally. However, the absence of PKN3 had an impact on angiogenesis as evidenced by marked suppressions of micro-vessel sprouting in ex vivo aortic ring assay and in vivo corneal pocket assay. Furthermore, the PKN3 KO mice exhibited an impaired lung metastasis of melanoma cells when administered from the tail vein. Importantly, PKN3 knock-down by small interfering RNA (siRNA) induced a glycosylation defect of cell-surface glycoproteins, including ICAM-1, integrin β1 and integrin α5 in HUVECs. Our data provide the first in vivo genetic demonstration that PKN3 plays critical roles in angiogenesis and tumor metastasis, and that defective maturation of cell surface glycoproteins might underlie these phenotypes.

Hou S, Isaji T, Hang Q, et al.
Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells.
Sci Rep. 2016; 6:18430 [PubMed] Free Access to Full Article Related Publications
An aberrant expression of integrin β1 has been implicated in breast cancer progression. Here, we compared the cell behaviors of wild-type (WT), β1 gene deleted (KO), and β1 gene restored (Res) MDA-MB-231 cells. Surprisingly, the expression of β1 exhibited opposite effects on cell proliferation. These effects were dependent on cell densities, and they showed an up-regulation of cell proliferation when cells were cultured under sparse conditions, and a down-regulation of cell growth under dense conditions. By comparison with WT cells, the phosphorylation levels of ERK in KO cells were consistently suppressed under sparse culture conditions, but consistently up-regulated under dense culture conditions. The phosphorylation levels of EGFR were increased in the KO cells. By contrast, the phosphorylation levels of AKT were decreased in the KO cells. The abilities for both colony and tumor formation were significantly suppressed in the KO cells, suggesting that β1 plays an important role in cell survival signaling for tumorigenesis. These aberrant phenotypes in the KO cells were rescued in the Res cells. Taken together, these results clearly showed the distinct roles of β1 in cancer cells: the inhibition of cell growth and the promotion of cell survival, which may shed light on cancer therapies.

Ungewiss C, Rizvi ZH, Roybal JD, et al.
The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL.
Sci Rep. 2016; 6:18652 [PubMed] Free Access to Full Article Related Publications
Tumor cell metastasis is a complex process that has been mechanistically linked to the epithelial-mesenchymal transition (EMT). The double-negative feedback loop between the microRNA-200 family and the Zeb1 transcriptional repressor is a master EMT regulator, but there is incomplete understanding of how miR-200 suppresses invasion. Our recent efforts have focused on the tumor cell-matrix interactions essential to tumor cell activation. Herein we utilized both our Kras/p53 mutant mouse model and human lung cancer cell lines to demonstrate that upon miR-200 loss integrin β1-collagen I interactions drive 3D in vitro migration/invasion and in vivo metastases. Zeb1-dependent EMT enhances tumor cell responsiveness to the ECM composition and activates FAK/Src pathway signaling by de-repression of the direct miR-200 target, CRKL. We demonstrate that CRKL serves as an adaptor molecule to facilitate focal adhesion formation, mediates outside-in signaling through Itgβ1 to drive cell invasion, and inside-out signaling that maintains tumor cell-matrix contacts required for cell invasion. Importantly, CRKL levels in pan-cancer TCGA analyses were predictive of survival and CRKL knockdown suppressed experimental metastases in vivo without affecting primary tumor growth. Our findings highlight the critical ECM-tumor cell interactions regulated by miR-200/Zeb1-dependent EMT that activate intracellular signaling pathways responsible for tumor cell invasion and metastasis.

Liu QZ, Gao XH, Chang WJ, et al.
Expression of ITGB1 predicts prognosis in colorectal cancer: a large prospective study based on tissue microarray.
Int J Clin Exp Pathol. 2015; 8(10):12802-10 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: ITGB1 is a heterodimeric cell-surface receptor involved in cell functions such as proliferation, migration, invasion and survival. The aim of this study was to assess ITGB1 expression in colorectal cancer and correlate it with clinicopathological features, as well as to evaluate its potential prognostic significance.
MATERIALS AND METHODS: In this study, we examined the expression of ITGB1 using tissue microarrays containing analyzed specimens by immunohistochemistry. ITGB1 expression was further correlated with clinicopathological and prognostic data. The prognostic significance was assessed using Kaplan-Meier survival estimates and log-rank tests. A multivariate study with the Cox's proportional hazard model was used to evaluate the prognostic aspects.
RESULTS: ITGB1 expression was present in 88.5% of the analyzed specimens. Significant differences in ITGB1 expression were found between normal mucosa and carcinomas (P<0.001). High ITGB1 expression was associated with poor prognosis, and it independently correlated with shortened overall survival and disease-free survival in colorectal cancer patients (P<0.001). More so, ITGB1 expression, bowel wall invasion, lymph node metastasis and distant metastasis were independent prognostic factors for overall survival. Additionally, significant differences in ITGB1 expression were observed in adenomas and tumors from patients with familial adenomatous polyposis compared to normal colon mucosa (P<0.05) CONCLUSION: The results of this study indicate that ITGB1 overexpression in colorectal tumors is associated with poor prognosis, as well as aggressive clinicopathological features. Therefore, ITGB1 expression could be used as potential prognostic predictor in colorectal cancer patients.

Klahan S, Huang WC, Chang CM, et al.
Gene expression profiling combined with functional analysis identify integrin beta1 (ITGB1) as a potential prognosis biomarker in triple negative breast cancer.
Pharmacol Res. 2016; 104:31-7 [PubMed] Related Publications
Triple negative breast cancer (TNBC) accounts for approximately 15-20% of all types of breast cancer, and treatment is still limited. This type of breast cancer shows a high risk of recurrence, visceral metastasis, a worse prognosis, and shorter distant metastasis-free survival. Several studies have been reported that genetics factors are associated with breast cancer disease progression and patients' survival. In this study, we combined Taiwanese microarray data from the GEO database and The Cancer Genome Atlas (TCGA) database to study the role of Integrin Beta1 (ITGB1) in TNBC. Two triple negative breast cancer cell lines (MDA-MB-231; MDA-MB-468) were used to validate the functions of ITGB1. We found that a higher ITGB1 gene expression level was associated to lower survival. Silencing of ITGB1 inhibited TNBC cell migration, invasion and store-operated calcium influx. Our study provided a potential candidate biomarker for breast cancer cells migration, invasion and TNBC patients' survival.

Arosarena OA, Dela Cadena RA, Denny MF, et al.
Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.
J Cell Physiol. 2016; 231(8):1761-70 [PubMed] Article available free on PMC after 01/08/2017 Related Publications
Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc.

Chen CH, Shyu MK, Wang SW, et al.
MUC20 promotes aggressive phenotypes of epithelial ovarian cancer cells via activation of the integrin β1 pathway.
Gynecol Oncol. 2016; 140(1):131-7 [PubMed] Related Publications
OBJECTIVE: Mucin (MUC) 20 has recently been implicated to play a role in human carcinogenesis. However, the role of MUC20 in epithelial ovarian cancer (EOC) remains to be elucidated.
METHODS: MUC20 expression was assessed in tissue microarray and tumor specimens of EOC patients by immunohistochemistry. Effects of MUC20 on cell viability, adhesion, migration, and invasion were analyzed in MUC20 overexpressing or knockdown EOC cells. Western blotting was performed to analyze signaling pathways modulated by MUC20.
RESULTS: MUC20 was overexpressed in EOC samples compared with benign tissues. High MUC20 expression was significantly associated with poor overall survival in patients with advanced-stage disease. MUC20 overexpression significantly enhanced EOC cell migration and invasion, but not viability. Mechanistic investigations showed that MUC20 increased cell adhesion to extracellular matrix (ECM) proteins and enhanced activation of integrin β1 and phosphorylation of focal adhesion kinase (FAK). The enhancement of cell motility and the integrin β1 signaling by MUC20 was significantly suppressed by integrin β1 blocking antibody. Furthermore, these effects of MUC20 on EOC cells were also demonstrated in MUC20 knockdown cells.
CONCLUSIONS: Our results suggest that MUC20 enhances aggressive behaviors of EOC cells by activating integrin β1 signaling and provide novel insights into the role of MUC20 in ovarian cancer metastasis.

Yen YC, Hsiao JR, Jiang SS, et al.
Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1.
Oncotarget. 2015; 6(39):41837-55 [PubMed] Article available free on PMC after 01/08/2017 Related Publications
Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions.

Kurozumi A, Goto Y, Matsushita R, et al.
Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer.
Cancer Sci. 2016; 107(1):84-94 [PubMed] Article available free on PMC after 01/08/2017 Related Publications
Analysis of microRNA (miRNA) expression signatures in prostate cancer (PCa) and castration-resistant PCa has revealed that miRNA-223 is significantly downregulated in cancer tissues, suggesting that miR-223 acts as a tumor-suppressive miRNA by targeting oncogenes. The aim of this study was to investigate the functional roles of miR-223 and identify downstream oncogenic targets regulated by miR-223 in PCa cells. Functional studies of miR-223 were carried out to investigate cell proliferation, migration, and invasion using PC3 and PC3M PCa cell lines. Restoration of miR-223 significantly inhibited cancer cell migration and invasion in PCa cells. In silico database and genome-wide gene expression analyses revealed that ITGA3 and ITGB1 were direct targets of miR-223 regulation. Knockdown of ITGA3 and ITGB1 significantly inhibited cancer cell migration and invasion in PCa cells by regulating downstream signaling. Moreover, overexpression of ITGA3 and ITGB1 was observed in PCa clinical specimens. Thus, our data indicated that downregulation of miR-223 enhanced ITGA3/ITGB1 signaling and contributed to cancer cell migration and invasion in PCa cells. Elucidation of the molecular pathways modulated by tumor-suppressive miRNAs provides insights into the mechanisms of PCa progression and metastasis.

Yang SY, Choi SA, Lee JY, et al.
miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of DHFR, integrins, and CD47.
Oncotarget. 2015; 6(41):43712-30 [PubMed] Article available free on PMC after 01/08/2017 Related Publications
BACKGROUND: The main cause of death in medulloblastoma is recurrence associated with leptomeningeal dissemination. During this process, the role of microRNAs (miRs) in the acquisition of metastatic phenotype remains poorly understood. This study aimed to identify the miR involved in leptomeningeal dissemination and to elucidate its biological functional mechanisms.
MATERIALS AND METHODS: We analyzed the miR expression profiles of 29 medulloblastomas according to the presence of cerebrospinal fluid (CSF) seeding. Differentially expressed miRs (DEmiRs) were validated in 29 medulloblastoma tissues and three medulloblastoma cell lines. The biological functions of the selected miRs were evaluated using in vitro and in vivo studies.
RESULTS: A total of 12 DEmiRs were identified in medulloblastoma with seeding, including miR-192. The reduced expression of miR-192 was confirmed in the tumor seeding group and in the medulloblastoma cells. Overexpression of miR-192 inhibited cellular proliferation by binding DHFR. miR-192 decreased cellular anchoring via the repression of ITGAV, ITGB1, ITGB3, and CD47. Animals in the miR-192-treated group demonstrated a reduction of spinal seeding (P < 0.05) and a significant survival benefit (P < 0.05).
CONCLUSIONS: Medulloblastoma with seeding showed specific DEmiRs compared with those without. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring ability.

Zhang L, Zou W
Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway.
Mol Med Rep. 2015; 12(6):7869-76 [PubMed] Article available free on PMC after 01/08/2017 Related Publications
Integrin β1 (ITGB1) is frequently upregulated in ovarian cancer, and promotes ovarian tumorigenesis and cancer progression. However, the effects of ITGB1 inhibition on ovarian cancer progression and anticancer therapy remain to be elucidated. The results of the present study indicated that ITGB1 was upregulated in HO‑8910 and HO‑8910PM ovarian cancer cell lines, and knockdown of ITGB1 using short hairpin RNA markedly increased tumor cell apoptosis, decreased tumor cell adhesion and migration, and reduced tumor cell invasion by suppressing matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, the results of the present study provided evidence regarding the role of ITGB1 inhibition in bevacizumab anticancer therapy. The activation of signal transducer and activator of transcription 1 (STAT1) by focal adhesion kinase (FAK) is involved in integrin‑mediated cell migration and adhesion. In the present study, the expression levels of FAK were markedly upregulated in ovarian cancer. The adherence and migratory potentials of ovarian cancer cells were significantly reduced when the FAK/STAT1 signaling pathway was inhibited by fludarabine. The results of the present study demonstrated that ITGB1 inhibition effectively reduced tumorigenesis and disease exacerbation, and contributed to bevacizumab anticancer therapy via the FAK/STAT1 signaling pathway, suggesting that inhibition of ITGB1 is a potential novel therapeutic strategy for ovarian carcinogenesis.

Qian W, Tao L, Wang Y, et al.
Downregulation of Integrins in Cancer Cells and Anti-Platelet Properties Are Involved in Holothurian Glycosaminoglycan-Mediated Disruption of the Interaction of Cancer Cells and Platelets in Hematogenous Metastasis.
J Vasc Res. 2015; 52(3):197-209 [PubMed] Related Publications
Activated platelets have been recognized as an accessory character in the cascade of tumor hematogenous metastasis, and intervention of tumor cell attachment to the activated platelets or microemboli formation might be a leading strategy to prevent tumor cells surviving in the blood vessels and sequential metastasis. Recently, we have demonstrated that holothurian glycosaminoglycan (hGAG), a sulfated polysaccharide with potent anticoagulant activity extracted from the sea cucumber Holothuria leucospilota Brandt, was highly efficacious against tumor metastasis. In this study, we identified the potential effects of hGAG on the disruption of interactions of cancer cells and platelets and the underlying mechanisms, which were supported by the following evidence: hGAG (1) inhibited thrombin-induced platelet activation and aggregation, (2) reduced adhesion between platelet and breast cancer cells, and abrogated platelets/cancer cells adhering to fibrinogen, (3) attenuated platelet-cancer cell complex formation (the number and size of aggregates) and (4) suppressed both mRNA and protein levels of β1 and β3 integrins, matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of the MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP)-1 in MDA-MB-231 cells. These results suggested that both the antiplatelet properties and mitigation of the levels of cellular adhesion molecules contributed to the anticancer effects of hGAG, and might thus be exploited for clinical adjuvant therapy to attenuate tumor hematogenous metastasis.

Zhang M, Ye G, Li J, Wang Y
Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy.
Brain Tumor Pathol. 2015; 32(4):229-36 [PubMed] Related Publications
Glioblastoma (GBM) is the most highly malignant brain tumor in the human central nerve system. In this paper, we review new and significant molecular findings on angiogenesis and possible resistance mechanisms. Expression of a number of genes and regulators has been shown to be upregulated in GBM microvessel cells, such as interleukin-8, signal transducer and activator of transcription 3, Tax-interacting protein-1, hypoxia induced factor-1 and anterior gradient protein 2. The regulator factors that may strongly promote angiogenesis by promoting endothelial cell metastasis, changing the microenvironment, enhancing the ability of resistance to anti-angiogenic therapy, and that inhibit angiogenesis are reviewed. Based on the current knowledge, several potential targets and strategies are proposed for better therapeutic outcomes, such as its mRNA interference of DII4-Notch signaling pathway and depletion of b1 integrin expression. We also discuss possible mechanisms underlying the resistance to anti-angiogenesis and future directions and challenges in developing new targeted therapy for GBM.

Hu J, Boeri M, Sozzi G, et al.
Gene Signatures Stratify Computed Tomography Screening Detected Lung Cancer in High-Risk Populations.
EBioMedicine. 2015; 2(8):831-40 [PubMed] Article available free on PMC after 01/08/2017 Related Publications
BACKGROUND: Although screening programmes of smokers have detected resectable early lung cancers more frequently than expected, their efficacy in reducing mortality remains debatable. To elucidate the biological features of computed tomography (CT) screening detected lung cancer, we examined the mRNA signatures on tumours according to the year of detection, stage and survival.
METHODS: Gene expression profiles were analysed on 28 patients (INT-IEO training cohort) and 24 patients of Multicentre Italian Lung Detection (MILD validation cohort). The gene signatures generated from the training set were validated on the MILD set and a public deposited DNA microarray data set (GSE11969). Expression of selected genes and proteins was validated by real-time RT-PCR and immunohistochemistry. Enriched core pathway and pathway networks were explored by GeneSpring GX10.
FINDINGS: A 239-gene signature was identified according to the year of tumour detection in the training INT-IEO set and correlated with the patients' outcomes. These signatures divided the MILD patients into two distinct survival groups independently of tumour stage, size, histopathological type and screening year. The signatures can also predict survival in the clinically detected cancers (GSE11969). Pathway analyses revealed tumours detected in later years enrichment of the PI3K/PTEN/AKT pathway, with up-regulation of PDPK1, ITGB1 and down-regulation of FOXO1A. Analysis of normal lung tissue from INT-IEO cohort produced signatures distinguishing patients with early from late detected tumours.
INTERPRETATION: The distinct pattern of "indolent" and "aggressive" tumour exists in CT-screening detected lung cancer according to the gene expression profiles. The early development of an aggressive phenotype may account for the lack of mortality reduction by screening observed in some cohorts.

Widder M, Lützkendorf J, Caysa H, et al.
Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1-integrin-dependent mechanism.
Int J Cancer. 2016; 138(4):964-75 [PubMed] Related Publications
Tumor-stroma interactions play an essential role in the biology of colorectal carcinoma (CRC). Multipotent mesenchymal stromal cells (MSC) may represent a pivotal part of the stroma in CRC, but little is known about the specific interaction of MSC with CRC cells derived from tumors with different mutational background. In previous studies we observed that MSC promote the xenograft growth of the CRC cell-line DLD1. In the present study, we aimed to analyze the mechanisms of MSC-promoted tumor growth using various in vitro and in vivo experimental models and CRC cells of different mutational status. MSC specifically interacted with distinct CRC cells and supported tumor seeding in xenografts. The MSC-CRC interaction facilitated three-dimensional spheroid formation in CRC cells with dysfunctional E-cadherin system. Stable knock-downs revealed that the MSC-facilitated spheroid formation depended on β1-integrin in CRC cells. Specifically in α-catenin-deficient CRC cells this β1-integrin-dependent interaction resulted in a MSC-mediated promotion of early tumor growth in vivo. Collagen I and other extracellular matrix compounds were pivotal for the functional MSC-CRC interaction. In conclusion, our data demonstrate a differential interaction of MSC with CRC cells of different mutational background. Our study is the first to show that MSC specifically compared to normal fibroblasts impact early xenograft growth of distinct α-catenin deficient CRC cells possibly through secretion of extracellular matrix. This mechanism could serve as a future target for therapy and metastasis prevention.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ITGB1, Cancer Genetics Web: http://www.cancer-genetics.org/ITGB1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 March, 2017     Cancer Genetics Web, Established 1999