PTGS1

Gene Summary

Gene:PTGS1; prostaglandin-endoperoxide synthase 1
Aliases: COX1, COX3, PHS1, PCOX1, PES-1, PGHS1, PTGHS, PGG/HS, PGHS-1
Location:9q33.2
Summary:This is one of two genes encoding similar enzymes that catalyze the conversion of arachinodate to prostaglandin. The encoded protein regulates angiogenesis in endothelial cells, and is inhibited by nonsteroidal anti-inflammatory drugs such as aspirin. Based on its ability to function as both a cyclooxygenase and as a peroxidase, the encoded protein has been identified as a moonlighting protein. The protein may promote cell proliferation during tumor progression. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:prostaglandin G/H synthase 1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (28)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • COX2 (PTGS2)
  • Cancer Gene Expression Regulation
  • Cyclooxygenase 1
  • Genetic Predisposition
  • Prostaglandin-Endoperoxide Synthases
  • Chromosome 9
  • Urokinase-Type Plasminogen Activator
  • Cyclooxygenase Inhibitors
  • Thailand
  • Membrane Proteins
  • RTPCR
  • Thyroid Cancer
  • Enzymologic Gene Expression Regulation
  • Anti-Inflammatory Agents, Non-Steroidal
  • Isoenzymes
  • Gene Expression
  • Toll-Like Receptors
  • Neoplasm Proteins
  • Dinoprostone
  • p38 Mitogen-Activated Protein Kinases
  • Sex Distribution
  • Genotype
  • Cyclooxygenase 2 Inhibitors
  • Signal Transduction
  • Smoking
  • Receptors, Prostaglandin E, EP4 Subtype
  • beta Catenin
  • Sequence Analysis, Protein
  • Immunohistochemistry
  • Transfection
  • Vascular Endothelial Growth Factor B
  • Polymerase Chain Reaction
  • Xenograft Models
  • Colorectal Cancer
  • Western Blotting
  • Adenocarcinoma
  • Risk Factors
  • Up-Regulation
  • Apoptosis
  • Case-Control Studies
  • Breast Cancer
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTGS1 (cancer-related)

Xiong DD, Qin Y, Xu WQ, et al.
A Network Pharmacology-Based Analysis of Multi-Target, Multi-Pathway, Multi-Compound Treatment for Ovarian Serous Cystadenocarcinoma.
Clin Drug Investig. 2018; 38(10):909-925 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Pharmacological control against ovarian serous cystadenocarcinoma has received increasing attention. The purpose of this study was to investigate multi-drug treatments as synergetic therapy for ovarian serous cystadenocarcinoma and to explore their mechanisms of action by the network pharmacology method.
METHODS: Genes acting on ovarian serous cystadenocarcinoma were first collected from GEPIA and DisGeNET. Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway, Reactome pathway, and Disease Ontology analyses were then conducted. A connectivity map analysis was employed to identify compounds as treatment options for ovarian serous cystadenocarcinoma. Targets of these compounds were obtained from the Search Tool for Interacting Chemicals (STITCH). The intersections between the ovarian serous cystadenocarcinoma-related genes and the compound targets were identified. Finally, the Kyoto Encyclopedia of Genes and Genomes and Reactome pathways in which the overlapped genes participated were selected, and a correspondence compound-target pathway network was constructed.
RESULTS: A total of 541 ovarian serous cystadenocarcinoma-related genes were identified. The functional enrichment and pathway analyses indicated that these genes were associated with critical tumor-related pathways. Based on the connectivity map analysis, five compounds (resveratrol, MG-132, puromycin, 15-delta prostaglandin J2, and valproic acid) were determined as treatment agents for ovarian serous cystadenocarcinoma. Next, 48 targets of the five compounds were collected. Following mapping of the 48 targets to the 541 ovarian serous cystadenocarcinoma-related genes, we identified six targets (PTGS1, FOS, HMOX1, CASP9, PPARG, and ABCB1) as therapeutic targets for ovarian serous cystadenocarcinoma by the five compounds. By analysis of the compound-target pathway network, we found the synergistic anti-ovarian serous cystadenocarcinoma potential and the underlying mechanisms of action of the five compounds.
CONCLUSION: In summary, latent drugs against ovarian serous cystadenocarcinoma were acquired and their target actions and pathways were determined by the network pharmacology strategy, which provides a new prospect for medicamentous therapy for ovarian serous cystadenocarcinoma. However, further in-depth studies are indispensable to increase the validity of this study.

Tyagi A, Pramanik R, Vishnubhatla S, et al.
Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia.
Mutat Res. 2018; 810:13-18 [PubMed] Related Publications
Role of mitochondrial DNA variations, particularly in D loop region, remains investigational in acute myeloid leukaemia (AML). Consecutive 151 pediatric AML patients were prospectively enrolled from June 2013 to August 2016, for evaluating pattern of variations in mitochondrial D-loop region and to determine their association, if any, with expression of mitochondrial-encoded genes. For each patient, D-loop region was sequenced on baseline bone marrow, buccal swab and mother's blood sample. Real time PCR was used for relative gene expression of four mitochondrial DNA encoded genes viz. Nicotinamide-adenine-dineucleotide-dehydrogenase subunit 3 (ND3), Cytochrome-B (Cyt-B), Cytochrome c oxidase-I (COX1) and ATP-synthetase F

Bao L, Chen Y, Lai HT, et al.
Methylation of hypoxia-inducible factor (HIF)-1α by G9a/GLP inhibits HIF-1 transcriptional activity and cell migration.
Nucleic Acids Res. 2018; 46(13):6576-6591 [PubMed] Free Access to Full Article Related Publications
Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator in response to hypoxia and its transcriptional activity is crucial for cancer cell mobility. Here we present evidence for a novel epigenetic mechanism that regulates HIF-1 transcriptional activity and HIF-1-dependent migration of glioblastoma cells. The lysine methyltransferases G9a and GLP directly bound to the α subunit of HIF-1 (HIF-1α) and catalyzed mono- and di-methylation of HIF-1α at lysine (K) 674 in vitro and in vivo. K674 methylation suppressed HIF-1 transcriptional activity and expression of its downstream target genes PTGS1, NDNF, SLC6A3, and Linc01132 in human glioblastoma U251MG cells. Inhibition of HIF-1 by K674 methylation is due to reduced HIF-1α transactivation domain function but not increased HIF-1α protein degradation or impaired binding of HIF-1 to hypoxia response elements. K674 methylation significantly decreased HIF-1-dependent migration of U251MG cells under hypoxia. Importantly, we found that G9a was downregulated by hypoxia in glioblastoma, which was inversely correlated with PTGS1 expression and survival of patients with glioblastoma. Therefore, our findings uncover a hypoxia-induced negative feedback mechanism that maintains high activity of HIF-1 and cell mobility in human glioblastoma.

Patel MJ, Tripathy S, Mukhopadhyay KD, et al.
A supercritical CO
Mol Carcinog. 2018; 57(9):1156-1165 [PubMed] Related Publications
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer death in men and women in the United States. Anti-inflammatory blockade has been proven to be a promising avenue of colorectal cancer prevention. However, NSAIDs while effective in curbing CRC risk are too toxic for long-term use in cancer prevention. The Neem tree (Azadirachta indica) is rich in liminoid terpenoids, collectively known as azadiractoids and has been shown to have anti-inflammatory effects. To explore a role of neem in CRC, human colon cancer cell lines HCT116 and HT29 cells were treated with purified Super Critical Neem Extract (SCNE) or the neem liminoid, nimbolide. SCNE treatment resulted in a dose dependent inhibition of CRC cell proliferation and an increase in apoptosis. Treatment with SCNE and nimbolide decreased the expression of transcriptional factors, STAT3 and NF-κB which plays a major role in gene regulation of multiple cellular processes. Protein expression of COX1, IL-6, and TNF-α were decreased on treatment with SCNE in CRC cells. Western blots and Zymogram assays results revealed anti-invasive effect by decreased expression of MMP2 and MMP9 proteins in CRC cells. Overall, these data confirm a potential anti-cancer effect of SCNE, reducing cell proliferation, inflammation, migration, and invasion in human colon cancer cells. Confirming these indications, we found that treatment of mice bearing HT29 and HCT116 xenografted tumors exhibited striking inhibition of colon tumor growth. Clearly we must explore the effect of neem in preclinical animal models for anti-cancer therapy.

Delker DA, Wood AC, Snow AK, et al.
Chemoprevention with Cyclooxygenase and Epidermal Growth Factor Receptor Inhibitors in Familial Adenomatous Polyposis Patients: mRNA Signatures of Duodenal Neoplasia.
Cancer Prev Res (Phila). 2018; 11(1):4-15 [PubMed] Free Access to Full Article Related Publications
To identify gene expression biomarkers and pathways targeted by sulindac and erlotinib given in a chemoprevention trial with a significant decrease in duodenal polyp burden at 6 months (

Singh R, De Sarkar N, Sarkar S, et al.
Analysis of the whole transcriptome from gingivo-buccal squamous cell carcinoma reveals deregulated immune landscape and suggests targets for immunotherapy.
PLoS One. 2017; 12(9):e0183606 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gingivo-buccal squamous cell carcinoma (GBSCC) is one of the most common oral cavity cancers in India with less than 50% patients surviving past 5 years. Here, we report a whole transcriptome profile on a batch of GBSCC tumours with diverse tobacco usage habits. The study provides an entire landscape of altered expression with an emphasis on searching for targets with therapeutic potential.
METHODS: Whole transcriptomes of 12 GBSCC tumours and adjacent normal tissues were sequenced and analysed to explore differential expression of genes. Expression changes were further compared with those in TCGA head and neck cohort (n = 263) data base and validated in an independent set of 10GBSCC samples.
RESULTS: Differentially expressed genes (n = 2176) were used to cluster the patients based on their tobacco habits, resulting in 3 subgroups. Immune response was observed to be significantly aberrant, along with cell adhesion and lipid metabolism processes. Different modes of immune evasion were seen across 12 tumours with up-regulation or consistent expression of CD47, unlike other immune evasion genes such as PDL1, FUT4, CTLA4 and BTLA which were downregulated in a few samples. Variation in infiltrating immune cell signatures across tumours also indicates heterogeneity in immune evasion strategies. A few actionable genes such as ITGA4, TGFB1 and PTGS1/COX1 were over expressed in most samples.
CONCLUSION: This study found expression deregulation of key immune evasion genes, such as CD47 and PDL1, and reasserts their potential as effective immunotherapeutic targets for GBSCC, which requires further clinical studies. Present findings reiterate the idea of using transcriptome profiling to guide precision therapeutic strategies.

Feng D, Zhao T, Yan K, et al.
Gonadotropins promote human ovarian cancer cell migration and invasion via a cyclooxygenase 2-dependent pathway.
Oncol Rep. 2017; 38(2):1091-1098 [PubMed] Related Publications
It is generally accepted that ovarian cancer is associated with local elevation of gonadotropins (FSH and LH), with repeated ovulation and accompanying expression of inducible cyclooxygenase 2 (COX2). However, the roles of gonadotropins and the concomitant elevation of COX2 in the development of ovarian cancer have not been fully characterized. Herein, we report that excessive FSH/LH exposure did not induce proliferation in ovarian cancer cell lines but significantly promoted cell migration and invasion. Moreover, FSH/LH treatment rapidly upregulated COX2 expression within 24 h, whereas COX1 expression remained unchanged. Further results showed that enhancement of epithelial-mesenchymal transition (EMT) and upregulation of matrix metalloproteinase (MMP)2 and MMP9 contributed to the stimulatory effect of gonadotropins on cell migration and invasion; these effects were sufficiently blocked by a selective COX2 inhibitor. In conclusion, the present study suggests that gonadotropin-induced migration and invasion in ovarian cancer may be caused by EMT and MMP upregulation via a COX2-dependent pathway.

Fahlén M, Zhang H, Löfgren L, et al.
Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.
Gynecol Endocrinol. 2017; 33(5):353-358 [PubMed] Related Publications
Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

Kochel TJ, Reader JC, Ma X, et al.
Multiple drug resistance-associated protein (MRP4) exports prostaglandin E2 (PGE2) and contributes to metastasis in basal/triple negative breast cancer.
Oncotarget. 2017; 8(4):6540-6554 [PubMed] Free Access to Full Article Related Publications
Cyclooxygenase-2 (COX-2) and its primary enzymatic product, prostaglandin E2 (PGE2), are associated with a poor prognosis in breast cancer. In order to elucidate the factors contributing to intratumoral PGE2 levels, we evaluated the expression of COX-2/PGE2 pathway members MRP4, the prostaglandin transporter PGT, 15-PGDH (PGE2 metabolism), the prostaglandin E receptor EP4, COX-1, and COX-2 in normal, luminal, and basal breast cancer cell lines. The pattern of protein expression varied by cell line reflecting breast cancer heterogeneity. Overall, basal cell lines expressed higher COX-2, higher MRP4, lower PGT, and lower 15-PGDH than luminal cell lines resulting in higher PGE2 in the extracellular environment. Genetic or pharmacologic suppression of MRP4 expression or activity in basal cell lines led to less extracellular PGE2. The key finding is that xenografts derived from a basal breast cancer cell line with stably suppressed MRP4 expression showed a marked decrease in spontaneous metastasis compared to cells with unaltered MRP4 expression. Growth properties of primary tumors were not altered by MRP4 manipulation. In addition to the well-established role of high COX-2 in promoting metastasis, these data identify an additional mechanism to achieve high PGE2 in the tumor microenvironment; high MRP4, low PGT, and low 15-PGDH. MRP4 should be examined further as a potential therapeutic target in basal breast cancer.

Ceccarini MR, Vannini S, Cataldi S, et al.
Biomed Res Int. 2016; 2016:7529521 [PubMed] Free Access to Full Article Related Publications

Cai F, Li J, Liu Y, et al.
Effect of ximenynic acid on cell cycle arrest and apoptosis and COX-1 in HepG2 cells.
Mol Med Rep. 2016; 14(6):5667-5676 [PubMed] Related Publications
Ximenynic acid is a conjugated enyne fatty acid, which is currently of interest due to its anti-inflammatory activity. Due to the association between inflammation and cancer, the present study was designed to investigate the anti‑cancer activity of ximenynic acid in the HepG2 human hepatoma cell line and the underlying mechanisms. The current study demonstrated the anti‑proliferation and pro‑apoptosis activities of ximenynic acid by cell viability assay and flow cytometry analysis. The expression of anti‑apoptosis protein silent information regulator T1 (SIRT1) was significantly suppressed by ximenynic acid. Furthermore, ximenynic acid blocked G1/S phase transition by inhibiting the protein expression of the cell cycle‑associated protein general control of amino acid synthesis yeast homolog like 2 (GCN5L2), and the mRNA expression of cyclin D3 and cyclin E1. Furthermore, ximenynic acid suppressed the expression of angiogenesis‑associated genes, including vascular endothelial growth factor (VEGF)‑B and VEGF‑C. Finally, ximenynic acid significantly inhibited the expression of cyclooxygenase‑1 (COX‑1) mRNA and protein, however COX‑2 expression was not reduced. The results of the present study suggested that ximenynic acid may inhibit growth of HepG2 cells by selective inhibition of COX‑1 expression, which leads to cell cycle arrest, and alters the apoptosis pathway and expression of angiogenic factors. The current study aimed to investigate whether ximenynic acid might be developed as novel anticancer agent.

Sidahmed E, Sen A, Ren J, et al.
Colonic Saturated Fatty Acid Concentrations and Expression of COX-1, but not Diet, Predict Prostaglandin E2 in Normal Human Colon Tissue.
Nutr Cancer. 2016; 68(7):1192-201 [PubMed] Free Access to Full Article Related Publications
Prostaglandin E2 (PGE2) in the colon is a pro-inflammatory mediator that is associated with increased risk of colon cancer. In this study, expression of genes in the PGE2 pathway were quantified in colon biopsies from a trial of a Mediterranean versus a Healthy Eating diet in 113 individuals at high risk for colon cancer. Colon biopsies were obtained before and after 6 months of intervention. Quantitative, real-time PCR was used to measure mRNA expression of prostaglandin H synthases (PTGS1 and 2), prostaglandin E synthases (PTGES1 and 3), prostaglandin dehydrogenase (HPGD), and PGE2 receptors (PTGER2, PTGER4). The most highly expressed genes were HPGD and PTGS1. In multivariate linear regression models of baseline data, both colon saturated fatty acid concentrations and PTGS1 expression were significant, positive predictors of colon PGE2 concentrations after controlling for nonsteroidal anti-inflammatory drug use, gender, age, and smoking status. The effects of dietary intervention on gene expression were minimal with small increases in expression noted for PTGES3 in both arms and in PTGER4 in the Mediterranean arm. These results indicate that short-term dietary change had little effect on enzymes in the prostaglandin pathway in the colon and other factors, such as differences in fatty acid metabolism, might be more influential.

Li L, Chen L, Li J, et al.
Correlational study on mitochondrial DNA mutations as potential risk factors in breast cancer.
Oncotarget. 2016; 7(21):31270-83 [PubMed] Free Access to Full Article Related Publications
The presented study performed an mtDNA genome-wide association analysis to screen the peripheral blood of breast cancer patients for high-risk germline mutations. Unlike previous studies, which have used breast tissue in analyzing somatic mutations, we looked for germline mutations in our study, since they are better predictors of breast cancer in high-risk groups, facilitate early, non-invasive diagnoses of breast cancer and may provide a broader spectrum of therapeutic options. The data comprised 22 samples of healthy group and 83 samples from breast cancer patients. The sequencing data showed 170 mtDNA mutations in the healthy group and 393 mtDNA mutations in the disease group. Of these, 283 mtDNA mutations (88 in the healthy group and 232 in the disease group) had never been reported in the literature. Moreover, correlation analysis indicated there was a significant difference in 32 mtDNA mutations. According to our relative risk analysis of these 32 mtDNA mutations, 27 of the total had odds ratio values (ORs) of less than 1, meaning that these mutations have a potentially protective role to play in breast cancer. The remaining 5 mtDNA mutations, RNR2-2463 indelA, COX1-6296 C>A, COX1-6298 indelT, ATP6-8860 A>G, and ND5-13327 indelA, whose ORs were 8.050, 4.464, 4.464, 5.254 and 4.853, respectively, were regarded as risk factors of increased breast cancer. The five mutations identified here may serve as novel indicators of breast cancer and may have future therapeutic applications. In addition, the use of peripheral blood samples was procedurally simple and could be applied as a non-invasive diagnostic technique.


Molecular Docking of Bioactive Compounds Against BRCA and COX Proteins.
Prog Drug Res. 2016; 71:181-3 [PubMed] Related Publications
The focus of molecular docking is to computationally simulate the molecular recognition process. A binding interaction between a small molecule ligand and protein may result in activation or inhibition of the protein. The docking method using BRCA1 or BRCA2 genes and COX proteins is carefully texted in this chapter to check docking of the best inhibitor molecule.

Cui X, Yan H, Ou TW, et al.
Genetic Variations in Inflammatory Response Genes and Their Association with the Risk of Prostate Cancer.
Biomed Res Int. 2015; 2015:674039 [PubMed] Free Access to Full Article Related Publications
Prostate cancer is a common cancer in men. Genetic variations in inflammatory response genes can potentially influence the risk of prostate cancer. We aimed to examine the association between PPARG Pro12Ala, NFKB1 -94 ins/del, NFKBIA -826C/T, COX-1 (50C>T), and COX-2 (-1195G>A) polymorphisms on prostate cancer risk. The genotypes of the polymorphisms were ascertained in 543 prostate cancer patients and 753 controls through PCR-RFLP and the risk association was evaluated statistically using logistic regression analysis. The NFKB1 -94 polymorphism was shown to decrease prostate cancer risk in both heterozygous and homozygous comparison models (odds ratios of 0.74 (95% CI = 0.58-0.96) (P = 0.02) and 0.57 (95% CI = 0.42-0.78) (P < 0.01), resp.). An opposite finding was observed for COX-2 (-1195) polymorphism (odds ratios of 1.58 (95% CI = 1.15-2.18) (P < 0.01) for heterozygous comparison model and 2.08 (95% CI = 1.48-2.92) (P < 0.01) for homozygous comparison model). No association was observed for other polymorphisms. In conclusion, NFKB1 -94 ins/del and COX-2 (-1195G>A) polymorphisms may be, respectively, associated with decreased and increased prostate cancer risk in the Chinese population.

Sun L, Wei X, Liu X, et al.
Expression of prostaglandin E2 and EP receptors in human papillary thyroid carcinoma.
Tumour Biol. 2016; 37(4):4689-97 [PubMed] Related Publications
The objective of the present study is to determine the role of prostaglandin E2 (PGE2) and downstream EP receptors in the development of human papillary thyroid carcinoma (PTC). A total of 90 thyroid specimens excised from patients undergoing total or subtotal thyroidectomy in the Department of General Surgery, the Fifth Affiliated Hospital of Sun Yat-sen University, China, from August 2013 to September 2014, were analyzed. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical analyses were employed to examine the messenger RNA (mRNA) and protein expression, respectively. The expressions and significances of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), PGE2, and EP receptors in PTC and nodular goiter were investigated. The COX-2 mRNA and protein expression level significantly increased in the PTC tissues than in the paired noncarcinoma tissues adjacent to the PTC or nodular goiter tissues. The mPGES-1 protein expression was also significantly upregulated in the PTC tissues. All the four subtypes of EP receptors (EP1-4) could express in the thyroid tissues, while only the EP4 mRNA and protein levels significantly increased in the PTC tissues. The local production of PGE2 had a higher-level expression in the PTC tissues than in the noncarcinoma thyroid tissues adjacent to the PTC lesion and the benign nodular goiter tissues. The induction of PGE2 biosynthesis as well as the overexpression of EP4 in PTC suggested that this pathway might play an important role in the carcinogenesis and progression of PTC. These observations raise the possibility that pharmacological inhibition of mPGES-1 and/or EP4 may hold therapeutic promise in this common cancer.

Buathong S, Leelayoova S, Mungthin M, et al.
Development and evaluation of PCR methods based on cytochrome c oxidase subunit one (cox1) and NADH dehydrogenase subunit one gene (nad1) to detect Opisthorchis viverrini in human fecal samples.
Parasitol Res. 2015; 114(9):3547-9 [PubMed] Related Publications
Opisthorchis viverrini is highly prevalent throughout Southeast Asia. Chronic infection of this parasite leads to cholangiocarcinoma (CCA), a fatal bile duct cancer. The early and accurate detection of this parasite is very important; therefore, new PCR methods targeting cytochrome c oxidase subunit one and NADH dehydrogenase subunit one gene to detect O. viverrini in fecal specimens have been developed. Ninety O. viverrini-positive human fecal samples were used in this study. The PCR sensitivity of both genes was compared with internal transcribe spacer 2 (ITS2)-PCR. The sensitivity of cox1-PCR and nad1-PCR was 66.7 and 50 %, respectively. The sensitivity of cox1-PCR and nad1-PCR achieved 89.1 and 71.7 % in specimens containing O. viverrini eggs of >100 eggs per gram (EPG). Additionally, these primers can be used to provide the information on genetic diversity from mitochondrial genes of O. viverrini.

Vannini F, Kodela R, Chattopadhyay M, Kashfi K
NOSH-Aspirin Inhibits Colon Cancer Cell Growth: Effects Of Positional Isomerism.
Redox Biol. 2015; 5:421 [PubMed] Related Publications
BACKGROUND: NOSH-aspirin, a novel hybrid that releases nitric oxide (NO) and hydrogen sulfide (H
AIM: We compared the cell growth inhibitory properties of ortho-, meta-, and para-NOSH-aspirins. Effects of electron donating/withdrawing groups on the stability and biological activity of these novel compounds were also evaluated.
METHODS: Cell line: HT-29 (Cyclooxygenase, COX-1 & -2 expressing) and HCT 15 (COX null) human colon adenocarcimoa; Cell growth: MTT; Cell cycle phase distribution: Flow cytometry; Apoptosis: subdiploid (sub-G
RESULTS: The IC
CONCLUSIONS: Positional isomerism affects the potency of NOSH-aspirin. The effects appear to be COX independent.

Wilson AJ, Fadare O, Beeghly-Fadiel A, et al.
Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer.
Oncotarget. 2015; 6(25):21353-68 [PubMed] Free Access to Full Article Related Publications
Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.

Wang DD, Xu Y, Tu YL, et al.
Comparison analysis in synchronous and metachronous metastatic colorectal cancer based on microarray expression profile.
Hepatogastroenterology. 2014 Nov-Dec; 61(136):2215-8 [PubMed] Related Publications
BACKGROUND/AIMS: Colorectal cancer (CRC) is one of the most common malignancies, and liver metastasis is one of the major causes of death of CRC. This study aimed to compare the genetic difference between metachronous lesions (MC) and synchronous lesions (SC) and explore the molecular pathology of CRC metastasis.
METHODOLOGY: Microarray expression profile data (GSE10961) including 8 MC and 10 SC was downloaded from Gene Expression Omnibus. The differentially expressed genes (DEGs) between the two groups were identified based on T test. Furthermore, GO enrichment analysis was performed for the down-regulated DEGs using DAVID. Finally, Classify validation of known CRC genes based on previous studies between MC and SC samples was conducted.
RESULTS: Total of 36 DEGs including 35 down-regulated DEGs and 1 up-regulated DEGs were identified. The expressional differences of the 5 informative oncogenes: EGFr, PIK3R1, PTGS2 (COX-2), PTGS1 (COX1), and ALOX5AP between SC and MC were really tiny.
CONCLUSIONS: Some DEGs, such as NFAT5, OLR1, ERAP2, HOXC6 and TWIST1 might play crucial roles in the regulation of CRC metastasis (both SC and MC) and by disrupting some pathways. However, our results indeed demand further research and experiment.

Connor AE, Baumgartner RN, Baumgartner KB, et al.
Associations between ALOX, COX, and CRP polymorphisms and breast cancer among Hispanic and non-Hispanic white women: The breast cancer health disparities study.
Mol Carcinog. 2015; 54(12):1541-53 [PubMed] Free Access to Full Article Related Publications
Chronic inflammation is suggested to be associated with specific cancer sites, including breast cancer. Recent research has focused on the roles of genes involved in the leukotriene/lipoxygenase and prostaglandin/cyclooxygenase pathways in breast cancer etiology. We hypothesized that genes in ALOX/COX pathways and CRP polymorphisms would be associated with breast cancer risk and mortality in our sample of Hispanic/Native American (NA) (1430 cases, 1599 controls) and non-Hispanic white (NHW) (2093 cases, 2610 controls) women. A total of 104 Ancestral Informative Markers was used to distinguish European and NA ancestry. The adaptive rank truncated product (ARTP) method was used to determine the significance of associations for each gene and the inflammation pathway with breast cancer risk and by NA ancestry. Overall, the pathway was associated with breast cancer risk (PARTP = 0.01). Two-way interactions with NA ancestry (P(adj)  < 0.05) were observed for ALOX12 (rs2292350, rs2271316) and PTGS1 (rs10306194). We observed increases in breast cancer risk in stratified analyses by tertiles of polyunsaturated fat intake for ALOX12 polymorphisms; the largest increase in risk was among women in the highest tertile with ALOX12 rs9904779CC (Odds Ratio (OR), 1.49; 95% Confidence Interval (CI) 1.14-1.94, P(adj) = 0.01). In a sub-analysis stratified by NSAIDs use, two-way interactions with NSAIDs use were found for ALOX12 rs9904779 (P(adj)  = 0.02), rs434473 (P(adj ) = 0.02), and rs1126667 (P(adj)  =  0.01); ORs for ALOX12 polymorphisms ranged from 1.55 to 1.64 among regular users. Associations were not observed with breast cancer mortality. These findings could support advances in the discovery of new pathways related to inflammation for breast cancer treatment.

Dzhugashvili M, Luengo-Gil G, García T, et al.
Role of genetic polymorphisms in NFKB-mediated inflammatory pathways in response to primary chemoradiation therapy for rectal cancer.
Int J Radiat Oncol Biol Phys. 2014; 90(3):595-602 [PubMed] Related Publications
PURPOSE: To investigate whether polymorphisms of genes related to inflammation are associated with pathologic response (primary endpoint) in patients with rectal cancer treated with primary chemoradiation therapy (PCRT).
METHODS AND MATERIALS: Genomic DNA of 159 patients with locally advanced rectal cancer treated with PCRT was genotyped for polymorphisms rs28362491 (NFKB1), rs1213266/rs5789 (PTGS1), rs5275 (PTGS2), and rs16944/rs1143627 (IL1B) using TaqMan single nucleotide polymorphism genotyping assays. The association between each genotype and pathologic response (poor response vs complete or partial response) was analyzed using logistic regression models.
RESULTS: The NFKB1 DEL/DEL genotype was associated with pathologic response (odds ratio [OR], 6.39; 95% confidence interval [CI], 0.78-52.65; P=.03) after PCRT. No statistically significant associations between other polymorphisms and response to PCRT were observed. Patients with the NFKB1 DEL/DEL genotype showed a trend for longer disease-free survival (log-rank test, P=.096) and overall survival (P=.049), which was not significant in a multivariate analysis that included pathologic response. Analysis for 6 polymorphisms showed that patients carrying the haplotype rs28362491-DEL/rs1143627-A/rs1213266-G/rs5789-C/rs5275-A/rs16944-G (13.7% of cases) had a higher response rate to PCRT (OR, 8.86; 95% CI, 1.21-64.98; P=.034) than the reference group (rs28362491-INS/rs1143627-A/rs1213266-G/rs5789-C/rs5275-A/rs16944-G). Clinically significant (grade ≥2) acute organ toxicity was also more frequent in patients with that same haplotype (OR, 4.12; 95% CI, 1.11-15.36; P=.037).
CONCLUSIONS: Our results suggest that genetic variation in NFKB-related inflammatory pathways might influence sensitivity to primary chemoradiation for rectal cancer. If confirmed, an inflammation-related radiogenetic profile might be used to select patients with rectal cancer for preoperative combined-modality treatment.

Lee WT, Huang CC, Chen KC, et al.
Genetic polymorphisms in the prostaglandin pathway genes and risk of head and neck cancer.
Oral Dis. 2015; 21(2):207-15 [PubMed] Related Publications
OBJECTIVE: Previous studies examining the association between genetic variations in prostaglandin pathway and risk of head and neck cancer (HNC) have only included polymorphisms in the PTGS2 (COX2) gene. This study investigated the association between genetic polymorphisms of six prostaglandin pathway genes (PGDS, PTGDS, PTGES, PTGIS, PTGS1 and PTGS2), and risk of HNC.
METHODS: Interviews regarding the consumption of alcohol, betel quid, and cigarette were conducted with 222 HNC cases and 214 controls. Genotyping was performed for 48 tag and functional single-nucleotide polymorphisms (SNPs).
RESULTS: Two tag SNPs of PTGIS showed a significant association with HNC risk [rs522962: log-additive odds ratio (OR) = 1.42, 95% confidence interval (CI): 1.01-1.99 and dominant OR = 1.58, 95% CI: 1.02-2.47; rs6125671: log-additive OR = 1.49, 95% CI: 1.08-2.05 and dominant OR = 1.96, 95% CI: 1.16-3.32]. In addition, a region in PTGIS tagged by rs927068 and rs6019902 was significantly associated with risk of HNC (global P = 0.007). Finally, several SNPs interacted with betel quid and cigarette to influence the risk of HNC.
CONCLUSIONS: Genetic variations in prostaglandin pathway genes are associated with risk of HNC and may modify the relationship between use of betel quid or cigarette and development of HNC.

Di Carlo E, Sorrentino C, Zorzoli A, et al.
The antitumor potential of Interleukin-27 in prostate cancer.
Oncotarget. 2014; 5(21):10332-41 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) is of increasing significance worldwide as a consequence of the population ageing. Fragile elderly patients may particularly benefit from noninvasive and well tolerable immunotherapeutic approaches. Preclinical studies have revealed that the immune-regulatory cytokine IL-27 may exert anti-tumor activities in a variety of tumor types without discernable toxicity. We, thus, investigated whether IL-27 may function as anti-tumor agent in human (h) PCa and analyzed the rationale for its clinical application. In vitro, IL-27 treatment significantly inhibited proliferation and reduced the angiogenic potential of hPCa cells by down-regulating the pro-angiogenesis-related genes fms-related tyrosine kinase (FLT)1, prostaglandin G/H synthase 1/cyclooxygenase-1 (PTGS1/COX-1) and fibroblast growth factor receptor (FGFR)3. In addition, IL-27 up-regulated the anti-angiogenesis-related genes such as CXCL10 and TIMP metallopeptidase inhibitor 3 (TIMP3). In vivo, IL-27 reduced proliferation and vascularization in association with ischemic necrosis of tumors developed after PC3 or DU145 cell injection in athymic nude mice. In patients' prostate tissues, IL-27R was expressed by normal epithelia and low grade PCa and lost by high tumor grade and stages. Nevertheless, IL-27R was expressed by CD11c(+), CD4(+) and CD8(+) leukocytes infiltrating the tumor and draining lymph nodes. These data lead to the conclusion that i) IL-27's anti-PCa potential may be fully exploited in patients with well-differentiated, localized IL-27R positive PCa, since in this case it may act on both cancerous epithelia and the tumor microenvironment; ii) PCa patients bearing high grade and stage tumor that lack IL-27R may benefit, however, from IL-27's immune-stimulatory properties.

Sanità P, Capulli M, Teti A, et al.
Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression.
BMC Cancer. 2014; 14:154 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer cell adopts peculiar metabolic strategies aimed to sustain the continuous proliferation in an environment characterized by relevant fluctuations in oxygen and nutrient levels. Monocarboxylate transporters MCT1 and MCT4 can drive such adaptation permitting the transport across plasma membrane of different monocarboxylic acids involved in energy metabolism.
METHODS: Role of MCTs in tumor-stroma metabolic relationship was investigated in vitro and in vivo using transformed prostate epithelial cells, carcinoma cell lines and normal fibroblasts. Moreover prostate tissues from carcinoma and benign hypertrophy cases were analyzed for individuating clinical-pathological implications of MCT1 and MCT4 expression.
RESULTS: Transformed prostate epithelial (TPE) and prostate cancer (PCa) cells express both MCT1 and MCT4 and demonstrated variable dependence on aerobic glycolysis for maintaining their proliferative rate. In glucose-restriction the presence of L-lactate determined, after 24 h of treatment, in PCa cells the up-regulation of MCT1 and of cytochrome c oxidase subunit I (COX1), and reduced the activation of AMP-activated protein kinase respect to untreated cells. The blockade of MCT1 function, performed by si RNA silencing, determined an appreciable antiproliferative effect when L-lactate was utilized as energetic fuel. Accordingly L-lactate released by high glycolytic human diploid fibroblasts WI-38 sustained survival and growth of TPE and PCa cells in low glucose culture medium. In parallel, the treatment with conditioned medium from PCa cells was sufficient to induce glycolytic metabolism in WI-38 cells, with upregulation of HIF-1a and MCT4. Co-injection of PCa cells with high glycolytic WI-38 fibroblasts determined an impressive increase in tumor growth rate in a xenograft model that was abrogated by MCT1 silencing in PCa cells. The possible interplay based on L-lactate shuttle between tumor and stroma was confirmed also in human PCa tissue where we observed a positive correlation between stromal MCT4 and tumor MCT1 expression.
CONCLUSIONS: Our data demonstrated that PCa progression may benefit of MCT1 expression in tumor cells and of MCT4 in tumor-associated stromal cells. Therefore, MCTs may result promising therapeutic targets in different phases of neoplastic transformation according to a strategy aimed to contrast the energy metabolic adaptation of PCa cells to stressful environments.

Li LH, Kang T, Chen L, et al.
Detection of mitochondrial DNA mutations by high-throughput sequencing in the blood of breast cancer patients.
Int J Mol Med. 2014; 33(1):77-82 [PubMed] Related Publications
Mitochondrial DNA mutations have been identified in serveral types of cancer. In breast cancer, germline and somatic mitochondrial DNA (mtDNA) mutations have been identified. A number of mtDNA mutations in breast cancer have been identified in protein-coding regions (in protein-coding genes, such as ND2, COX3, ND4, ND5 and CytB). Mutations in these structure proteins cause impaired electron transport function and lead to electron leakage and increased reactive oxygen species (ROS) production, which in turn increases oxidative stress and oxidative damage to the mitochondria, as well as to cells. These data establish an association between mtDNA mutations and breast cancer; however, there is no reliable prediction of breast cancer predisposition or progression based on mtDNA mutation patterns thus far. In this study, we used high-throughput sequencing to detect mtDNA mutations in the blood of breast cancer patients. Some of these mutations may be used as potential markers for breast cancer diagnosis.

Tang H, Wei P, Duell EJ, et al.
Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis.
Cancer Epidemiol Biomarkers Prev. 2014; 23(1):98-106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Obesity and diabetes are potentially alterable risk factors for pancreatic cancer. Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have previously not been examined at the genome-wide level.
METHODS: Using genome-wide association studies (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-obesity and gene-diabetes interactions in relation to pancreatic cancer risk by using the likelihood-ratio test nested in logistic regression models and Ingenuity Pathway Analysis (IPA).
RESULTS: After adjusting for multiple comparisons, a significant interaction of the chemokine signaling pathway with obesity (P = 3.29 × 10(-6)) and a near significant interaction of calcium signaling pathway with diabetes (P = 1.57 × 10(-4)) in modifying the risk of pancreatic cancer were observed. These findings were supported by results from IPA analysis of the top genes with nominal interactions. The major contributing genes to the two top pathways include GNGT2, RELA, TIAM1, and GNAS. None of the individual genes or single-nucleotide polymorphism (SNP) except one SNP remained significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene showed an interaction with diabetes (P = 7.91 × 10(-7)) at a false discovery rate of 6%.
CONCLUSIONS: Genetic variations in inflammatory response and insulin resistance may affect the risk of obesity- and diabetes-related pancreatic cancer. These observations should be replicated in additional large datasets.
IMPACT: A gene-environment interaction analysis may provide new insights into the genetic susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer.

Makar KW, Poole EM, Resler AJ, et al.
COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations.
Cancer Causes Control. 2013; 24(12):2059-75 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) target the prostaglandin H synthase enzymes, cyclooxygenase (COX)-1 and COX-2, and reduce colorectal cancer risk. Genetic variation in the genes encoding these enzymes may be associated with changes in colon and rectal cancer risk and in NSAID efficacy.
METHODS: We genotyped candidate polymorphisms and tag SNPs in PTGS1 (COX-1) and PTGS2 (COX-2) in a population-based case–control study (Diet, Activity and Lifestyle Study, DALS) of colon cancer (n = 1,470 cases/1,837 controls) and rectal cancer (n = 583/775), and independently among cases and controls from the Colon Cancer Family Registry (CCFR; colon n = 959/1,535, rectal n = 505/839).
RESULTS: In PTGS2, a functional polymorphism (-765G[C; rs20417) was associated with a twofold increased rectal cancer risk (p = 0.05) in the DALS. This association replicated with a significant nearly fivefold increased risk of rectal cancer in the CCFR study (ORCC vs. GG = 4.88; 95 % CI 1.54–15.45; ORGC vs. GG = 1.36; 95 %CI 0.95–1.94). Genotype–NSAID interactions were observed in the DALS for PTGS1 and rectal cancer risk and for PTGS2 and colon cancer risk, but were no longer significant after correcting for multiple comparisons and did not replicate in the CCFR. No significant associations between PTGS1 polymorphisms and colon or rectal cancer risk were observed.

Nagao M, Sato Y, Yamauchi A
A meta-analysis of PTGS1 and PTGS2 polymorphisms and NSAID intake on the risk of developing cancer.
PLoS One. 2013; 8(8):e71126 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Several studies have investigated whether the polymorphisms in the prostaglandin endoperoxide synthase 1 (PTGS1) and PTGS2 genes and nonsteroidal anti-inflammatory drug (NSAID) use are associated with cancer risk; however, those studies have produced mixed results. Therefore, we performed a meta-analysis to evaluate the association between the PTGS1 and PTGS2 polymorphisms and the effect of NSAID use on the risk of developing cancer.
METHODS: We conducted a comprehensive search in PubMed through March 2012. The odds ratios (ORs) with the corresponding 95% confidence intervals (CIs) were calculated using the fixed-effect model or the random-effect model.
RESULTS: The database search generated 13 studies that met the inclusion criteria. For PTGS1 rs3842787, NSAID users homozygous for the major allele (CC) had a significantly decreased cancer risk compared with non-NSAID users (OR = 0.73, 95% CI = 0.59-0.89). For PTGS2 rs5275 and rs20417, there were no significant differences between the gene polymorphism and NSAID use on cancer risk among the 8 and 7 studies, respectively. However, in the stratified analysis by the type of cancer or ethnicity population, NSAID users homozygous for the major allele (TT) in rs5275 demonstrated significantly decreased cancer risk compared with non-NSAID users in cancer type not involving colorectal adenoma (OR = 0.70, 95% CI = 0.59-0.83) and among the USA population (OR = 0.67, 95% CI = 0.56-0.82). NSAID users homozygous for the major allele (GG) in rs20417 displayed a significantly decreased cancer risk than non-NSAID users among the US population (OR = 0.72, 95% CI = 0.58-0.88). For the PTGS2 rs689466 and rs2745557 SNPs, there were no significant differences.
CONCLUSION: This meta-analysis suggests that the associations between PTGS polymorphisms and NSAID use on cancer risk may differ with regard to the type of cancer and nationality.

Kraus S, Hummler S, Toriola AT, et al.
Impact of genetic polymorphisms on adenoma recurrence and toxicity in a COX2 inhibitor (celecoxib) trial: results from a pilot study.
Pharmacogenet Genomics. 2013; 23(8):428-437 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Chemoprevention trials have shown that celecoxib reduces adenoma recurrence but can cause cardiovascular toxicity. In this pilot study, we evaluated associations between genetic variation in several candidate pathways (e.g. prostaglandin synthesis) and adenoma recurrence and cardiovascular and gastrointestinal toxicities.
METHODS: Genotyping analysis was carried out on 117 Israeli colorectal adenoma patients who participated in the Prevention of Colorectal Sporadic Adenomatous Polyps trial. Reassessment followed after 3 years on celecoxib and after 2 years from termination of treatment with celecoxib. Efficacy (absence of colorectal adenomas) was measured by colonoscopy at years 1, 3, and 5. Toxicities were assessed by investigators during celecoxib treatment and by self-report post-treatment. A linkage disequilibrium-based selection algorithm (r2≥0.90, MAF≥4%) identified 255 tagSNPs in 25 analyzed candidate genes. Genotyping was performed by using Illumina GoldenGate technology.
RESULTS: Multiple genetic variants were associated with adenoma recurrence and toxicity. Genetic variability in COX1, COX2, and ALOX12/15 genes played a role in adenoma recurrence, particularly among patients on placebo. More gene variants (especially variants in PGES, CRP, SRC, and GPX3) were associated with increased risk for cardiovascular toxicity and symptoms, compared with gastrointestinal toxicity and symptoms. The increased risk for cardiovascular toxicity/symptoms associated with the SRC gene variants (rs6017996, rs6018256, rs6018257) ranged from 6.61 (95% confidence interval 1.66-26.36, P<0.01) to 10.71 (95% confidence interval 1.96-58.60, P<0.01).
CONCLUSION: Genetic polymorphisms in multiple inflammation-related genes appear to interact with celecoxib on adenoma recurrence and its attendant toxicity, particularly cardiovascular toxicity/symptoms. Larger studies validating these pharmacogenetic relationships are needed.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTGS1, Cancer Genetics Web: http://www.cancer-genetics.org/PTGS1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999