Gene Summary

Gene:PTH1R; parathyroid hormone 1 receptor
Summary:The protein encoded by this gene is a member of the G-protein coupled receptor family 2. This protein is a receptor for parathyroid hormone (PTH) and for parathyroid hormone-like hormone (PTHLH). The activity of this receptor is mediated by G proteins which activate adenylyl cyclase and also a phosphatidylinositol-calcium second messenger system. Defects in this receptor are known to be the cause of Jansen's metaphyseal chondrodysplasia (JMC), chondrodysplasia Blomstrand type (BOCD), as well as enchodromatosis. Two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, May 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:parathyroid hormone/parathyroid hormone-related peptide receptor
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 02 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTH1R (cancer-related)

Goltzman D
Nonparathyroid Hypercalcemia.
Front Horm Res. 2019; 51:77-90 [PubMed] Related Publications
Primary hyperparathyroidism is among the most common causes of hypercalcemia. However, ingestion of medication, including hydrochlorathiazide, lithium, and foscarnet, excessive vitamin A ingestion, endocrinopathies such as hyperthyroidism, adrenal insufficiency, and acromegaly, abnormal nutrient intake such as parenteral nutrition in preterm infants and milk-alkali syndrome, and prolonged immobilization have all been associated with hypercalcemia. The most common cause of nonparathyroid hypercalcemia is neoplasia. Hypercalcemia is generally due to the secretion of parathyroid hormone (PTH)-related peptide (PTHrP) by a wide variety of nonmetastatic solid tumors, including squamous cell tumors but also hematologic tumors. PTHrP, although encoded by a distinct gene, shares amino acid sequence homology with PTH in the amino-terminal domain, which allows it to cross-react at a common G protein receptor, the type 1 PTH/PTHrP receptor (PTHR1), resulting in similar skeletal effects and effects on calcium and phosphorus metabolism. Increased PTHrP action with hypercalcemia may be seen in the benign disease Jansen's metaphyseal chondrodysplasia due to a gain-of-function mutation in PTHR1. Another humoral factor, 1,25-dihyroxyvitamin D [1,25(OH)2D] may be produced by lymphomas, but also by benign granulomatous disorders and may also cause hypercalcemia when its metabolism is genetically impaired. Vitamin D intoxication may cause hypercalcemia due to overproduction of the metabolite, 25 hydroxyvitamin D, apparently in the absence of conversion to 1,25(OH)2D. Malignancies metastatic to bone or arising in bone (such as multiple myeloma) may produce a variety of growth factors and cytokines, in addition to PTHrP, which can contribute to tumor growth as well as osteolysis and hypercalcemia.

Yeetong P, Phewplung T, Kamolvisit W, et al.
Widespread and debilitating hemangiomas in a patient with enchondromatosis and D-2-hydroxyglutaric aciduria.
Skeletal Radiol. 2018; 47(11):1577-1582 [PubMed] Related Publications
Metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA) (OMIM 614875) is a severe chondrodysplasia combined with a urinary excretion of D-2-hydroxyglutaric acid. Here, we reported the tenth case of this disease. A 15-year-old boy had symmetric radiolulencies in the metaphyses of the long bones suggesting enchondromatosis and platyspondyly. Remarkably, he manifested widespread cavernous hemangiomas including scalp, lips, tongue, larynx, and prepuce, with the onset of 3 years of age. Hemangiomas at the larynx had caused dyspnea and those in the oral cavity led to recurrent bleeding, requiring several surgical removals. These multiple and debilitating hemangiomas have never been previously reported in patients with MC-HGA. Mutation analyses including Sanger sequencing of genes involving in enchondromatosis and the metabolic pathway of D-2-hydroxyglutarate including PTHR1, D2HGDH, HOT, and IDH1, as well as whole-exome sequencing for proband-parent trio analysis and paired blood versus hemangioma studies showed no pathogenic variants. In summary, we reported the tenth patient with MC-HGA who manifested widespread and debilitating hemangiomas in several organs, expanding the clinical spectrum of MC-HGA.

Li S, Chen P, Zheng K, et al.
β-Alanine mediated inhibition of PTHR1suppresses the proliferation, invasion and tumorigenesis in metastatic human osteosarcoma U2OS cells.
Int J Biol Macromol. 2018; 111:1255-1263 [PubMed] Related Publications
The present study was aimed to investigate the effect of β-alanine mediated inhibition of parathyroid hormone 1 receptor (PTHR1), suppresses the proliferation, invasion, and tumorigenesis in metastatic human osteosarcoma U2OS cells. Cell survival rate was reduced 96.54, 91.23, 84.62, 76.42 and 69.72% following incubation of β-alanine at 50-250 mM respectively. Annexin-V/propidium iodide (PI) staining showed a reduced level of viable cells (71.37%) at 250 mM of β-alanine. U2OS cell proliferation, adhesion, invasion, and migration were decreased following incubation with β-alanine. Matrix metalloproteinases-2/9 (MMP-2/9) mRNA expression was reduced, whereas tissue inhibitors of metalloproteinases-1/2 (TIMP-1/2) mRNA expression was increased remarkably. The mRNA and protein of PTHR1 were reduced in the cells following incubation with β-alanine. Vacuole membrane protein 1 (Vmp1) mRNA and protein were increased in the cells following incubation with β-alanine. In tunel assay, the number of PTHR1 positive cells was 67, 34 and 17 following incubation with β-alanine at 150, 200 and 250 mM respectively. Taking all these data together, it is concluded that β-alanine mediated inhibition of PTHR1 reduced the U2OS cell proliferation, invasion, migration, and tumorigenesis. Furthermore, the results indicated that the β-alanine induced expression of PTHR1 has a positive relationship with invasion and metastasis of osteosarcoma cells.

Wang HJ, Wang L, Song SS, et al.
Decreased expression of PTH1R is a poor prognosis in hepatocellular carcinoma.
Cancer Biomark. 2018; 21(3):723-730 [PubMed] Related Publications
BACKGROUND AND AIM: Hypercalcemia is a potentially fatal and not rare complication of hepatocellular carcinoma (HCC), and its underlying mechanism remains unclear. Parathyroid hormone (PTH) is the most important regulator of the concentrations of calcium and phosphate in blood; parathyroid hormone-related protein (PTHrP) was the most frequent cause of humoral hypercalcemia of malignancy; parathyroid hormone 1 receptor (PTH1R) is the common receptor for PTH and PTHrP. The aim of this study is to investigate the expression of PTH, PTHrP, and PTH1R in HCC tissues, and their relationship with clinical pathological characters in HCC.
METHODS: First, a meta-analysis based on online Oncomine Expression Array database was conducted to compare the different mRNA expression of PTH1R, PTH and PTHrP between hepatocellular carcinoma and normal tissues. Then, the protein expression level of differentially expressed gene was examined by immunohistochemistry staining in 223 HCC tissues and 102 non-tumorous liver tissues controls. The relationship between the protein expression and clinicopathological parameters was analyzed by χ2 test, and overall survival analysis was performed using Kaplan-Meier survival analysis.
RESULTS: PTH1R mRNA expression was significantly lower in HCC tissues compared with normal tissues, while the expression of PTH and PTHrP showed no significant difference between HCC tissues and normal tissues. High PTH1R protein expression was found in 90/102 cases of adjacent non-tumorous liver tissues, and in 91 of 223 cases of HCC tissues. PTH1R expression was significantly related to tumor size, Edmondson Grade, AFP, and overall survival.
CONCLUSIONS: PTH1R may be the major cause of hypercalcemia in HCC, and the decreased PTH1R expression was a poor prognosis in HCC.

Calvete O, Herraiz M, Reyes J, et al.
A cumulative effect involving malfunction of the PTH1R and ATP4A genes explains a familial gastric neuroendocrine tumor with hypothyroidism and arthritis.
Gastric Cancer. 2017; 20(6):998-1003 [PubMed] Related Publications
BACKGROUND: Type I gastric neuroendocrine tumors (gNETs) classically arise because of hypergastrinemia and involve destruction of parietal cells, which are responsible for gastric acid secretion through the ATP4A proton pump and for intrinsic factor production.
METHODS: By whole exome sequencing, we studied a family with three members with gNETs plus hypothyroidism and rheumatoid arthritis to uncover their genetic origin.
RESULTS: A heterozygous missense mutation in the ATP4A gene was identified. Carriers of this variant had low ferritin and vitamin B
CONCLUSION: Both mutations suggest that a collaborative mechanism is operative in this family, in which mutations in these genes affect the function and viability of parietal cells and lead to the achlorhydria that drives hypergastrinemia and the formation of gNETs.

González Á, García de Durango C, Alonso V, et al.
Distinct Osteomimetic Response of Androgen-Dependent and Independent Human Prostate Cancer Cells to Mechanical Action of Fluid Flow: Prometastatic Implications.
Prostate. 2017; 77(3):321-333 [PubMed] Related Publications
BACKGROUND AND METHODS: Prostate cancer frequently expresses an osteomimetic phenotype, but it is unclear how it is regulated and what biological and clinical implications it confers. Because mechanical forces physiologically regulate bone-remodeling activity in osteocytes, we hypothesized that mechanical action of fluid flow (MAFF) at the cancer microenvironment may similarly foster prostate cancer cell osteomimicry.
RESULTS: We showed that in vitro MAFF on androgen-dependent (LNCap) and androgen-independent (PC3) prostate cancer cells remarkably increased OPG, VEGF, RunX2, PTH1R, and PTHrP gene expression in both cell lines irrespective of their androgen dependency. MAFF also altered the cytokine secretion pattern of prostate cancer cells, including Ang2, SCF, and TNFα increase with TRAIL decrease in the supernatant of both cell lines; preferential increase of Leptin and PDGF-BB in LnCap and of VEGF, IL-8, and G-CSF in PC3; and exclusive increase of FGFβ, MIF, and PECAM-1 with HGF decrease in LnCap, and of TGBβ1, HGF, M-CSF, CXCL1, and CCL7 with NGF decrease in PC3. Murine MLO-Y4 osteocyte-conditioned medium (CM) abrogated M-CSF, G-CSG, IL-8, TNFα, and FGFβ secretion-stimulating activity of mechanical stimulation on PC3 cells, and did the opposite effect on LnCap cells. However, MAFF fostered osteomimetic gene expression response of PC3 cells, but not of LnCap cells, to mechanically stimulated osteocyte-CM. Moreover, it abrogated TNFα and IL-8 secretion inhibitory effect of osteocyte-CM on mechanically stimulated PC3 cells and G-CSF, TNFα, and FGFβ-stimulating effect on mechanically stimulated LnCap cells.
CONCLUSIONS: MAFF activated osteoblast-like phenotype of prostate cancer cells and altered their responses to osteocyte soluble factors. It also induced osteocyte production of osteomimetic gene expression- and cytokine secretion-stimulating factors for prostate cancer cells, particularly, when they were mechanically stimulated. Importantly, MAFF induced a prometastatic response in androgen-independent prostate cancer cells, suggesting the interest of mechanical stimulation-dependent transcription and secretion patterns as diagnostic biomarkers, and as therapeutic targets for the screening of bone-metastasizing phenotype inhibitors upregulated during prostate cancer cell response to MAFF at the cancer microenvironment. Prostate 77:321-333, 2017. © 2016 Wiley Periodicals, Inc.

Beena S, Murlidhar L, Seshadri S, et al.
Usefulness of fetal autopsy in the diagnosis of blomstrand chondrodysplasia: a report of three cases.
J Matern Fetal Neonatal Med. 2017; 30(9):1041-1044 [PubMed] Related Publications
Blomstrand osteochondrodysplasia (BOCD) is a rare autosomal recessive sclerosing skeletal dysplasia characterized by accelerated chondrocyte differentiation. In this article, we discuss three cases where lethal skeletal dysplasia was suspected and Blomstrand dysplasia was diagnosed by autopsy. Antenatal ultrasound findings include increased nuchal translucency, tetramicromelia and polyhydramnios. Radiological hallmark is advanced skeletal maturation and bone sclerosis. Histology of long bones revealed narrow cartilagenous cap and changes in the physeal growth zone which showed severe hypoplasia and disorganization of proliferative phase and hypertrophic phase. Homozygous and compound heterozygous mutations in PTHR1 gene have been implicated in the pathogenesis of this chondrodysplasia.

Ho PW, Goradia A, Russell MR, et al.
Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo.
Oncogene. 2015; 34(22):2922-33 [PubMed] Related Publications
Osteosarcoma (OS) is the most common cancer of bone. Parathyroid hormone (PTH) regulates calcium homeostasis and bone development, while the paracrine/autocrine PTH-related protein (PTHrP) has central roles in endochondral bone formation and bone remodeling. Using a murine OS model, we found that OS cells express PTHrP and the common PTH/PTHrP receptor (PTHR1). To investigate the role of PTHR1 signaling in OS cell behavior, we used shRNA to reduce PTHR1 expression. This only mildly inhibited proliferation in vitro, but markedly reduced invasion through collagen and reduced expression of RANK ligand (RANKL). Administration of PTH(1-34) did not stimulate OS proliferation in vivo but, strikingly, PTHR1 knockdown resulted in a profound growth inhibition and increased differentiation/mineralization of the tumors. Treatment with neutralizing antibody to PTHrP did not recapitulate the knockdown of PTHR1. Consistent with this lack of activity, PTHrP was predominantly intracellular in OS cells. Knockdown of PTHR1 resulted in increased expression of late osteoblast differentiation genes and upregulation of Wnt antagonists. RANKL production was reduced in knockdown tumors, providing for reduced homotypic signaling through the receptor, RANK. Loss of PTHR1 resulted in the coordinated loss of gene signatures associated with the polycomb repressive complex 2 (PRC2). Using Ezh2 inhibitors, we demonstrate that the increased expression of osteoblast maturation markers is in part mediated by the loss of PRC2 activity. Collectively these results demonstrate that PTHR1 signaling is important in maintaining OS proliferation and undifferentiated state. This is in part mediated by intracellular PTHrP and through regulation of the OS epigenome.

Risom L, Christoffersen L, Daugaard-Jensen J, et al.
Identification of six novel PTH1R mutations in families with a history of primary failure of tooth eruption.
PLoS One. 2013; 8(9):e74601 [PubMed] Free Access to Full Article Related Publications
Primary Failure of tooth Eruption (PFE) is a non-syndromic disorder which can be caused by mutations in the parathyroid hormone receptor 1 gene (PTH1R). Traditionally, the disorder has been identified clinically based on post-emergent failure of eruption of permanent molars. However, patients with PTH1R mutations will not benefit from surgical and/or orthodontic treatment and it is therefore clinically important to establish whether a given failure of tooth eruption is caused by a PTH1R defect or not. We analyzed the PTH1R gene in six patients clinically diagnosed with PFE, all of which had undergone surgical and/or orthodontic interventions, and identified novel PTH1R mutations in all. Four of the six mutations were predicted to abolish correct mRNA maturation either through introduction of premature stop codons (c.947C>A and c.1082G>A), or by altering correct mRNA splicing (c.544-26_544-23del and c.989G>T). The latter was validated by transfection of minigenes. The six novel mutations expand the mutation spectrum for PFE from eight to 14 pathogenic mutations. Loss-of-function mutations in PTH1R are also associated with recessively inherited Blomstrand chondrodysplasia. We compiled all published PTH1R mutations and identified a mutational overlap between Blomstrand chondrodysplasia and PFE. The results suggest that a genetic approach to preclinical diagnosis will have important implication for surgical and orthodontic treatment of patients with failure of tooth eruption.

Aluise CD, Rose K, Boiani M, et al.
Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles.
Chem Res Toxicol. 2013; 26(2):270-9 [PubMed] Free Access to Full Article Related Publications
Oxidation of membrane phospholipids is associated with inflammation, neurodegenerative disease, and cancer. Oxyradical damage to phospholipids results in the production of reactive aldehydes that adduct proteins and modulate their function. 4-Hydroxynonenal (HNE), a common product of oxidative damage to lipids, adducts proteins at exposed Cys, His, or Lys residues. Here, we demonstrate that peptidyl-prolyl cis/trans-isomerase A1 (Pin1), an enzyme that catalyzes the conversion of the peptide bond of pSer/pThr-Pro moieties in signaling proteins from cis to trans, is highly susceptible to HNE modification. Incubation of purified Pin1 with HNE followed by MALDI-TOF/TOF mass spectrometry resulted in detection of Michael adducts at the active site residues His-157 and Cys-113. Time and concentration dependencies indicate that Cys-113 is the primary site of HNE modification. Pin1 was adducted in MDA-MB-231 breast cancer cells treated with 8-alkynyl-HNE as judged by click chemistry conjugation with biotin followed by streptavidin-based pulldown and Western blotting with anti-Pin1 antibody. Furthermore, orbitrap MS data support the adduction of Cys-113 in the Pin1 active site upon HNE treatment of MDA-MB-231 cells. siRNA knockdown of Pin1 in MDA-MB-231 cells partially protected the cells from HNE-induced toxicity. Recent studies indicate that Pin1 is an important molecular target for the chemopreventive effects of green tea polyphenols. The present study establishes that it is also a target for electrophilic modification by products of lipid peroxidation.

Fish RJ, Neerman-Arbez M
A novel regulatory element between the human FGA and FGG genes.
Thromb Haemost. 2012; 108(3):427-34 [PubMed] Related Publications
High circulating fibrinogen levels correlate with cardiovascular disease (CVD) risk. Fibrinogen levels vary between people and also change in response to physiological and environmental stimuli. A modest proportion of the variation in fibrinogen levels can be explained by genotype, inferring that variation in genomic sequences that regulate the fibrinogen genes ( FGA , FGB and FGG ) may affect hepatic fibrinogen production and perhaps CVD risk. We previously identified a conserved liver enhancer in the fibrinogen gene cluster (CNC12), between FGB and FGA . Genome-wide Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that transcription factors which bind fibrinogen gene promoters also interact with CNC12, as well as two potential fibrinogen enhancers (PFE), between FGA and FGG . Here we show that one of the PFE sequences has potent hepatocyte enhancer activity. Using a luciferase reporter gene system, we found that PFE2 enhances minimal promoter- and FGA promoter-driven gene expression in hepatoma cells, regardless of its orientation with respect to the promoters. A region within PFE2 bears a short series of conserved nucleotides which maintain enhancer activity without flanking sequence. We also demonstrate that PFE2 is a liver enhancer in vivo, driving enhanced green fluorescent protein expression in transgenic zebrafish larval livers. Our study shows that combining public domain ChIP-seq data with in vitro and in vivo functional tests can identify novel fibrinogen gene cluster regulatory sequences. Variation in such elements could affect fibrinogen production and influence CVD risk.

Cowan RW, Singh G, Ghert M
PTHrP increases RANKL expression by stromal cells from giant cell tumor of bone.
J Orthop Res. 2012; 30(6):877-84 [PubMed] Related Publications
Giant cell tumor of bone (GCT) presents with numerous osteoclast-like multinucleated giant cells that are principally responsible for the extensive bone resorption by the tumor. Although the precise etiology of GCT remains uncertain, the accumulation of giant cells is partially due to the high expression of the receptor activator of nuclear factor-κB ligand (RANKL) from the neoplastic stromal cells. Here, we have investigated whether parathyroid hormone-related protein (PTHrP) plays a role in the pathogenesis of GCT. Immunohistochemistry results revealed PTHrP expression in the stromal cells of the tumor, and that its receptor, the parathyroid hormone type 1 receptor (PTH1R), is expressed by both the stromal cells and giant cells. PCR and Western blot analyses confirmed the expression of PTHrP and PTH1R by isolated stromal cells from five patients presenting with GCT. Treatment of GCT stromal cells with varying concentrations of PTHrP (1-34) significantly increased both RANKL gene expression and the number of multinucleated cells formed from RAW 264.7 cells in co-culture experiments, whereas inhibition of PTHrP with a neutralizing antibody decreased RANKL gene expression. These results suggest that PTHrP is expressed within GCT by the stromal cells and can contribute to the abundant RANKL expression and giant cell formation within the tumor.

Pansuriya TC, Oosting J, Verdegaal SH, et al.
Maffucci syndrome: a genome-wide analysis using high resolution single nucleotide polymorphism and expression arrays on four cases.
Genes Chromosomes Cancer. 2011; 50(9):673-9 [PubMed] Related Publications
Ollier disease and Maffucci syndrome are rare, nonhereditary skeletal disorders characterized by the presence of multiple enchondromas with (Maffucci) or without (Ollier) co-existing multiple hemangiomas of soft tissue. Enchondromas can progress toward central chondrosarcomas. PTH1R mutations are found in a small subset of Ollier patients. The genetic deficit in Maffucci syndrome is unknown. Here, we report the first genome-wide analysis using Affymetrix SNP 6.0 array on Maffucci enchondromas (n = 4) and chondrosarcomas (n = 2) from four cases. Results were compared to a previously studied cohort of Ollier patients (n = 37). We found no loss of heterozygosity (LOH) or common copy number alterations shared by all enchondromas, with the exception of some copy number variations. As expected, chondrosarcomas were found to have multiple genomic imbalances. This is similar to conventional solitary and Ollier-related enchondromas and chondrosarcomas and supports the multistep genetic progression model. Expression profiling using Illumina BeadArray-v3 chip revealed that cartilaginous tumors in Maffucci patients are more similar to such tumors in Ollier patients than to sporadic cartilage tumors. Point mutations in a single gene or other copy number neutral genomic changes might play a role in enchondromagenesis.

Isowa S, Shimo T, Ibaragi S, et al.
PTHrP regulates angiogenesis and bone resorption via VEGF expression.
Anticancer Res. 2010; 30(7):2755-67 [PubMed] Related Publications
BACKGROUND: Parathyroid hormone-related protein (PTHrP) is a key regulator of osteolytic metastasis of breast cancer (BC) cells, but its targets and mechanisms of action are not fully understood. This study investigated whether/how PTHrP (1-34) signaling regulates expression of vascular endothelial growth factor (VEGF) produced by BC cells.
MATERIALS AND METHODS: A mouse model of bone metastasis was prepared by inoculating mice with tumour cell suspensions of the human BC cell line MDA-MB-231 via the left cardiac ventricle. VEGF expression was examined by Western blot and real-time RT-PCR analysis, as well as by confocal microscopy in the bone microenvironment.
RESULTS: PTHrP was expressed in cancer cells producing PTH/PTHrP receptor and VEGF that had invaded the bone marrow, and PTHrP was up-regulated VEGF in MDA-MB-231 in vitro. The culture medium conditioned by PTHrP-treated MDA-MB-231 cells stimulated angiogenesis and osteoclastogenesis compared with control medium, giving a response that was inhibited by VEGF-neutralizing antibody treatment. Inhibition of protein kinase C (PKC) prevented PTHrP-induced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and PTHrP-induced VEGF expression.
CONCLUSION: PTHrP plays an important role in modulating the angiogenic and bone osteolytic actions of VEGF through PKC-dependent activation of an ERK1/2 and p38 signaling pathway during bone metastasis by breast cancer cells.

Khan GN, Gorin MA, Rosenthal D, et al.
Pomegranate fruit extract impairs invasion and motility in human breast cancer.
Integr Cancer Ther. 2009; 8(3):242-53 [PubMed] Related Publications
PURPOSE: Pomegranate fruit extracts (PFEs) possess polyphenolic and other compounds with antiproliferative, pro-apoptotic and anti-inflammatory effects in prostate, lung, and other cancers. Because nuclear transcription factor-kB (NF-kB) is known to regulate cell survival, proliferation, tumorigenesis, and inflammation, it was postulated that PFEs may exert anticancer effects at least in part by modulating NF-kB activity.
EXPERIMENTAL DESIGN: The authors investigated the effect of a novel, defined PFE consisting of both fermented juice and seed oil on the NF-kB pathway, which is constitutively active in aggressive breast cancer cell lines. The effects of the PFE on NF-kB-regulated cellular processes such as cell survival, proliferation, and invasion were also examined.
RESULTS: Analytical characterization of the bioactive components of the PFE revealed active constituents, mainly ellagitannins and phenolic acids in the aqueous PFE and conjugated octadecatrienoic acids in the lipid PFE derived from seeds.The aqueous PFE dose-dependently inhibited NF-kB-dependent reporter gene expression associated with proliferation, invasion, and motility in aggressive breast cancer phenotypes while decreasing RhoC and RhoA protein expression.
CONCLUSION: Inhibition of motility and invasion by PFEs, coincident with suppressed RhoC and RhoA protein expression, suggests a role for these defined extracts in lowering the metastatic potential of aggressive breast cancer species.

Avnet S, Longhi A, Salerno M, et al.
Increased osteoclast activity is associated with aggressiveness of osteosarcoma.
Int J Oncol. 2008; 33(6):1231-8 [PubMed] Related Publications
Osteosarcoma (OS) is a highly malignant primary skeletal tumor with a striking tendency to rapidly destroy the surrounding bone and metastasize, since metastases are frequently present at clinical onset. The basis for the aggressiveness of this tumor is largely unknown. However, recent studies in in vivo models indicate that the anti-osteolytic drugs, bisphosphonates, can inhibit the tumor local expansion and the formation of metastases. We further investigated the association between the presence of active osteoclasts and the aggressiveness of OS. We evaluated the presence of osteoclasts and the mRNA of different osteoclast-related genes in tumor biopsies from 16 OS patients and in three OS cell lines and the serum levels of bone resorption markers in the same series and in 28 other patients. Tumor-associated osteoclasts were found in 63 and 75% of cases by histological and mRNA analysis. Among different serum markers, only MMP-9 was significantly higher in OS cases (p=0.0001), whereas TRACP 5b was significantly higher in metastatic patients compared to nonmetastatic patients (p=0.0509). Serum TRACP 5b was significantly correlated to serum NTX (p<0.0001) and cathepsin K mRNA in tumor tissues (p=0.0153). In 8 patients we also analyzed TRACP 5b serum level at follow-up and we verified a significant decrease of TRACP 5b after primary tumor removal (p=0.0117). In conclusion, tumor-infiltrating osteoclasts are frequently found in OS and increased serum TRACP 5b levels and the presence of active osteoclast at primary sites were positively associated with tumor aggressiveness.

Couvineau A, Wouters V, Bertrand G, et al.
PTHR1 mutations associated with Ollier disease result in receptor loss of function.
Hum Mol Genet. 2008; 17(18):2766-75 [PubMed] Free Access to Full Article Related Publications
PTHR1-signaling pathway is critical for the regulation of endochondral ossification. Thus, abnormalities in genes belonging to this pathway could potentially participate in the pathogenesis of Ollier disease/Maffucci syndrome, two developmental disorders defined by the presence of multiple enchondromas. In agreement, a functionally deleterious mutation in PTHR1 (p.R150C) was identified in enchondromas from two of six unrelated patients with enchondromatosis. However, neither the p.R150C mutation (26 tumors) nor any other mutation in the PTHR1 gene (11 patients) could be identified in another study. To further define the role of PTHR1-signaling pathway in Ollier disease and Maffucci syndrome, we analyzed the coding sequences of four genes (PTHR1, IHH, PTHrP and GNAS1) in leucocyte and/or tumor DNA from 61 and 23 patients affected with Ollier disease or Maffucci syndrome, respectively. We identified three previously undescribed missense mutations in PTHR1 in patients with Ollier disease at the heterozygous state. Two mutations (p.G121E, p.A122T) were present only in enchondromas, and one (p.R255H) in both enchondroma and leukocyte DNA. Assessment of receptor function demonstrated that these three mutations impair PTHR1 function by reducing either the affinity of the receptor for PTH or the receptor expression at the cell surface. These mutations were not found in DNA from 222 controls. Including our data, PTHR1 functionally deleterious mutations have now been identified in five out 31 enchondromas from Ollier patients. These findings provide further support for the idea that heterozygous mutations in PTHR1 that impair receptor function participate in the pathogenesis of Ollier disease in some patients.

Nadella MV, Shu ST, Dirksen WP, et al.
Expression of parathyroid hormone-related protein during immortalization of human peripheral blood mononuclear cells by HTLV-1: implications for transformation.
Retrovirology. 2008; 5:46 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Adult T-cell leukemia/lymphoma (ATLL) is initiated by infection with human T-lymphotropic virus type-1 (HTLV-1); however, additional host factors are also required for T-cell transformation and development of ATLL. The HTLV-1 Tax protein plays an important role in the transformation of T-cells although the exact mechanisms remain unclear. Parathyroid hormone-related protein (PTHrP) plays an important role in the pathogenesis of humoral hypercalcemia of malignancy (HHM) that occurs in the majority of ATLL patients. However, PTHrP is also up-regulated in HTLV-1-carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients without hypercalcemia, indicating that PTHrP is expressed before transformation of T-cells. The expression of PTHrP and the PTH/PTHrP receptor during immortalization or transformation of lymphocytes by HTLV-1 has not been investigated.
RESULTS: We report that PTHrP was up-regulated during immortalization of lymphocytes from peripheral blood mononuclear cells by HTLV-1 infection in long-term co-culture assays. There was preferential utilization of the PTHrP-P2 promoter in the immortalized cells compared to the HTLV-1-transformed MT-2 cells. PTHrP expression did not correlate temporally with expression of HTLV-1 tax. HTLV-1 infection up-regulated the PTHrP receptor (PTH1R) in lymphocytes indicating a potential autocrine role for PTHrP. Furthermore, co-transfection of HTLV-1 expression plasmids and PTHrP P2/P3-promoter luciferase reporter plasmids demonstrated that HTLV-1 up-regulated PTHrP expression only mildly, indicating that other cellular factors and/or events are required for the very high PTHrP expression observed in ATLL cells. We also report that macrophage inflammatory protein-1alpha (MIP-1alpha), a cellular gene known to play an important role in the pathogenesis of HHM in ATLL patients, was highly expressed during early HTLV-1 infection indicating that, unlike PTHrP, its expression was enhanced due to activation of lymphocytes by HTLV-1 infection.
CONCLUSION: These data demonstrate that PTHrP and its receptor are up-regulated specifically during immortalization of T-lymphocytes by HTLV-1 infection and may facilitate the transformation process.

French D, Hamilton LH, Mattano LA, et al.
A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group.
Blood. 2008; 111(9):4496-9 [PubMed] Free Access to Full Article Related Publications
As glucocorticoid use increased in acute lymphoblastic leukemia, osteonecrosis became an increasingly frequent complication. Besides increased age, host risk factors are poorly defined. We tested whether 12 polymorphisms were associated with osteonecrosis among patients 10 years and older treated on the CCG1882 protocol. Candidate genes (TYMS, MTHFR, ABCB1, BGLAP, ACP5, LRP5, ESR1, PAI-1, VDR, PTH, and PTHR) were chosen based on putative mechanisms underlying osteonecrosis risk. All children received dexamethasone, with doses varying by treatment arm. A PAI-1 polymorphism (rs6092) was associated with risk of osteonecrosis in univariate (P = .002; odds ratio = 2.79) and multivariate (P = .002; odds ratio = 2.89) analyses (adjusting for gender, age, and treatment arm). Overall, 21 of 78 (26.9%) children with PAI-1 GA/AA genotypes, versus 25 of 214 (11.7%) children with GG genotype, developed osteonecrosis. PAI-1 polymorphisms and PAI-1 serum levels have previously been associated with thrombosis. We conclude that PAI-1 genetic variation may contribute to risk of osteonecrosis.

Haaber J, Abildgaard N, Knudsen LM, et al.
Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis.
Br J Haematol. 2008; 140(1):25-35 [PubMed] Related Publications
Osteolytic bone disease (OBD) in multiple myeloma (MM) is caused by interactions between MM cells and the bone marrow microenvironment and is characterized by increased osteoclastic bone resorption and decreased osteoblastic bone formation. Recently, the role of osteoblast inhibition has come into focus, especially the possible role of overexpression of DKK1, an inhibitor of the Wnt signalling pathway. Further, CKS2, PSME2 and DHFR have also been reported as candidate genes for OBD. We studied the gene expression by quantitative reverse transcription polymerase chain reaction of TNFSF11 (RANKL), TNFSF11A (RANK), TNFRSF11B (OPG), CCL3 (MIP1A), CCL4 (MIP1B), PTHR1 (PTHrp), DKK1, CKS2, PSME2 and DHFR in purified, immunophenotypic FACS-sorted plasma cells from 171 newly diagnosed MM patients, 20 patients with monoclonal gammopathy of undetermined significance and 12 controls. The gene expressions of the analysed genes were correlated with radiographically assessed OBD. Only overexpression of DKK1 was correlated to the degree of OBD. Myeloma cells did not express TNFSF11A, TNFSF11, or TNFRSF11B, and very rarely expressed CCL3 and PTHR11. CCL4, CKS2, PSME2 and DHFR were variably expressed, but the expression of these genes showed no correlation with OBD. In contrast, loss of PSME2 expression in MM plasma cells was significantly correlated with OBD.

Yang R, Hoang BH, Kubo T, et al.
Over-expression of parathyroid hormone Type 1 receptor confers an aggressive phenotype in osteosarcoma.
Int J Cancer. 2007; 121(5):943-54 [PubMed] Related Publications
Osteosarcoma is the most common primary bone malignancy in children and is associated with rapid bone growth. Parathyroid hormone-related peptide (PTHrP) signaling via parathyroid hormone Type 1 receptor (PTHR1) is important for skeletal development and is involved in bone metastases in other tumors. The aim of this study was to investigate the status of PTHrP/PTHR1 and its possible role in osteosarcoma. In a preliminary screening, a higher level of PTHR1 mRNA, but not PTHrP, was found in 4 osteosarcoma xenografts as compared with 4 standard cell lines, or 5 patient derived cell lines (p < 0.05) using quantitative RT-PCR. It was therefore extended to 55 patient specimens, in which a significantly higher level of PTHR1 mRNA was detected in metastatic or relapsed samples than those from primary sites (p < 0.01). Cell behavior caused by PTHR1 overexpression was further studied in vitro using PTHR1 transfected HOS cell line as a model. Over-expression of PHTR1 resulted in increased proliferation, motility and Matrigel invasion without addition of exogenous PTHrP suggesting an autocrine effect. Importantly, the aggressiveness in PTHR1-expressing cells was completely reversed by RNAi mediated gene knockdown. In addition, PTHR1 over-expression led to delayed osteoblastic differentiation and upregulation of genes involved in extracellular matrix production, such as TGF-beta1 and connective tissue growth factor. When cocultured with bone marrow derived monocytes, PTHR1 transfected HOS cells induced a greater number of osteoclasts. This study suggests that PTHR1 over-expression may promote osteosarcoma progression by conferring a more aggressive phenotype, and forming a more favorable microenvironment.

Gessi M, Monego G, Calviello G, et al.
Human parathyroid hormone-related protein and human parathyroid hormone receptor type 1 are expressed in human medulloblastomas and regulate cell proliferation and apoptosis in medulloblastoma-derived cell lines.
Acta Neuropathol. 2007; 114(2):135-45 [PubMed] Related Publications
Human parathyroid hormone-related protein (hPTHrP), identified in patients with paraneoplastic hypercalcemia and expressed by different cell types during development and adult life, plays important roles in many human neoplasms. Immunohistochemical and RT-PCR analyses of hPTHrP and human parathyroid hormone receptor type 1 (PTHR-1) in primary medulloblastoma confirmed their expression in both classic and desmoplastic variants at RNA and protein levels. To evaluate the functional role of hPTHrP, DAOY and D283 medulloblastoma and U87MG glioma cells, expressing high levels of hPTHrP and PTHR-1, were treated with anti-sense oligonucleotides for hPTHrP. Anti-sense treatment produced in all cell lines a decrease of cell proliferation and clonogenic activity and an increase of apoptosis, while addition of exogenous hPTHrP (1-37) prevented these effects. Anti-sense induced the increase of Caspase-3, Fas (CD95) mRNAs and Bax/Bcl-2 mRNA ratio after 12 h of cell treatment. Exogenous hPTHrP (1-37) increased intracellular Ca(2+) concentration in DAOY cells as revealed by FURA. Anti-sense treated cells showed a significant decrease of steady-state levels of intracellular Ca(2+), which was reverted by addition of exogenous hPTHrP (1-37). This study indicates that hPTHrP and PTHR-1 are expressed in medulloblastoma and could promote tumor growth, protecting cells from apoptosis.

Shimo T, Kubota S, Yoshioka N, et al.
Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer.
J Bone Miner Res. 2006; 21(7):1045-59 [PubMed] Related Publications
UNLABELLED: The role of CTGF/CCN2 in osteolytic metastasis by breast cancer cells and its mechanism of action were studied. Osteolytic metastasis accompanied by CCN2 and PTHrP overproduction was efficiently inhibited by an anti-CCN2 antibody. Furthermore, we found that CCN2 was induced by PTHrP through PKA-, PKC-, and ERK-mediated pathways therein.
INTRODUCTION: Connective tissue growth factor (CTGF/CCN2) is a mediator of local angiogenesis induced by breast cancer, but its role in osteolytic metastasis has not been evaluated. PTH-related peptide (PTHrP) is another critical factor in the development of the osteolytic metastasis. Using both in vivo and in vitro approaches, we studied whether/how neutralization of CCN2 prevented bone metastasis and how PTHrP signaling is related.
MATERIALS AND METHODS: A mouse model of bone metastasis by human breast cancer cell line MDA231 was treated with a CCN2-neutralizing antibody, and osteolytic bone metastases were assessed on radiographs and immunohistochemistry. Ccn2 gene expression and transcription were examined by Northern blot and luciferase analysis. Immunoblot analysis and kinase inhibitors were used to identify the signaling pathways implicated. Anti-angiogenic/osteoclastogenic effects of ccn2 downregulation were also evaluated.
RESULTS: Treatment of mice with a CCN2-neutralizing antibody greatly decreased osteolytic bone metastasis, microvasculature, and osteoclasts involved. The antibody also suppressed the growth of subcutaneous tumor in vivo and proliferation and migration of human umbilical vein endothelial cells (HUVECs) in vitro. Downregulation of ccn2 also repressed osteoclastogenesis. CCN2 expression was specifically observed in cancer cells producing PTHrP and type I PTH/PTHrP receptor (PTH1R) invaded the bone marrow, and PTHrP strongly upregulated ccn2 in MDA231 cells in vitro. Activation of protein kinase C (PKC) and protein kinase A (PKA) was necessary and sufficient for the stimulation of ccn2 by PTHrP. Indeed, inhibition of the extracellular signal-regulated kinase (ERK1/2), PKC, or PKA by specific inhibitors counteracted the stimulation of ccn2 expression. Incubation of MDA231 cells with PTHrP induced the activation of ERK1/2. Consistent with these findings, inhibition of PKC prevented PTHrP-induced ERK1/2 activation, whereas 12-O-tetradecanoylphorbol13-acetate (TPA), a stimulator of PKC, upregulated it.
CONCLUSIONS: CCN2 was critically involved in osteolytic metastasis and was induced by PKA- and PKC-dependent activation of ERK1/2 signaling by PTHrP. Thus, CCN2 may be a new molecular target for anti-osteolytic therapy to shut off the PTHrP-CCN2 signaling pathway.

Dittmer A, Vetter M, Schunke D, et al.
Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells.
J Biol Chem. 2006; 281(21):14563-72 [PubMed] Related Publications
The effect of endogenous parathyroid hormone-related protein (PTHrP) on gene expression in breast cancer cells was studied. We suppressed PTHrP expression in MDA-MB-231 cells by RNA interference and analyzed changes in gene expression by microarray analysis. More than 200 genes showed altered expression in response to a PTHrP-specific small interfering (si) RNA (siPTHrP). Cell cycle-regulating gene CDC2 and genes (CDC25B and Tome-1) that control CDC2 activity showed increased expression in the presence of siPTHrP. CDC2 activity was also found to be higher in siPTHrP-treated cells. Studies with PTHrP peptides 1-34 and 67-86, forskolin, and a PTH1 receptor (PTH1R)-specific siRNA showed that PTHrP regulates CDC2 and CDC25B, at least in part, via PTH1R in a cAMP-independent manner. Other siPTHrP-responsive genes included integrin alpha6 (ITGA6), KISS-1, and PAI-1. When combined, siRNAs against ITGA6, PAI-1, and KISS-1 could mimic the negative effect of siPTHrP on migration, whereas siKISS-1 and siPTHrP similarly reduced the proliferative activity of the cells. Comparative expression analyses with 50 primary breast carcinomas revealed that the RNA level of ITGA6 correlates with that of PTHrP, and higher CDC2 and CDC25B values are found at low PTHrP expression. Our data suggest that PTHrP has a profound effect on gene expression in breast cancer cells and, as a consequence, contributes to the regulation of important cellular activities, such as migration and proliferation.

Ohtsuru M
Expression of parathyroid hormone-related protein in ameloblastomas.
Tokai J Exp Clin Med. 2005; 30(4):233-9 [PubMed] Related Publications
Parathyroid hormone-related protein (PTHrP) was first discovered as a causative protein for hypercalcemia, which is often seen in the malignant tumor. PTHrP binds to the parathyroid hormone 1 receptor (PTH1R) for signal transduction. PTHrP-PTH1R interactions were associated with bone resorption. The present study, therefore, sought to clarify the expression of PTHrP, parathyroid hormone (PTH) and PTH1R in ameloblastoma, using RT-PCR (N = 8), immunohistochemistry (N = 23) and ELISA (N = 11) techniques. PTHrP and B-actin mRNA were detected in the all samples. Expression of PTHrP was also seen in all of the 23 cases in ameloblastoma by immunohistochemistry. There was a significant difference in PTHrP concentration by ELISA between typical unicystic type and solid type including unicystic type 3 (p = 0.0427). Only one exhibited the weak expression of PTH1R mRNA. PTH1R was observed on osteoblasts in bone around the tumor but no expression was observed on ameloblastoma cells in tumor parenchyma by immunohistochemistry. PTH was not detected in ameloblastoma by RT-PCR, immunohistochemistory as well as ELISA. In addition, hypercalcemia and increase of serum PTHrP level was observed in one case of 8 ameloblastomas. It was suggested that PTHrP level may be associated with local bone infiltration and hypercalcemia in ameloblastoma.

Benoist-Lasselin C, de Margerie E, Gibbs L, et al.
Defective chondrocyte proliferation and differentiation in osteochondromas of MHE patients.
Bone. 2006; 39(1):17-26 [PubMed] Related Publications
Multiple hereditary exostoses (MHE) is an autosomal dominant skeletal disorder caused by mutations in one of the two EXT genes and characterized by multiple osteochondromas that generally arise near the ends of growing long bones. Defective endochondral ossification is likely to be involved in the formation of osteochondromas. In order to investigate potential changes in chondrocyte proliferation and/or differentiation during this process, osteochondroma samples from MHE patients were obtained and used for genetic, morphological, immunohistological, and in situ hybridization studies. The expression patterns of IHH (Indian hedgehog) and FGFR3 (Fibroblast Growth Factor Receptor 3) were similar with transcripts expressed throughout osteochondromas. Expression of PTHR1 (Parathyroid Hormone Receptor 1) transcripts was restricted to a narrow zone of prehypertrophic chondrocytes. Numerous cells forming osteochondromas although resembling prehypertrophic chondrocytes, stained positively with an anti-proliferating cell nuclear antigen (PCNA) antibody. In addition, ectopic expression of collagen type I and abnormal presence of osteocalcin (OC), osteopontin (OP), and bone sialoprotein (BSP) were observed in the cartilaginous osteochondromas. These data indicate that most chondrocytes involved in the growth of osteochondromas can proliferate, and that some of them exhibit bone-forming cell characteristics. We conclude that in MHE, defective heparan sulfate biosynthesis caused by EXT mutations maintains the proliferative capacity of chondrocytes and promotes phenotypic modification to bone-forming cells.

Malik A, Afaq F, Sarfaraz S, et al.
Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer.
Proc Natl Acad Sci U S A. 2005; 102(41):14813-8 [PubMed] Free Access to Full Article Related Publications
Prostate cancer is the most common invasive malignancy and the second leading cause of cancer-related deaths among U.S. males, with a similar trend in many Western countries. One approach to control this malignancy is its prevention through the use of agents present in diet consumed by humans. Pomegranate from the tree Punica granatum possesses strong antioxidant and antiinflammatory properties. We recently showed that pomegranate fruit extract (PFE) possesses remarkable antitumor-promoting effects in mouse skin. In this study, employing human prostate cancer cells, we evaluated the antiproliferative and proapoptotic properties of PFE. PFE (10-100 microg/ml; 48 h) treatment of highly aggressive human prostate cancer PC3 cells resulted in a dose-dependent inhibition of cell growth/cell viability and induction of apoptosis. Immunoblot analysis revealed that PFE treatment of PC3 cells resulted in (i) induction of Bax and Bak (proapoptotic); (ii) down-regulation of Bcl-X(L) and Bcl-2 (antiapoptotic); (iii) induction of WAF1/p21 and KIP1/p27; (iv) a decrease in cyclins D1, D2, and E; and (v) a decrease in cyclin-dependent kinase (cdk) 2, cdk4, and cdk6 expression. These data establish the involvement of the cyclin kinase inhibitor-cyclin-cdk network during the antiproliferative effects of PFE. Oral administration of PFE (0.1% and 0.2%, wt/vol) to athymic nude mice implanted with androgen-sensitive CWR22Rnu1 cells resulted in a significant inhibition in tumor growth concomitant with a significant decrease in serum prostate-specific antigen levels. We suggest that pomegranate juice may have cancer-chemopreventive as well as cancer-chemotherapeutic effects against prostate cancer in humans.

Talon I, Lindner V, Sourbier C, et al.
Antitumor effect of parathyroid hormone-related protein neutralizing antibody in human renal cell carcinoma in vitro and in vivo.
Carcinogenesis. 2006; 27(1):73-83 [PubMed] Related Publications
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene occurs in 40-80% of human conventional renal cell carcinomas (RCCs). We showed recently that VHL-deficient RCCs expressed large amounts of parathyroid hormone-related protein (PTHrP), and that PTHrP, acting through the PTH1 receptor (PTH1R), plays an essential role in tumor growth. We also showed that PTHrP expression is negatively regulated by the VHL gene products (pVHL). Our goal was to determine whether blocking the PTHrP/PTH1R system might be of therapeutic value against RCC, independent of VHL status and PTHrP expression levels. The antitumor activity of PTHrP neutralizing antibody and of PTH1R antagonist were evaluated in vitro and in vivo in a panel of human RCC lines expressing or not pVHL. PTHrP is upregulated compared with normal tubular cells. In vitro, tumor cell growth and viability was decreased by up to 80% by the antibody in all cell lines. These effects resulted from apoptosis. Exogenously added PTHrP had no effect on cell growth and viability, but reversed the inhibitory effects of the antibody. The growth inhibition was reproduced by a specific PTH1R antagonist in all cell lines. In vivo, the treatment of nude mice bearing the Caki-1 RCC tumor with the PTHrP antibody inhibited tumor growth by 80%, by inducing apoptosis. Proliferation and neovascularization were not affected by the antiserum. Anti-PTHrP treatment induced no side effects as assessed by animal weight and blood chemistries. Current therapeutic strategies are only marginally effective against metastatic RCC, and adverse effects are common. This study provides a rationale for evaluating the blockade of PTHrP signaling as therapy for human RCC in a clinical setting.

Cheung R, Erclik MS, Mitchell J
Increased expression of G11alpha in osteoblastic cells enhances parathyroid hormone activation of phospholipase C and AP-1 regulation of matrix metalloproteinase-13 mRNA.
J Cell Physiol. 2005; 204(1):336-43 [PubMed] Related Publications
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.

Duchatelet S, Ostergaard E, Cortes D, et al.
Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes.
Hum Mol Genet. 2005; 14(1):1-5 [PubMed] Related Publications
Eiken syndrome is a rare autosomal recessive skeletal dysplasia. We identified a truncation mutation in the C-terminal cytoplasmic tail of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) type 1 receptor (PTHR1) gene as the cause of this syndrome. Eiken syndrome differs from Jansen and Blomstrand chondrodysplasia and from enchondromatosis, which are all syndromes caused by PTHR1 mutations. Notably, the skeletal features are opposite to those in Blomstrand chondrodysplasia, which is caused by inactivating recessive mutations in PTHR1. To our knowledge, this is the first description of opposite manifestations resulting from distinct recessive mutations in the same gene.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTH1R, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999