Cancer Overview
The enzyme product of SRD5A2 is expressed in androgen-dependent tissues. It is responsible for converting testosterone to the more metabolically active dihydrotestosterone, which in turn transactivates a number of genes including prostate-specific antigen (PSA). There are a number of reports of polymorphisms and somatic mutations of SRD5A2 in prostate cancer. Polymorphisms of SRD5A2 have also been implicated in increased breast cancer risk (Bharaj, 2000).
Research Indicators
Graph generated 01 September 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (2)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
SRD5A2
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
SRD5A2
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
SRD5A2
Cancer Genome Anatomy Project, NCI
Gene Summary
SRD5A2
COSMIC, Sanger Institute
Somatic mutation information and related details
SRD5A2
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: SRD5A2 (cancer-related)
Wang L, Wang H, Wang T, et al.
Analysis of polymorphisms in genes associated with the FA/BRCA pathway in three patients with multiple primary malignant neoplasms.Artif Cells Nanomed Biotechnol. 2019; 47(1):1101-1112 [
PubMed]
Related Publications
Cases of more than three primary cancers are very rare. This study analyzed the genetic susceptibility of gene polymorphisms in three patients with multiple primary malignant neoplasms and examined the possible pathogenesis. The clinical data and whole genome sequence of three patients (1 with 5 primary cancers, 1 with 4 primary cancers, and 1 with 3 primary cancers) were aligned with a series of databases. We found the three patients contained a total of seven types of malignant tumours (endometrial cancer, ovarian cancer, breast cancer, colon cancer, ureter cancer, bladder cancer and kidney cancer). It was found that the varied genes in Patient 1 (5 primary cancers) were BRIP1, FANCG, NBN, AXIN2, SRD5A2, and CEBPA. Patient 2 (4 primary cancers) had variations in the following genes: BMPR1A, FANCD2, MLH3, BRCA2, and FANCM. Patient 3 (3 primary cancers) had variations in the following genes: MEN1, ATM, MSH3, BRCA1, FANCL, CEBPA, and FANCA. String software was used to analyze the KEGG pathway of the variations in these three samples, which revealed that the genes are involved in the Fanconi anaemia pathway. Defects in DNA damage repair may be one of the causes of multiple primary cancers.
Potter C, Moorman AV, Relton CL, et al.
Maternal Red Blood Cell Folate and Infant Vitamin BMol Nutr Food Res. 2018; 62(22):e1800411 [
PubMed]
Related Publications
SCOPE: Inadequate maternal folate intake is associated with increased childhood acute lymphoblastic leukemia (ALL) risk. Folate provides methyl groups for DNA methylation, which is dramatically disrupted in ALL. Whether or not maternal folate (and related B-vitamin) intake during pregnancy may affect ALL risk via influencing DNA methylation is investigated.
METHODS AND RESULTS: Genes in which methylation changes are reported both in response to folate status and in ALL are investigated. Folate-responsive genes (n = 526) are identified from mouse models of maternal folate depletion during pregnancy. Using published data, 2621 genes with persistently altered methylation in ALL are identified. Overall 25 overlapping genes are found, with the same directional methylation change in response to folate depletion and in ALL. Hypermethylation of a subset of genes (ASCL2, KCNA1, SH3GL3, SRD5A2) in ALL is confirmed by measuring 20 patient samples using pyrosequencing. In a nested cohort of cord blood samples (n = 148), SH3GL3 methylation is inversely related to maternal RBC folate concentrations (p = 0.008). Furthermore, ASCL2 methylation is inversely related to infant vitamin B12 levels. (p = 0.016).
CONCLUSION: Findings demonstrate proof of concept for a plausible mechanism, i.e., variation in DNA methylation, by which low intake of folate, and related B-vitamins during pregnancy may influence ALL risk.
Abacı A, Çatlı G, Kırbıyık Ö, et al.
Genotype-phenotype correlation, gonadal malignancy risk, gender preference, and testosterone/dihydrotestosterone ratio in steroid 5-alpha-reductase type 2 deficiency: a multicenter study from Turkey.J Endocrinol Invest. 2019; 42(4):453-470 [
PubMed]
Related Publications
BACKGROUND: Studies regarding genetic and clinical characteristics, gender preference, and gonadal malignancy rates for steroid 5-alpha-reductase type 2 deficiency (5α-RD2) are limited and they were conducted on small number of patients.
OBJECTIVE: To present genotype-phenotype correlation, gonadal malignancy risk, gender preference, and diagnostic sensitivity of serum testosterone/dihydrotestosterone (T/DHT) ratio in patients with 5α-RD2.
MATERIALS AND METHODS: Patients with variations in the SRD5A2 gene were included in the study. Demographic characteristics, phenotype, gender assignment, hormonal tests, molecular genetic data, and presence of gonadal malignancy were evaluated.
RESULTS: A total of 85 patients were included in the study. Abnormality of the external genitalia was the most dominant phenotype (92.9%). Gender assignment was male in 58.8% and female in 29.4% of the patients, while it was uncertain for 11.8%. Fourteen patients underwent bilateral gonadectomy, and no gonadal malignancy was detected. The most frequent pathogenic variants were p.Ala65Pro (30.6%), p.Leu55Gln (16.5%), and p.Gly196Ser (15.3%). The p.Ala65Pro and p.Leu55Gln showed more undervirilization than the p.Gly196Ser. The diagnostic sensitivity of stimulated T/DHT ratio was higher than baseline serum T/DHT ratio, even in pubertal patients. The cut-off values yielding the best sensitivity for stimulated T/DHT ratio were ≥ 8.5 for minipuberty, ≥ 10 for prepuberty, and ≥ 17 for puberty.
CONCLUSION: There is no significant genotype-phenotype correlation in 5α-RD2. Gonadal malignancy risk seems to be low. If genetic analysis is not available at the time of diagnosis, stimulated T/DHT ratio can be useful, especially if different cut-off values are utilized in accordance with the pubertal status.
Gerashchenko GV, Mevs LV, Chashchina LI, et al.
Expression of steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes in prostate tumors in relation to the presence of the TMPRSS2/ERG fusion.Exp Oncol. 2018; 40(2):101-108 [
PubMed]
Related Publications
AIM: To analyze an expression pattern of the steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes in prostate tumors in relation to the presence of the TMPRSS2/ERG fusion; and to examine a putative correlation between gene expression and clinical characteristics, to define the molecular subtypes of prostate cancer.
MATERIALS AND METHODS: The relative gene expression (RE) of 33 transcripts (27 genes) and the presence/absence of the TMPRSS2/ERG fusion were analyzed by a quantitative PCR. 37 prostate cancer tissues (T) paired with conventionally normal prostate tissue (CNT) and 21 samples of prostate adenomas were investigated. RE changes were calculated, using different protocols of statistics.
RESULTS: We demonstrated differences in RE of seven genes between tumors and CNT, as was calculated, using the 2-ΔCT model and the Wilcoxon matched paired test. Five genes (ESR1, KRT18, MKI67, MMP9, PCA3) showed altered expression in adenocarcinomas, in which the TMPRSS2/ERG fusion was detected. Two genes (INSR, isoform B and HOTAIR) expressed differently in tumors without fusion. Comparison of the gene expression pattern in adenomas, CNT and adenocarcinomas demonstrated that in adenocarcinomas, bearing the TMPRSS2/ERG fusion, genes KRT18, PCA3, and SCHLAP1 expressed differently. At the same time, we detected differences in RE of AR (isoform 2), MMP9, PRLR and HOTAIR in adenocarcinomas without the TMPRSS2/ERG fusion. Two genes (ESR1 and SRD5A2) showed differences in RE in both adenocarcinoma groups. Fourteen genes, namely AR (isoforms 1 and 2), CDH1, OCLN, NKX3-1, XIAP, GCR (ins AG), INSR (isoform A), IGF1R, IGF1R tr, PRLR, PRL, VDR and SRD5A2 showed correlation between RE and tumor stage. RE of four genes (CDH2, ESR2, VDR and SRD5A2) correlated with differentiation status of tumors (Gleason score). Using the K-means clustering, we could cluster adenocarcinomas in three groups, according to gene expression profiles. A specific subtype of prostate tumors is characterized by the activated ERG signaling, due to the presence of TMPRSS2/ERG fusion, and also by high levels of the androgen receptor, prolactin, IGF, INSR and PCA3.
CONCLUSIONS: We have found the specific differences in expression of the steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes, depending on the pre-sence/absence of the TMPRSS2/ERG fusion in prostate adenocarcinomas, CNT and adenomas. We showed three different gene expression profiles of prostate adenocarcinomas. One of them is characteristic for adenocarcinomas with the TMPRSS2/ERG fusion. Further experiments are needed to confirm these data in a larger cohort of patients.
Genetic factors contribute to more than 40% of prostate cancer risk, and mutations in BRCA1 and BRCA2 are well-established risk factors. By using target capture-based deep sequencing to identify potential pathogenic germline mutations, followed by Sanger sequencing to determine the loci of the mutations, we identified a novel pathogenic BRCA2 mutation caused by a cytosine-to-guanine base substitution at position 4211, resulting in protein truncation (p.Ser1404Ter), which was confirmed by immunohistochemistry. Analysis of peripheral blood also identified benign polymorphisms in BRCA2 (c.7397T>C, p.Val2466Ala) and SRD5A2 (c.87G>C, p.Lys29Asn). Analysis of tumor tissues revealed seven somatic mutations in prostate tumor tissue and nine somatic mutations in esophageal squamous carcinoma tissue (single nucleotide polymorphisms, insertions, and deletions). Five-year follow-up results indicate that ADT combined with radiotherapy successfully treated the prostate cancer. To our knowledge, we are the first to report the germline BRCA2 mutation c.4211C>G (p.Ser1404Ter) in prostate cancer. Combined ADT and radiotherapy may be effective in treating other patients with prostate cancer caused by this or similar mutations.
Hata S, Ise K, Azmahani A, et al.
Expression of AR, 5αR1 and 5αR2 in bladder urothelial carcinoma and relationship to clinicopathological factors.Life Sci. 2017; 190:15-20 [
PubMed]
Related Publications
AIMS: Bladder urothelial carcinoma is increasing in incidence with age and its prognosis could become worse when accompanied with metastasis. Effective treatment of these advanced patients is required and it becomes important to understand its underlying biology of this neoplasm, especially with regard to its biological pathways. A potential proposed pathway is androgen receptor (AR)-mediated intracellular signaling but the details have remained relatively unexplored.
MAIN METHODS: The expression of AR, 5α-reductase type1 (5αR1) and 5α-reductase type2 (5αR2) were examined in the bladder cancer cell line T24 and surgical pathology specimens. We also evaluated the status of androgen related cell proliferation and migration using the potent, non-aromatizable androgen agonist 5α-dihydrotestosterone (DHT).
KEY FINDINGS: DHT treatment significantly increased AR mRNA expression level, but not those of 5αR1 and 5αR2 in T24 cells. DHT also suppressed cellular migration with weaker and opposite effects on cell proliferation. A significant inverse correlation was detected between pT stage and AR, 5αR1 and 5αR2 immunoreactivity.
SIGNIFICANCE: Inverse correlations detected between tumor grade and AR/androgen metabolizing enzyme also suggested that the loss of AR and androgen-producing enzymes could be associated with tumor progression. Effects of DHT on cells also suggest that androgens may regulate cellular behavior.
Kikuchi K, McNamara KM, Miki Y, et al.
Effects of cytokines derived from cancer-associated fibroblasts on androgen synthetic enzymes in estrogen receptor-negative breast carcinoma.Breast Cancer Res Treat. 2017; 166(3):709-723 [
PubMed]
Related Publications
PURPOSE: The tumor microenvironment plays pivotal roles in promotion of many malignancies. Cancer-associated fibroblasts (CAFs) have been well-known to promote proliferation, angiogenesis, and metastasis but mechanistic understanding of tumor-stroma interactions is not yet complete. Recently, estrogen synthetic enzymes were reported to be upregulated by co-culture with stromal cells in ER positive breast carcinoma (BC) but effects of co-culture on androgen metabolism have not been extensively examined. Therefore, we evaluated roles of CAFs on androgen metabolism in ER-negative AR-positive BC through co-culture with CAFs.
METHODS: Concentrations of steroid hormone in supernatant of co-culture of MDA-MB-453 and primary CAFs were measured using GC-MS. Cytokines derived from CAFs were determined using Cytokine Array. Expressions of androgen synthetic enzymes were confirmed using RT-PCR and Western blotting. Correlations between CAFs and androgen synthetic enzymes were analyzed using triple-negative BC (TNBC) patient tissues by immunohistochemistry.
RESULTS: CAFs were demonstrated to increase expressions and activities of 17βHSD2, 17βHSD5, and 5α-Reductase1. IL-6 and HGF that were selected as potential paracrine mediators using cytokine array induced 17βHSD2, 17βHSD5, and 5α-Reductase1 expression. Underlying mechanisms of IL-6 paracrine regulation of 17βHSD2 and 17βHSD5 could be partially dependent on phosphorylated STAT3, while phosphorylated ERK could be involved in HGF-mediated 5α-Reductase1 induction. α-SMA status was also demonstrated to be significantly correlated with 17βHSD2 and 17βHSD5 status in TNBC tissues, especially AR-positive cases.
CONCLUSIONS: Results of our present study suggest that both IL-6 and HGF derived from CAFs could contribute to the intratumoral androgen metabolism in ER-negative BC patients.
Prostate cancer (PC) is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC). Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2;
Galeterone is a steroidal CYP17A1 inhibitor, androgen receptor (AR) antagonist, and AR degrader, under evaluation in a phase III clinical trial for castration-resistant prostate cancer (CRPC). The A/B steroid ring (Δ
The pathogenetic mechanism of prostate cancer (PCa) has not been understood completely, and gene polymorphisms have been demonstrated to play a critical role in the course. It has been reported that rs9282858 polymorphism of steroid 5-α-reductase type 2 (SRD5A2) may affect the susceptibility of PCa, but some researches showed different results. We therefore carried out a meta-analysis to clarify this relationship.Relevant studies were identified through PubMed and Chinese National Knowledge Infrastructure databases concerning the association between SRD5A2 rs9282858 polymorphism and PCa. Odds ratios (ORs) with their 95% confidence intervals (95% CIs) were calculated to assess the strength of the association. Additionally, stratified analyses were performed based on ethnicity and source of control. Besides, heterogeneity test, sensitivity analysis, and publication bias evaluation were conducted in current meta-analysis as well.Ultimately, 20 publications incorporating 30 case-control studies were included in this meta-analysis, involving a total of 7300 cases and 7952 controls. The overall results demonstrated that SRD5A2 rs9282858 polymorphism was remarkably associated with increased susceptibility of PCa (TT vs. AA: OR = 4.08, 95% CI = 1.94-8.58; TT + AT vs. AA: OR = 1.28, 95% CI = 1.11-1.47; TT vs. AA + AT: OR = 4.44, 95% CI = 2.12-9.27; allele T vs. allele A: OR = 1.34, 95% CI = 1.17-1.54). After subgroup analyses by ethnicity and source of control, we also observed a similar trend in Latinos, other-ethnicity, population-based, and hospital-based groups under corresponding genetic models.Our findings indicate that SRD5A2 rs9282858 polymorphism may be a susceptible factor to PCa.
Audet-Walsh É, Yee T, Tam IS, Giguère V
Inverse Regulation of DHT Synthesis Enzymes 5α-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer.Endocrinology. 2017; 158(4):1015-1021 [
PubMed]
Related Publications
5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of 5α-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2.
Kachakova D, Mitkova A, Popov E, et al.
Polymorphisms in androgen metabolism genes AR, CYP1B1, CYP19, and SRD5A2and prostate cancer risk and aggressiveness in Bulgarian patients.Turk J Med Sci. 2016; 46(3):626-40 [
PubMed]
Related Publications
BACKGROUND/AIM: The aim of our study was to elucidate the role of polymorphisms in AR, CYP1B1, CYP19, and SRD5A2 genes for prostate cancer (PC) development in Bulgarian patients.
MATERIALS AND METHODS: We genotyped 246 PC patients and 261 controls (155 with benign prostate hyperplasia and 107 healthy population controls) using direct sequencing, PCR-RFLP, SSCP, and fragment analysis.
RESULTS: The allele and genotype frequencies of most of the studied variants did not differ significantly between cases and controls. Increased frequencies of the C/C genotype and C allele of rs1056837 in CYP1B1, and genotype 7/8 of the (TTTA)n repeat polymorphism in CYP19, were observed in patients in comparison with controls.The 8/9 and the 7/12 genotypes of (TTTA)n in CYP19 showed suggestive evidence for association with decreased prostate cancer risk and the risk for aggressive disease, respectively. The haplotype analysis revealed 2 CYP1B1 haplotypes associated with PC risk reduction.
CONCLUSION: Some CYP1B1 haplotypes and genotypes of the CYP19 (TTTA)n repeat appeared to be associated with disease risk or aggressiveness in Bulgarian PC patients. In contrast, the SRD5A2 polymorphisms (V89L and (TA)n repeat), the CAG repeat in AR, and the Arg264Cys variant in CYP19A1 are most likely not implicated in prostate carcinogenesis.
BACKGROUND: Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially in inflamed prostates, and often results in surgery. This communication examines a link between activation of NF-κB and increased expression of SRD5A2 as a potential mechanism by which patients fail 5ARI therapy.
METHODS: Tissue was collected from "Surgical" patients, treated specifically for lower urinary tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression.
RESULTS: SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary tract symptoms (LUTS) determined by American Urological Association Symptom Score (AUASS). Synthesis of androgens was seen in cells in which NF-κB was activated. AR-FL and AR-V7 expression increased SRD5A2 expression while forced activation of NF-κB increased all three SRD5A isoforms. Knockdown of SRD5A2 in the epithelial cells resulted in significant reduction in proliferation, AR target gene expression, and response to testosterone (T). In tissue recombinants, canonical NF-κB activation in prostatic epithelium elevated all three SRD5A isoforms and resulted in in vivo growth under castrated conditions.
CONCLUSION: Increased BPH severity in patients correlates with SRD5A2 expression. We demonstrate that NF-κB and AR-V7 upregulate SRD5A expression providing a mechanism to explain failure of 5ARI therapy in BPH patients. Prostate 76:1004-1018, 2016. © 2016 Wiley Periodicals, Inc.
Price DK, Chau CH, Till C, et al.
Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the Prostate Cancer Prevention Trial.Cancer. 2016; 122(15):2332-40 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer is highly influenced by androgens and genes. The authors investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or with the risk of prostate cancer or high-grade disease from finasteride treatment.
METHODS: A nested case-control study from the Prostate Cancer Prevention Trial using data from men who had biopsy-proven prostate cancer (cases) and a group of biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with overall (total), low-grade, and high-grade prostate cancer incidence and serum hormone concentrations.
RESULTS: There were significant associations of genetic polymorphisms in steroid 5α-reductase 1 (SRD5A1) (reference SNPs: rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with the risk of high-grade prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial; 2 SNPs were significantly associated with an increased risk (SRD5A1 rs472402 [odds ratio, 1.70; 95% confidence interval, 1.05-2.75; Ptrend = .03] and SRD5A2 rs2300700 [odds ratio, 1.94; 95% confidence interval, 1.19-3.18; Ptrend = .01]). Eleven SNPs in SRD5A1, SRD5A2, cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), and CYP3A4 were associated with modifying the mean concentrations of serum androgen and sex hormone-binding globulin; and 2 SNPs (SRD5A1 rs824811 and CYP1B1 rs10012; Ptrend < .05) consistently and significantly altered all androgen concentrations. Several SNPs (SRD5A1 rs3822430, SRD5A2 rs2300700, CYP3A43 rs800672, and CYP19 rs700519; Ptrend < .05) were significantly associated with both circulating hormone levels and prostate cancer risk.
CONCLUSIONS: Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and the risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. Cancer 2016;122:2332-2340. © 2016 American Cancer Society.
In the past twenty-five years, over 700 case-control association studies on the risk of prostate cancer have been published worldwide, but their results were largely inconsistent. To facilitate following and explaining these findings, we performed a systematic meta-analysis using allelic contrasts for gene-specific SNVs from at least three independent population-based case-control studies, which were published in the field of prostate cancer between August 1, 1990 and August 1, 2015. Across 66 meta-analyses, a total of 20 genetic variants involving 584,100 subjects in 19 different genes (KLK3, IGFBP3, ESR1, SOD2, CAT, CYP1B1, VDR, RFX6, HNF1B, SRD5A2, FGFR4, LEP, HOXB13, FAS, FOXP4, SLC22A3, LMTK2, EHBP1 and MSMB) exhibited significant association with prostate cancer. The average summary OR was 1.33 (ranging from: 1.016-3.788) for risk alleles and 0.838 (ranging from: 0.757-0.896) for protective alleles. Of these positive variants, FOXP4 rs1983891, LMTK2 rs6465657 and RFX6 rs339331 had not been previously meta-analyzed. Further analyses with sufficient power design and investigations of the potential biological roles of these genetic variants in prostate cancer should be conducted.
Shiota M, Fujimoto N, Yokomizo A, et al.
The prognostic impact of serum testosterone during androgen-deprivation therapy in patients with metastatic prostate cancer and the SRD5A2 polymorphism.Prostate Cancer Prostatic Dis. 2016; 19(2):191-6 [
PubMed]
Related Publications
BACKGROUND: Although testosterone suppression during androgen-deprivation therapy (ADT) and obesity have been reported to affect ADT efficacy, there are few comprehensive analyses on the impact on ADT outcome. Recently, we demonstrated that the SRD5A2 polymorphism was associated with metastatic prostate cancer prognosis. Therefore, in this study, we investigated the relationship between ADT serum testosterone levels or body mass index (BMI) and the prognosis among men treated with primary ADT for metastatic prostate cancer. In addition, we examined the association of serum testosterone levels during ADT with the SRD5A2 polymorphism.
METHODS: This study included 96 Japanese patients with metastatic prostate cancer. The relationship between clinicopathological parameters, including serum testosterone levels during ADT and BMI, and progression-free survival, overall survival and survival from progression following primary ADT treatment for metastatic prostate cancer was examined. Additionally, the association between the SRD5A2 gene polymorphism (rs523349) and serum testosterone levels during ADT was examined in 86 cases.
RESULTS: Among clinicopathological parameters, the lowest quartile of serum testosterone levels during ADT was a significant predictor of better overall survival as well as survival from castration resistance. However, BMI was not associated with prognosis. The CC allele in the SRD5A2 gene (rs523349), encoding the less active 5α-reductase, was associated with lower serum testosterone levels during ADT.
CONCLUSIONS: Taken together, these findings revealed a dramatic suppression of serum testosterone by ADT was associated with better survival among men with metastatic prostate cancer that have undergone primary ADT, which may be affected by the SRD5A2 gene polymorphism.
Boer H, Westerink NL, Altena R, et al.
Single-nucleotide polymorphism in the 5-α-reductase gene (SRD5A2) is associated with increased prevalence of metabolic syndrome in chemotherapy-treated testicular cancer survivors.Eur J Cancer. 2016; 54:104-111 [
PubMed]
Related Publications
PURPOSE: Chemotherapy-treated testicular cancer survivors are at risk for development of the metabolic syndrome, especially in case of decreased androgen levels. Polymorphisms in the gene encoding steroid 5-α-reductase type II (SRD5A2) are involved in altered androgen metabolism. We investigated whether single-nucleotide polymorphisms (SNPs) rs523349 (V89L) and rs9282858 (A49T) in SRD5A2 are associated with cardiometabolic status in testicular cancer survivors.
METHODS: In 173 chemotherapy-treated testicular cancer survivors, hormone levels and cardiometabolic status were evaluated cross-sectionally (median 5 years [range 3-20] after chemotherapy) and correlated with SNPs in SRD5A2.
RESULTS: The metabolic syndrome was more prevalent in survivors who were homozygous or heterozygous variant for SRD5A2 rs523349 compared to wild type (33% versus 19%, P = 0.032). In particular, patients with lower testosterone levels (<15 nmol/l) and a variant genotype showed a high prevalence of the metabolic syndrome (66.7%). Mean intima-media thickness of the carotid artery and urinary albumin excretion, both markers of vascular damage, were higher in the group of survivors homozygous or heterozygous variant for rs523349 (0.62 versus 0.57 mm, P = 0.026; 5.6 versus 3.1 mg/24 h, P = 0.017, respectively). No association was found between cardiometabolic status and SNP rs9282858 in SRD5A2.
CONCLUSION: Metabolic syndrome develops more frequently in testicular cancer survivors homozygous or heterozygous variant for SNP rs523349 in SRD5A2. Altered androgen sensitivity appears to be involved in the development of adverse metabolic and vascular changes in testicular cancer survivors and is a target for intervention.
Zhang D, Li Q, Qu HC, et al.
Associations between the SRD5A2 gene V89L and TA repeat polymorphisms and breast cancer risk: a meta-analysis.Genet Mol Res. 2015; 14(3):9004-12 [
PubMed]
Related Publications
The 5α-reductase type 2 (SRD5A2) gene plays a significant role in the development of breast cancer. The V89L and TA repeat polymorphisms of the SRD5A2 gene have been considered as risk factors for breast cancer. However, the results have been inconsistent. To resolve this conflict, we performed a meta-analysis of studies with V89L (1144 patients and 808 controls) and with TA repeat genotyping (1952 cases and 1008 controls). The associations were evaluated by calculating odds ratios (ORs) and 95% confidence intervals (CIs). The result showed that there was no relationship between the V89L polymorphism of the SRD5A2 gene (V/V versus V/L + L/L genotypes) and breast cancer susceptibility (OR = 1.21; 95%CI = 0.99-1.47; P = 0.28). In addition, there was no difference between patients with breast cancer and healthy people in the distributions of the L allele (OR = 1.06; 95%CI = 0.75-1.49; P = 0.003). Similarly, no significant association between the SRDA5A2 TA repeat polymorphism and breast cancer risk was discovered. The comparison of (TA)0/(TA)0versus (TA)0/(TA)9 + (TA)9/(TA)9 genotypes found no difference in the risk of breast cancer (OR = 0.91; 95%CI = 0.66-1.25; P = 0.05). The OR for the (TA)0 versus (TA)9 allele was 0.89 (95%CI = 0.67-1.19). In conclusion, the V89L and TA repeat polymorphisms of SRD5A2 gene were found to have no significant associations with breast cancer risk.
Horning AM, Awe JA, Wang CM, et al.
DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence.Prostate. 2015; 75(15):1790-801 [
PubMed]
Related Publications
BACKGROUND: Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR).
METHODS: Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses.
RESULTS: Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy.
CONCLUSIONS: Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. .
Ersekerci E, Sofikerim M, Taheri S, et al.
Genetic polymorphism in sex hormone metabolism and prostate cancer risk.Genet Mol Res. 2015; 14(3):7326-34 [
PubMed]
Related Publications
We compared single-nucleotide polymorphisms for point mutations in cytochrome P450 genes, including cytochrome P450c17α (CYP17), cytochrome P450 aromatase (CYP19), steroid-5-a-reductase (SRD5A2), and prostate-specific antigen (PSA) involved in androgen and estrogen production. Between January 2008 and January 2010, 90 patients were enrolled in the study. Of these patients, 28 were diagnosed with benign prostatic hyperplasia and 32 with prostate cancer, while 30 subjects were included as a control group. CYP19 1531 C>T, SRD5A2 gene V89L, CYP17 gene -34 T/C, PSA-158 (G/A) regions were evaluated for the association between polymorphisms and benign prostatic hyperplasia and prostate cancer in study population. Age, body mass index, peak urinary flow rate (Q max), voided urine volume, post-void residual urine volume, total PSA, free PSA, free/total PSA ratio, prostate weights measured by transrectal ultrasonography, erectile dysfunction score, and international prostate symptom score were compared between groups. No statistically significant difference in CYP19 1531 C>T, SRD5A2 V89L, and CYP17 -34T/C was observed in both groups when compared to the control group. The homozygote variant of PSA- 158 (G/A) was significantly lower for prostate cancer. Age, total PSA, free PSA, free/total PSA ratio, prostate weight, and Q max were evaluated using multi-variant analysis. Only Q max was significant for the homozygote variant. The probability of being homozygous was 5.8- fold higher in subjects with Q max >14 mL/s. In the Turkish population, the homozygote variant of PSA-158 (G/A) was significantly lower for prostate cancer.
Assinder SJ, Davies K, Surija J, Liu-Fu F
Oxytocin differentially effects 3β-hydroxysteroid dehydrogenase and 5α-reductase activities in prostate cancer cell lines.Peptides. 2015; 71:149-55 [
PubMed]
Related Publications
It is known that oxytocin stimulates steroidogenesis in several organs by modulating activity of 3β-hydroxysteroid dehydrogenases (HSD3B) and steroid 5α-reductases (SRD5A). However, this has not been established in prostate cancer where these enzymes, key to local production of androgens, are increased. Analysis of both HSD3B and SRD5A activities using a live cell in situ colourimetric assay demonstrated that in PC-3 cells HSD3B activity was significantly increased by oxytocin whilst SRD5A activity was unchanged. This was confirmed in ELISA based assays of conversion of pregnenolone to progesterone and testosterone to dihydrotestosterone in cell lysates following treatment. In contrast, oxytocin significantly inhibited HSD3B activity in LNCaPs, but significantly increased activity of SRD5A, as confirmed by ELISA assays. Analysis of both cell lines by microarray and qRT-PCR determined that these changes were not due to altered gene transcription. This study demonstrates differential effects of oxytocin on the activities of key de novo steroidogenic enzymes in prostate cancer cells.
PURPOSE: We studied the ethnicity-specific expression of prostate cancer (PC) -associated biomarkers to evaluate whether genetic/biologic factors affect ethnic disparities in PC pathogenesis and disease progression.
PATIENTS AND METHODS: A total of 154 African American (AA) and 243 European American (EA) patients from four medical centers were matched according to the Cancer of the Prostate Risk Assessment postsurgical score within each institution. The distribution of mRNA expression levels of 20 validated biomarkers reported to be associated with PC initiation and progression was compared with ethnicity using false discovery rate, adjusted Wilcoxon-Mann-Whitney, and logistic regression models. A conditional logistic regression model was used to evaluate the interaction between ethnicity and biomarkers for predicting clinicopathologic outcomes.
RESULTS: Of the 20 biomarkers examined, six showed statistically significant differential expression in AA compared with EA men in one or more statistical models. These include ERG (P < .001), AMACR (P < .001), SPINK1 (P = .001), NKX3-1 (P = .03), GOLM1 (P = .03), and androgen receptor (P = .04). Dysregulation of AMACR (P = .036), ERG (P = .036), FOXP1 (P = .041), and GSTP1 (P = .049) as well as loss-of-function mutations for tumor suppressors NKX3-1 (P = .025) and RB1 (P = .037) predicted risk of pathologic T3 disease in an ethnicity-dependent manner. Dysregulation of GOLM1 (P = .037), SRD5A2 (P = .023), and MKi67 (P = .023) predicted clinical outcomes, including 3-year biochemical recurrence and metastasis at 5 years. A greater proportion of AA men than EA men had triple-negative (ERG-negative/ETS-negative/SPINK1-negative) disease (51% v 35%; P = .002).
CONCLUSION: We have identified a subset of PC biomarkers that predict the risk of clinicopathologic outcomes in an ethnicity-dependent manner. These biomarkers may explain in part the biologic contribution to ethnic disparity in PC outcomes between EA and AA men.
Shiota M, Fujimoto N, Yokomizo A, et al.
SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy.Eur J Cancer. 2015; 51(14):1962-9 [
PubMed]
Related Publications
AIM: De novo androgen synthesis is thought to be involved in the progression to castration-resistant prostate cancer (CRPC) during androgen-deprivation therapy (ADT). During androgen synthesis, 5α-reductase encoded by SRD5A catalyses testosterone into more active dihydrotestosterone and may be involved in the progression to CRPC. Then, this study aimed to reveal the association between genetic variations in SRD5A and the prognosis in metastatic prostate cancer.
METHODS: We studied the polymorphisms rs518673 and rs166050 in SRD5A1, and rs12470143, rs523349, rs676033 and rs2208532 in SRD5A2 as well as the time to CRPC progression and overall survival in 104 patients with metastatic prostate cancer that had undergone primary ADT. The association between the polymorphisms and the progression to CRPC as well as overall survival was examined.
RESULTS: Patients carrying the more active GG genotype in SRD5A2 rs523349 exhibited a higher risk of the progression (hazard ration [95% confidence interval], 1.93 [1.14-3.14], p=0.016) and death (hazard ration [95% confidence interval], 2.14 [1.16-3.76], p=0.016), compared with less active GC/CC genotypes in SRD5A2 rs523349.
CONCLUSIONS: High 5α-reductase activity due to the polymorphism in SRD5A2 may contribute to resistance to ADT. Furthermore, SRD5A2 rs523349 polymorphism may be a promising biomarker for metastatic prostate cancer patients treated with primary ADT and a molecular target for advanced prostate cancer.
Aggarwal S, Singh M, Kumar A, Mukhopadhyay T
SRD5A2 gene expression inhibits cell migration and invasion in prostate cancer cell line via F-actin reorganization.Mol Cell Biochem. 2015; 408(1-2):15-23 [
PubMed]
Related Publications
Steroid 5-alpha reductase type 2 (SRD5A2) gene is important for normal development and functioning of prostate gland but it is reported to be silenced in metastatic prostate cancer. We showed that exogenous SRD5A2 expression in prostate cancer cell line reduced cell migration and invasion. Additionally, the stable transfectants showed enhanced adhesion to the matrix accompanied by changes in cytoskeletal organization, involving actin polymerization. siRNA knockdown of the endogenous SRD5A2 mRNA in LnCAP cells was effective, it reversed the phenotype, and thus induced cell motility. The MEK1 and pERK1/2 levels were found to be reduced in SRD5A2-expressing cells. Further, the reduced level of p38 protein was correlated with low expression of MMP-2 and MMP-7 genes. The results suggest that SRD5A2 controls cell migration by indirectly regulating ERK/MAPK pathway.
Prostate cancer resistance to castration occurs because tumours acquire the metabolic capability of converting precursor steroids to 5α-dihydrotestosterone (DHT), promoting signalling by the androgen receptor and the development of castration-resistant prostate cancer. Essential for resistance, DHT synthesis from adrenal precursor steroids or possibly from de novo synthesis from cholesterol commonly requires enzymatic reactions by 3β-hydroxysteroid dehydrogenase (3βHSD), steroid-5α-reductase (SRD5A) and 17β-hydroxysteroid dehydrogenase (17βHSD) isoenzymes. Abiraterone, a steroidal 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitor, blocks this synthetic process and prolongs survival. We hypothesized that abiraterone is converted by an enzyme to the more active Δ(4)-abiraterone (D4A), which blocks multiple steroidogenic enzymes and antagonizes the androgen receptor, providing an additional explanation for abiraterone's clinical activity. Here we show that abiraterone is converted to D4A in mice and patients with prostate cancer. D4A inhibits CYP17A1, 3βHSD and SRD5A, which are required for DHT synthesis. Furthermore, competitive androgen receptor antagonism by D4A is comparable to the potent antagonist enzalutamide. D4A also has more potent anti-tumour activity against xenograft tumours than abiraterone. Our findings suggest an additional explanation-conversion to a more active agent-for abiraterone's survival extension. We propose that direct treatment with D4A would be more clinically effective than abiraterone treatment.
Henríquez-Hernández LA, Valenciano A, Foro-Arnalot P, et al.
Genetic variations in genes involved in testosterone metabolism are associated with prostate cancer progression: A Spanish multicenter study.Urol Oncol. 2015; 33(7):331.e1-7 [
PubMed]
Related Publications
BACKGROUND: Prostate cancer (PCa) is an androgen-dependent disease. Nonetheless, the role of single nucleotide polymorphisms (SNPs) in genes encoding androgen metabolism remains an unexplored area.
PURPOSE: To investigate the role of germline variations in cytochrome P450 17A1 (CYP17A1) and steroid-5α-reductase, α-polypeptides 1 and 2 (SRD5A1 and SRD5A2) genes in PCa.
PATIENTS AND METHODS: In total, 494 consecutive Spanish patients diagnosed with nonmetastatic localized PCa were included in this multicenter study and were genotyped for 32 SNPs in SRD5A1, SRD5A2, and CYP17A1 genes using a Biotrove OpenArray NT Cycler. Clinical data were available. Genotypic and allelic frequencies, as well as haplotype analyses, were determined using the web-based environment SNPator. All additional statistical analyses comparing clinical data and SNPs were performed using PASW Statistics 15.
RESULTS: The call rate obtained (determined as the percentage of successful determinations) was 97.3% of detection. A total of 2 SNPs in SRD5A1-rs3822430 and rs1691053-were associated with prostate-specific antigen level at diagnosis. Moreover, G carriers for both SNPs were at higher risk of presenting initial prostate-specific antigen levels>20ng/ml (Exp(B) = 2.812, 95% CI: 1.397-5.657, P = 0.004) than those who are AA-AA carriers. Haplotype analyses showed that patients with PCa nonhomozygous for the haplotype GCTTGTAGTA were at an elevated risk of presenting bigger clinical tumor size (Exp(B) = 3.823, 95% CI: 1.280-11.416, P = 0.016), and higher Gleason score (Exp(B) = 2.808, 95% CI: 1.134-6.953, P = 0.026).
CONCLUSIONS: SNPs in SRD5A1 seem to affect the clinical characteristics of Spanish patients with PCa.
Fokidis HB, Yieng Chin M, Ho VW, et al.
A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.J Steroid Biochem Mol Biol. 2015; 150:35-45 [
PubMed]
Related Publications
Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression.
Choubey VK, Sankhwar SN, Carlus SJ, et al.
SRD5A2 gene polymorphisms and the risk of benign prostatic hyperplasia but not prostate cancer.Asian Pac J Cancer Prev. 2015; 16(3):1033-6 [
PubMed]
Related Publications
BACKGROUND: Testosterone, a primary androgen in males, is converted into its most active form, dihydrotestosterone (DHT), by 5α-reductase type 2 (encoded by the SRD5A2 gene) in the prostate. DHT is necessary for prostatic growth and has five times higher binding affinity than testosterone for androgen receptors. We hypothesized that polymorphic variations in the SRD5A2 gene may affect the risk of benign prostatic hyperplasia and prostate cancer.
MATERIALS AND METHODS: We analyzed SRD5A2 gene polymorphisms in 217 BPH patients, 192 PCa cases, and 171 controls. Genotyping was undertaken using direct DNA sequencing. Genotype data were compared between cases and controls using a Chi square statistical tool.
RESULTS: We found that the A49T locus was monomorphic with 'AA' genotype in all subjects. At V89L locus, the presence of 'VV' showed a marginally significant correlation with increased BPH risk (p=0.047). At the (TA)n locus, longer TA repeats were found to be protective against BPH (p=0.003). However, neither of these polymoprhisms correlated with the risk of PCa.
CONCLUSIONS: We conclude that A49T is monomorphic in the study population, VV marginally correlates with BPH risk, and longer (TA)n repeats are protective against BPH. None of these polymorphisms affect the risk of PCa.
PURPOSE: Steroid 5-alpha reductase type 2 (SRD5A2) modifies testosterone to dihydrotestosterone (DHT) in the prostate. Single-nucleotide polymorphisms (SNPs) of the SRD5A2 gene might affect DHT. We sought to understand the relationship of SRD5A2 SNPs to prostate cancer in the Korean population.
MATERIALS AND METHODS: Twenty-six common SNPs in the SRD5A2 gene were assessed in 272 prostate cancer cases and 173 controls. Single-locus analyses were conducted by using conditional logistic regression. Additionally, we performed a haplotype analysis for the SRD5A2 SNPs tested.
RESULTS: Among the 20 SNPs and 4 haplotypes, there were no statistically significant results in the prostate cancer patients and the controls. In the logistic analysis of SRD5A2 polymorphisms with prostate-specific antigen (PSA) criteria, two SNPs (rs508562, rs11675297) and haplotype 1 displayed significant results (odds ratio [OR], 1.76; p=0.05; OR, 1.88-2.02; p=0.01-0.04; OR, 0.59; p=0.02, respectively). rs508562, rs11675297, rs2208532, and haplotype 1 (OR, 1.49; p=0.05; OR, 2.02; p=0.05; OR, 2.01; p=0.04; OR, 0.56-0.64, p=0.03-0.04, respectively) had significant associations with Gleason score. rs508562, rs11675297, and haplotype 1 (OR, 1.41-2.34; p=0.004-0.05; OR, 1.74-1.82; p=0.03-0.05; OR, 0.42-0.67; p=0.0005-0.03, respectively) were significantly associated with clinical stage.
CONCLUSIONS: We conclude that there was no significant association between SRD5A2 SNPs and the risk of prostate cancer in the Korean population. However, we found that some SNPs and 1 haplotype influenced PSA level, Gleason score, and clinical stage.
Sinreih M, Anko M, Zukunft S, et al.
Important roles of the AKR1C2 and SRD5A1 enzymes in progesterone metabolism in endometrial cancer model cell lines.Chem Biol Interact. 2015; 234:297-308 [
PubMed]
Related Publications
Endometrial cancer is the most frequently diagnosed gynecological malignancy. It is associated with prolonged exposure to estrogens that is unopposed by progesterone, whereby enhanced metabolism of progesterone may decrease its protective effects, as it can deprive progesterone receptors of their active ligand. Furthermore, the 5α-pregnane metabolites formed can stimulate proliferation and may thus contribute to carcinogenesis. The aims of our study were to: (1) identify and quantify progesterone metabolites formed in the HEC-1A and Ishikawa model cell lines of endometrial cancer; and (2) pinpoint the enzymes involved in progesterone metabolism, and delineate their roles. Progesterone metabolism studies combined with liquid chromatography-tandem mass spectrometry enabled identification and quantification of the metabolites formed in these cells. Further quantitative PCR analysis and small-interfering-RNA-mediated gene silencing identified individual progesterone metabolizing enzymes and their relevant roles. In Ishikawa and HEC-1A cells, progesterone was metabolized mainly to 20α-hydroxy-pregn-4-ene-3-one, 20α-hydroxy-5α-pregnane-3-one, and 5α-pregnane-3α/β,20α-diol. The major difference between these cell lines was rate of progesterone metabolism, which was faster in HEC-1A cells. In the Ishikawa and HEC-1A cells, expression of AKR1C2 was 110-fold and 6800-fold greater, respectively, than expression of AKR1C1, which suggests that 20-ketosteroid reduction of 5α-pregnanes and 4-pregnenes is catalyzed mainly by AKR1C2. AKR1C1/AKR1C2 gene silencing showed decreased progesterone metabolism in both cell lines, thus further supporting the significant role of AKR1C2. SRD5A1 was also expressed in these cells, and its silencing confirmed that 5α-reduction is catalyzed by 5α-reductase type 1. Silencing of SRD5A1 also had the most pronounced effects, with decreased rate of progesterone metabolism, and consequently higher concentrations of unmetabolized progesterone. Our data confirm that in model cell lines of endometrial cancer, AKR1C2 and SRD5A1 have crucial roles in progesterone metabolism, and may represent novel targets for treatment.