Gene Summary

Gene:STIM1; stromal interaction molecule 1
Aliases: GOK, TAM, TAM1, IMD10, STRMK, D11S4896E
Summary:This gene encodes a type 1 transmembrane protein that mediates Ca2+ influx after depletion of intracellular Ca2+ stores by gating of store-operated Ca2+ influx channels (SOCs). It is one of several genes located in the imprinted gene domain of 11p15.5, an important tumor-suppressor gene region. Alterations in this region have been associated with the Beckwith-Wiedemann syndrome, Wilms tumor, rhabdomyosarcoma, adrenocrotical carcinoma, and lung, ovarian, and breast cancer. This gene may play a role in malignancies and disease that involve this region, as well as early hematopoiesis, by mediating attachment to stromal cells. Mutations in this gene are associated with fatal classic Kaposi sarcoma, immunodeficiency due to defects in store-operated calcium entry (SOCE) in fibroblasts, ectodermal dysplasia and tubular aggregate myopathy. This gene is oriented in a head-to-tail configuration with the ribonucleotide reductase 1 gene (RRM1), with the 3' end of this gene situated 1.6 kb from the 5' end of the RRM1 gene. Alternative splicing of this gene results in multiple transcript variants. [provided by RefSeq, May 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:stromal interaction molecule 1
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (17)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Latest Publications: STIM1 (cancer-related)

Cheng S, Castillo V, Welty M, et al.
BreastDefend enhances effect of tamoxifen in estrogen receptor-positive human breast cancer in vitro and in vivo.
BMC Complement Altern Med. 2017; 17(1):115 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tamoxifen (TAM) has been widely used for the treatment of estrogen receptor (ER)-positive breast cancer and its combination with other therapies is being actively investigated as a way to increase efficacy and decrease side effects. Here, we evaluate the therapeutic potential of co-treatment with TAM and BreastDefend (BD), a dietary supplement formula, in ER-positive human breast cancer.
METHODS: Cell proliferation and apoptosis were determined in ER-positive human breast cancer cells MCF-7 by MTT assay, quantitation of cytoplasmic histone-associated DNA fragments and expression of cleaved PARP, respectively. The molecular mechanism was identified using RNA microarray analysis and western blotting. Tumor tissues from xenograft mouse model were analyzed by immunohistochemistry.
RESULTS: Our data clearly demonstrate that a combination of 4-hydroxytamoxifen (4-OHT) with BD lead to profound inhibition of cell proliferation and induction of apoptosis in MCF-7 cells. This effect is consistent with the regulation of apoptotic and TAM resistant genes at the transcription and translation levels. Importantly, TAM and BD co-treatment significantly enhanced apoptosis, suppressed tumor growth and reduced tumor weight in a xenograft model of human ER-positive breast cancer.
CONCLUSION: BD sensitized ER-positive human breast cancer cells to 4-OHT/TAM treatment in vitro and in vivo. BreastDefend can be used in an adjuvant therapy to increase the therapeutic effect of tamoxifen in patients with ER-positive breast cancer.

Boice M, Salloum D, Mourcin F, et al.
Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.
Cell. 2016; 167(2):405-418.e13 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (TFH) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM((P37-V202))) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein.

Schmid S, Le UT, Haager B, et al.
Local Concentrations of CC-Chemokine-Ligand 18 Correlate with Tumor Size in Non-small Cell Lung Cancer and Are Elevated in Lymph Node-positive Disease.
Anticancer Res. 2016; 36(9):4667-71 [PubMed] Related Publications
BACKGROUND: The tumor microenvironment plays a critical role in tumor growth and spreading. Tumor-associated macrophages (TAM) make up a large proportion of the tumor mass and are one of the main producers of CC-chemokine ligand 18 (CCL18), which is believed to carry out important functions in the immunological interactions that promote tumor progression.
MATERIALS AND METHODS: Cytokines/chemokines were measured in bronchoalveolar lavage (BAL) from the tumor site and serum before and after resection in patients with proven non-small cell lung cancer (NSCLC).
RESULTS: CCL18 concentrations in BAL positively correlated with the radiologically determined tumor volume (r=0.72, p=0.0003) in NSCLC. In addition, tumors with lymph-node metastasis exhibited significantly higher CCL18 concentrations in BAL (p=0.049) than those without. Serum CCL18 concentrations did not differ significantly before and after tumor resection.
CONCLUSION: The increased release of CCL18 with greater tumor size is most likely due to the accompanied growth of leukocyte infiltrate. With previous findings taken into account, this could be one factor contributing to tumor invasiveness and particularly lymphatic spread in patients with larger tumors.

Kimani SG, Kumar S, Davra V, et al.
Normalization of TAM post-receptor signaling reveals a cell invasive signature for Axl tyrosine kinase.
Cell Commun Signal. 2016; 14(1):19 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
BACKGROUND: Tyro3, Axl, and Mertk (TAMs) are a family of three conserved receptor tyrosine kinases that have pleiotropic roles in innate immunity and homeostasis and when overexpressed in cancer cells can drive tumorigenesis.
METHODS: In the present study, we engineered EGFR/TAM chimeric receptors (EGFR/Tyro3, EGFR/Axl, and EGF/Mertk) with the goals to interrogate post-receptor functions of TAMs, and query whether TAMs have unique or overlapping post-receptor activation profiles. Stable expression of EGFR/TAMs in EGFR-deficient CHO cells afforded robust EGF inducible TAM receptor phosphorylation and activation of downstream signaling.
RESULTS: Using a series of unbiased screening approaches, that include kinome-view analysis, phosphor-arrays, RNAseq/GSEA analysis, as well as cell biological and in vivo readouts, we provide evidence that each TAM has unique post-receptor signaling platforms and identify an intrinsic role for Axl that impinges on cell motility and invasion compared to Tyro3 and Mertk.
CONCLUSION: These studies demonstrate that TAM show unique post-receptor signatures that impinge on distinct gene expression profiles and tumorigenic outcomes.

Selli C, Pearce DA, Sims AH, Tosun M
Differential expression of store-operated calcium- and proliferation-related genes in hepatocellular carcinoma cells following TRPC1 ion channel silencing.
Mol Cell Biochem. 2016; 420(1-2):129-40 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
TRPC1 and store-operated Ca(2+) (SOC) entry have previously been associated with hepatocellular carcinoma cell proliferation. The aim of the study was to determine genes and processes associated with TRPC1 down-regulation and the resulting increase of SOC entry and decrease in hepatocellular carcinoma cell proliferation. For this purpose, transcriptome analysis was performed to determine differentially expressed genes in TRPC1-silenced Huh7 cells. SOC entry- and proliferation-related genes correlated with TRPC1 down-regulation were also examined. Changes in SOC entry and cell proliferation were monitored in the TRPC1-silenced and parental cells and found to be significantly increased and decreased, respectively, in TRPC1-silenced cells. A total of 71 genes were significantly differentially expressed (40 up- and 31 down-regulated), including four mitogen-activated protein kinase (MAPK) signalling-associated genes. STIM1 levels were significantly up-regulated and negatively correlated with TRPC1 levels. In addition, expression of two cell cycle regulation genes, CDK11A/11B and URGCP, was observed to decrease, whereas ERBB3 and FGFR4, pro-survival genes, increased significantly in TRPC1-silenced cells. In conclusion, these results suggest reciprocal alterations in TRPC1 and STIM1 levels and a role for STIM1 in the regulation of SOC entry in TRPC1-silenced Huh7 cells. In addition to TRPC1, STIM1 may participate in Huh7 cell proliferation by regulating SOC entry. Alterations in MAPK signalling genes may be involved in diminished cell proliferation in TRPC1-silenced Huh7 cells. Similarly, changes in cell cycle regulating genes in TRPC1-silenced cells indicate possible cell cycle arrest along with compensatory up-regulation of ERBB3 growth factor receptor-amongst others-to maintain hepatocellular carcinoma cell proliferation.

Yu P, Guo Y, Yusufu M, et al.
Decreased expression of EZH2 reactivates RASSF2A by reversal of promoter methylation in breast cancer cells.
Cell Biol Int. 2016; 40(10):1062-70 [PubMed] Related Publications
EZH2, the catalytic subunit of polycomb repressor complex 2, has oncogenic properties, whereas RASSF2A, a Ras association domain family protein, has a tumor suppressor role in many types of human cancer. However, the interrelationship between these two genes remains unclear. Here, we showed that the downregulation of EZH2 reduces CpG island methylation of the RASSF2A promoter, thereby leading to increased RASSF2A expression. Our findings also showed that knockdown of EZH2 increased RASSF2A expression in the human breast cancer cell line MCF-7 in cooperation with DNMT1. This was similar to the effect of 5-Aza-CdR, a DNA methylation inhibitor that reactivates tumor suppressor genes and activated RASSF2A expression in our study. The EZH2 inhibitor DZNep markedly suppressed the proliferation, migration, and invasion of MCF-7 cells treated with ADR and TAM. EZH2 inhibits the expression of tumor suppressor gene RASSF2A via promoter hypermethylation. Thus, it plays an important role in tumorigenesis and is a potential therapeutic target for the treatment of breast cancer.

Lkhagvadorj S, Kim JH, Oh SS, et al.
Orai1 Expression Is Closely Related with Favorable Prognostic Factors in Clear Cell Renal Cell Carcinoma.
J Korean Med Sci. 2016; 31(6):879-85 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Store-operated calcium (Ca(2+)) entry (SOCE) is the principal Ca(2+) entry route in non-excitable cells, including cancer cells. We previously demonstrated that Orai1 and STIM1, the molecular components of SOCE, are involved in tumorigenesis of clear cell renal cell carcinoma (CCRCC). However, a clinical relevance of Orai1 and STIM1 expression in CCRCC has been ill-defined. Here, we investigated the expression of Orai1 and STIM1 in CCRCC, and compared their expression with clinico-pathological parameters of CCRCC and the patients' outcome. Immunohistochemical staining for Orai1 and STIM1 was performed on 126 formalin fixed paraffin embedded tissue of CCRCC and western blot analysis for Orai1 was performed on the available fresh tissue. The results were compared with generally well-established clinicopathologic prognostic factors in CCRCC and patient survival. Membrane protein Orai1 is expressed in the nuclei in CCRCC, whereas STIM1 shows the cytosolic expression pattern in immunohistochemical staining. Orai1 expression level is inversely correlated with CCRCC tumor grade, whereas STIM1 expression level is not associated with tumor grade. The higher Orai1 expression is significantly associated with lower Fuhrman nuclear grade, pathologic T stage, and TNM stage and with favorable prognosis. The expression level of STIM1 is not correlated with CCRCC grade and clinical outcomes. Orai1 expression in CCRCC is associated with tumor progression and with favorable prognostic factors. These results suggest that Orai1 is an attractive prognostic marker and therapeutic target for CCRCC.

Danella Polli C, Pereira Ruas L, Chain Veronez L, et al.
Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype.
Biomed Res Int. 2016; 2016:2925657 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies.

Zhao X, Wang Q, Yang S, et al.
Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.
Eur J Pharmacol. 2016; 781:60-8 [PubMed] Related Publications
Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P<0.01), and sparse microvessel density (P<0.05). Qu significantly inhibited tumor calcineurin activities, and the inhibitory rate was 62.73% in Qu treated animals, compared to that was 72.90% in FK506 group (P>0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), downregulated gene expression of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), reduced protein levels of VEGF (P<0.05), VEGFR2 (P<0.05), and NFATc3 (P<0.01) in tumor tissues. These findings indicate that Qu inhibit angiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation.

Pode-Shakked N, Pleniceanu O, Gershon R, et al.
Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.
Sci Rep. 2016; 6:23562 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.

Tong H, Ke JQ, Jiang FZ, et al.
Tumor-associated macrophage-derived CXCL8 could induce ERα suppression via HOXB13 in endometrial cancer.
Cancer Lett. 2016; 376(1):127-36 [PubMed] Related Publications
PURPOSE: To elucidate the role of tumor-associated macrophage (TAM) in the loss of ERα in endometrial cancer (EC) and the underlying mechanism.
MATERIALS AND METHODS: Tissue microarrays and immunohistochemistry assays were performed using endometrial cancer tissue along with coculture, immunofluorescence, invasion assays and ChIP-qPCR using a human endometrial cancer cell line.
RESULTS: Compared with normal tissue, an increased number of TAM was found in EC tissue (34.0 ± 2.6 vs. 8.3 ± 1.1, respectively; p < 0.001), which may downregulate ERα (27.4%, p < 0.05 for HEC-1A and 16.9%, p < 0.05 for Ishikawa) and promote EC cell invasion (1.8-fold, p < 0.001 for HEC-1A and 2.0-fold, p < 0.001 for Ishikawa). Furthermore, we found that TAM-derived CXCL8 mediated the loss of ERα and cancer invasion via HOXB13. HOXB13 was highly expressed in the ERα-negative subtype (r = -0.204, p = 0.002) and low expression of ESR1 was associated with a poor prognosis for EC patients (log-rank p < 0.05).
CONCLUSION: TAM-secreted CXCL8 downregulated the ERα expression of EC cells via HOXB13, which may be associated with cancer invasion, metastasis and poor prognosis.

Choi YJ, Oh SG, Singh TD, et al.
Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging.
Neoplasia. 2016; 18(3):133-41 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
We sought to visualize the migration of tumor-associated macrophages (TAMs) to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc) and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM) were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI) and fluorescence imaging (FLI) was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX), a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression.

Ball MS, Shipman EP, Kim H, et al.
CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.
PLoS One. 2016; 11(2):e0149600 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer.

Ma C, Komohara Y, Ohnishi K, et al.
Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma.
Cancer Sci. 2016; 107(5):700-7 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Cancer stem-like cells (CSC) or cancer-initiating cells are now considered to be an important cell population related to cancer recurrence and the resistance to anti-cancer therapy. Tumor-associated macrophages (TAM) are a main component of stromal cells and are related to cancer progression in clear cell renal cell carcinoma (ccRCC). Because the detailed mechanisms allowing the maintenance of CSC in cancer tissues remain unclear, we investigated the relationship between TAM and CD44-expressing cancer cells in ccRCC. CD44 was used as a marker for CSC, and CD163 and CD204 were used as markers for TAM. CD44-positive cancer cells were detected in 37 of the 103 cases. Although statistical analysis showed no relationship between CD44-positive cancer cells and the clinical course, the distribution of CD44-positive cancer cells was significantly associated with a high density of TAM. Our in vitro study using RCC cell lines and human macrophages demonstrated that CD44 expression was upregulated by direct co-culture with macrophages. Silencing of TNF-alpha on macrophages abrogated the upregulation of CD44 expression in cancer cells. Macrophage-induced CD44 overexpression was also suppressed by NF-κB inhibitors. These results suggest that TNF-alpha derived from TAM is linked to CD44 overexpression via NF-κB signaling in ccRCC.

Ahmed NS, Elghazawy NH, ElHady AK, et al.
Design and synthesis of novel tamoxifen analogues that avoid CYP2D6 metabolism.
Eur J Med Chem. 2016; 112:171-9 [PubMed] Related Publications
Tamoxifen (TAM) is a widely used drug in the prophylaxis and treatment of breast cancer. TAM is metabolized to the more active 4-hydroxytamoxifen (4-OH-TAM) and endoxifen by cytochrome P450 (CYP) mainly CYP2D6 and CYP3A4 enzymes. Due to the genetic polymorphisms in CYP2D6 genes, high variation in the clinical outcomes of TAM treatment is observed among women of different populations. To address this issue, novel TAM analogues with possible altered activation pathways were synthesized. These analogues were tested for their antiproliferative action on MCF-7 breast cancer cell lines as well as their binding affinity for estrogen receptor (ER) ER-α and ER-β receptors. These entire novel compounds showed better antiproliferative activity than did TAM on the MCF-7 cells. Moreover, compound 10 exhibited a half maximal growth inhibition (GI50) that was 1000 times more potent than that of TAM (GI50 < 0.005 μM vs 1.58 μM, respectively). Along with a broad spectrum activity on various cancer cell lines, all the TAM analogues showed considerable activity on the ER-negative breast cancer cell line. For further study, compound 10 was incubated in human liver microsomes (HLM), human hepatocytes (hHEP) and CYP2D6 supersomes. The active hydroxyl metabolite was detected after incubation in HLM and hHEP, implicating the involvement of other enzymes in its metabolism. These results prove that this novel series of TAM analogues might provide improved clinical outcomes for poor 2D6 metabolizers.

Liu ZR, Song Y, Wan LH, et al.
Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3ζ, estrogen receptor α, and autophagy.
Life Sci. 2016; 149:104-13 [PubMed] Related Publications
AIM: To investigate the effects and mechanisms of miR-451a in the tamoxifen (TAM) resistance of breast cancer cells.
MATERIALS AND METHODS: TAM sensitive cells (MCF-7) and resistant cells (LCC2) were employed in the study. The lentivirus vectors of Lv-miR-451a, Lv-miR-451a sponge, and Lv-miR-451a NC were employed to increase or decrease the expression of miR-451a, respectively. SiRNA to 14-3-3ζ was used to inhibit expression of 14-3-3ζ. MTT assay was utilized to detect breast cancer cell proliferation. AnnexinV-FITC binding assay was used to detect apoptosis. Expression of ERα, 14-3-3ζ and miR-451a were measured by qRT-PCR and Western blot analysis. Interactions between 14-3-3ζ and ERα were investigated by co-immunoprecipitation. LC3-II surface expression and intracellular autophagosomes were observed by Western blot and electron microscopy.
KEY FINDINGS: Over-expression of miR-451a can enhance MCF-7 and LCC2 cell sensitivity to TAM. Opposite effects were elicited by knocking down miR-451a. TAM treatment can up-regulate 14-3-3ζ expression, and down-regulate ERα expression. 14-3-3ζ and ERα were shown to interact. Over-expression of miR-451a decreased 14-3-3ζ expression and increased ERα expression, suppressing cell proliferation, increasing apoptosis, and reducing activation of p-AKT and p-mTOR. R18 can significantly decrease cell proliferation and increase apoptosis. R18 and 14-3-3ζ siRNA can rescue the effects of down-regulation of ERα by knocking down miR-451a. Over-expression of miR-451a inhibits autophagy, knocking-down miR-451a stimulates autophagy.
SIGNIFICANCE: MiR-451a functions as a suppressor of resistance to TAM through regulating autophagy, the expression of 14-3-3ζ and ERα. This suggests miR-451a to be a potential target for reversing resistance to TAM.

Ciucci A, Zannoni GF, Buttarelli M, et al.
Multiple direct and indirect mechanisms drive estrogen-induced tumor growth in high grade serous ovarian cancers.
Oncotarget. 2016; 7(7):8155-71 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
The notion that menopausal estrogen replacement therapy increases ovarian cancer risk, but only for the two more common types (i.e. serous and endometrioid), while possibly decreasing risk for clear cell tumors, is strongly suggestive of causality. However, whether estradiol (E2) is tumorigenic or promotes development of occult preexisting disease is unknown. The present study investigated molecular and cellular mechanisms by which E2 modulates the growth of high grade serous ovarian cancer (HGSOC). Results showed that ERα expression was necessary and sufficient to induce the growth of HGSOC cells in in vitro models. Conversely, in vivo experimental studies demonstrated that increasing the levels of circulating estrogens resulted in a significant growth acceleration of ERα-negative HGSOC xenografts, as well. Tumors from E2-treated mice had significantly higher proliferation rate, angiogenesis, and density of tumor-associated macrophage (TAM) compared to ovariectomized females. Accordingly, immunohistochemical analysis of ERα-negative tissue specimens from HGSOC patients showed a significantly greater TAM infiltration in premenopausal compared to postmenopausal women. This study describes novel insights into the impact of E2 on tumor microenvironment, independently of its direct effect on tumor cell growth, thus supporting the idea that multiple direct and indirect mechanisms drive estrogen-induced tumor growth in HGSOC.

Yu X, Li R, Shi W, et al.
Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells.
Biomed Pharmacother. 2016; 77:37-44 [PubMed] Related Publications
Tamoxifen (TAM) and fulvestrant (FUL) represent the major adjuvant therapy to estrogen receptor-alpha positive (ER(+)) breast cancer patients. However, endocrine resistance to TAM and FUL is a great impediment for successful treatment. We hypothesized that miR-21 might alter the sensitivity of breast cancer cells to TAM or FUL by regulating cell autophagy. Using the ER(+) breast cancer cells, we knockdown transfection with miR-21 inhibitor, then the cells were exposed to TAM or FUL and the percentages of apoptosis and autophagy were determined. Knockdown of miR-21 significantly increased the TAM or FUL-induced apoptosis in ER(+) breast cancer cells. Further, silencing of miR-21 in MCF-7 cells enhanced cell autophagy at both basal and TAM or FUL-induced level. The increase of autophagy in miR-21-knockdown MCF-7 cells was also indicated by increase of beclin-1, LC3-II and increased GFP-LC3 dots. Importantly, knockdown of miR-21 contributed to autophagic cell death, which is responsible for part of TAM induced cell death in miR-21 inhibitor-transfected cells. Further analysis suggested that miR-21 inhibitor enhance autophagic cell death through inhibition of PI3K-AKT-mTOR pathway. MiR-21 coordinated the function of autophagy and apoptosis by targeting Phosphatase and tensin homolog (PTEN) through inhibition of PI3K-AKT-mTOR pathway. In conclusion, silencing of miR-21 increased the sensitivity of ER(+) breast cancer cells to TAM or FUL by increasing autophagic cell death. Targeting autophagy-related miRNAs is a potential strategy for overcoming endocrine resistance to TAM and FUL.

Jiang Y, Nie K, Redmond D, et al.
VDJ-Seq: Deep Sequencing Analysis of Rearranged Immunoglobulin Heavy Chain Gene to Reveal Clonal Evolution Patterns of B Cell Lymphoma.
J Vis Exp. 2015; (106):e53215 [PubMed] Related Publications
Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.

Tao M, Liu L, Shen M, et al.
Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac.
Cell Cycle. 2016; 15(3):381-93 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway-dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB-dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway-dependent PP2Ac repression.

Zhou SL, Hu ZQ, Zhou ZJ, et al.
miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis.
Hepatology. 2016; 63(5):1560-75 [PubMed] Related Publications
UNLABELLED: MicroRNAs (miRNAs) play a critical role in regulation of tumor metastasis. However, the role of these molecules in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we employed miRNA-sequencing and identified 22 miRNAs involved in HCC metastasis. One of these, miR-28-5p, was down-regulated in HCCs. This down-regulation correlated with tumor metastasis, recurrence, and poor survival. Biofunctional investigations revealed that miR-28-5p deficiency promoted tumor growth and metastasis in nude mice without altering the in vitro biological characteristics of HCC cells. Through gene expression profiles and bioinformatics analysis, we identified interleukin-34 (IL-34) as a direct target of miR-28-5p, and the effects of miR-28-5p deficiency on HCC growth and metastasis was dependent on IL-34-mediated tumor-associated macrophage (TAM) infiltration. Moreover, we found that TAMs induced by miR-28-5p-IL-34 signaling inhibit miR-28-5p expression on HCC cells by transforming growth factor beta 1, resulting in an miR-28-5p-IL-34-macrophage-positive feedback loop. In clinical HCC samples, miR-28-5p levels were inversely correlated with IL-34 expression and the number of TAMs. Patients with low miR-28-5p expression, high IL-34 levels, and high numbers of TAMs had a poor prognosis with shorter overall survival and time to recurrence.
CONCLUSION: A miR-28-5p-IL-34-macrophage feedback loop modulates HCC metastasis and serves as a novel prognostic factor as well as a therapeutic target for HCC.

Hoth M
CRAC channels, calcium, and cancer in light of the driver and passenger concept.
Biochim Biophys Acta. 2016; 1863(6 Pt B):1408-17 [PubMed] Related Publications
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

Li Y, Zhao L, Shi B, et al.
Functions of miR-146a and miR-222 in Tumor-associated Macrophages in Breast Cancer.
Sci Rep. 2015; 5:18648 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Tumor-associated macrophages (TAMs) play critical roles in promoting tumor progression and invasion. However, the molecular mechanisms underlying TAM regulation remain to be further investigated and may make significant contributions to cancer treatment. Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression that function by repressing specific target genes mainly at the post-transcriptional level. However, systematic studies of the functions and mechanisms of miRNAs in TAMs in tumor tissues are rare. In this study, miR-146a and miR-222 were shown to be significantly decreased in TAMs associated with the up-regulated NF-κB p50 subunit. miR-146a promoted the expression of some M2 macrophage phenotype molecules, and miR-146a antagomir transfected RAW264.7 monocyte-macrophage cells inhibited 4T1 tumor growth in vivo. Meanwhile, overexpression of miR-222 inhibited TAM chemotaxis, and miR-222 in TAMs inhibited 4T1 tumor growth by targeting CXCL12 and inhibiting CXCR4. These data revealed that miRNAs influence breast tumor growth by promoting the M2 type polarization or regulating the recruitment of TAMs. These observations suggest that endogenous miRNAs may exert an important role in controlling the polarization and function of TAMs in breast cancer.

Yu X, Luo A, Liu Y, et al.
MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy.
Mol Cancer. 2015; 14:208 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
BACKGROUND: Tamoxifen (TAM) and fulvestrant (FUL) are the major drugs for patients with estrogen receptor-positive (ER(+)) breast cancers. However, the development of endocrine resistance is the impediment for successful treatment. We aimed to explore the mechanisms of endocrine resistance and therapeutic strategy for overcoming resistance against TAM and FUL.
METHODS: Experiments were performed in ER(+) and estrogen/TAM-sensitive MCF7 cells and antiestrogen-resistant MCF7/LCC9 cells. The expression of miR-214 and uncoupling protein 2 (UCP2) was determined by RT-qPCR and Western blot in breast cancer cells and human breast cancer tissue specimens. Cell autophagy was examined by fluorescent probe monodansyl cadaverine (MDC) and GFP-LC3-II-positive punctate identified by confocal microscopy. Apoptotic cells were determined by Annexin V-FITC/PI staining. The potential regulatory target of miR-214 was determined by prediction tool, target protein expression and luciferase reporter assay.
RESULTS: 4-OHT/FUL treatment resulted in induction of apoptosis as well as autophagy in breast cancer cells. Autophagy might be the major cause of endocrine resistance to 4-OHT or FUL. MiR-214 increased the sensitivity of breast cancer cells to the 4-OHT/FUL-induced apoptosis through inhibition of autophagy. Importantly, a negative correlation was established between miR-214 and UCP2 in human breast cancer tissue specimens assayed by RT-qPCR. UCP2 was identified to be a direct target of miR-214. Further study in MCF7/LCC9 cells indicated that endocrine resistance might arise from activation of the PI3K-Akt-mTOR pathway, thereby inducing autophagy by overexpression of UCP2.
CONCLUSION: MiR-214 increased the sensitivity of breast cancer cells to TAM and FUL through inhibition of autophagy by targeting UCP2. MiR-214 shows potential as a novel therapeutic strategy for overcoming endocrine resistance in ER(+) breast cancers.

Dupont T, Yang SN, Patel J, et al.
Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma.
Oncotarget. 2016; 7(3):3520-32 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
The BCL6 oncogene plays a crucial role in sustaining diffuse large B-cell lymphomas (DLBCL) through transcriptional repression of key checkpoint genes. BCL6-targeted therapy kills lymphoma cells by releasing these checkpoints. However BCL6 also directly represses several DLBCL oncogenes such as BCL2 and BCL-XL that promote lymphoma survival. Herein we show that DLBCL cells that survive BCL6-targeted therapy induce a phenomenon of "oncogene-addiction switching" by reactivating BCL2-family dependent anti-apoptotic pathways. Thus, most DLBCL cells require concomitant inhibition of BCL6 and BCL2-family members for effective lymphoma killing. Moreover, in DLBCL cells initially resistant to BH3 mimetic drugs, BCL6 inhibition induces a newly developed reliance on anti-apoptotic BCL2-family members for survival that translates in acquired susceptibility to BH3 mimetic drugs ABT-737 and obatoclax. In germinal center B cell-like (GCB)-DLBCL cells, the proteasome inhibitor bortezomib and the NEDD inhibitor MLN4924 post-transcriptionally activated the BH3-only sensitizer NOXA thus counteracting the oncogenic switch to BCL2 induced by BCL6-targeting. Hence our study indicates that BCL6 inhibition induces an on-target feedback mechanism based on the activation of anti-apoptotic BH3 members. This oncogene-addition switching mechanism was harnessed to develop rational combinatorial therapies for GCB-DLBCL.

Zuccolo E, Bottino C, Diofano F, et al.
Constitutive Store-Operated Ca(2+) Entry Leads to Enhanced Nitric Oxide Production and Proliferation in Infantile Hemangioma-Derived Endothelial Colony-Forming Cells.
Stem Cells Dev. 2016; 25(4):301-19 [PubMed] Related Publications
Clonal endothelial progenitor cells (EPCs) have been implicated in the aberrant vascular growth that features infantile hemangioma (IH), the most common benign vascular tumor in childhood that may cause ulceration, bleeding, and/or permanent disfigurement. Endothelial colony-forming cells (ECFCs), truly endothelial EPCs endowed with clonal ability and capable of forming patent vessels in vivo, remodel their Ca(2+) toolkit in tumor-derived patients to acquire an adaptive advantage. Particularly, they upregulate the proangiogenic store-operated Ca(2+) entry (SOCE) pathway due to the overexpression of its underlying components, that is, stromal interaction molecule 1 (Stim1), Orai1, and transient receptor potential canonical 1 (TRPC1). The present work was undertaken to assess whether and how the Ca(2+) signalosome is altered in IH-ECFCs by employing Ca(2+) and nitric oxide (NO) imaging, real-time polymerase chain reaction, western blotting, and functional assays. IH-ECFCs display a lower intracellular Ca(2+) release in response to either pharmacological (i.e., cyclopiazonic acid) or physiological (i.e., ATP and vascular endothelial growth factor) stimulation. Conversely, Stim1, Orai1, and TRPC1 transcripts and proteins are normally expressed in these cells and mediate a constitutive SOCE, which is sensitive to BTP-2, La(3+), and Pyr6 and recharges the intracellular Ca(2+) pool. The resting SOCE in IH-ECFCs is also associated to an increase in their proliferation rate and the basal production of NO compared to normal cells. Likewise, the pharmacological blockade of SOCE and NO synthesis block IH-ECFC growth. Collectively, these data indicate that the constitutive SOCE activation enhances IH-ECFC proliferation by augmenting basal NO production and sheds novel light on the molecular mechanisms of IH.

Liao J, Feng W, Wang R, et al.
Diverse in vivo effects of soluble and membrane-bound M-CSF on tumor-associated macrophages in lymphoma xenograft model.
Oncotarget. 2016; 7(2):1354-66 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
Macrophage colony-stimulating factor (M-CSF) is an important cytokine for monocyte/macrophage lineage. Secretory M-CSF (sM-CSF) and membrane-bound M-CSF (mM-CSF) are two major alternative splicing isoforms. The functional diversity of these isoforms in the activation of tumor-associated macrophages (TAMs), especially in lymphoma microenvironment, has not been documented. Here, we studied the effects of M-CSF isoforms on TAMs in xenograft mouse model. More infiltrating TAMs were detected in microenvironment with mM-CSF and sM-CSF. TAMs could be divided into three subpopulations based on their expression of CD206 and Ly6C. While sM-CSF had greater potential to recruit and induce differentiation of TAMs and TAM subpopulations, mM-CSF had greater potential to induce proliferation of TAMs and TAM subpopulations. Though both isoforms educated TAMs and TAM subpopulations to M2-like macrophages, mM-CSF and sM-CSF induced different spectrums of phenotype-associated genes in TAMs and TAM subpopulations. These results suggested the diverse effects of M-CSF isoforms on the activation of TAMs and TAM subpopulations in lymphoma microenvironments.

Li X
TIPE2 regulates tumor-associated macrophages in skin squamous cell carcinoma.
Tumour Biol. 2016; 37(4):5585-90 [PubMed] Related Publications
Tumor-associated macrophages (TAMs) play an essential role in the immunology, growth, invasion, and metastases of skin squamous cell carcinoma (SCC). However, the molecular mechanisms underlying the activation and regulation of TAMs by SCC are not completely understood. Here, in a Transwell co-culture system, we found that SCC cells induced polarization of macrophages to a M2 phenotype, evident by expression of surface markers CD163, CD206, and CD301, as well as reduction of cellular iNOS levels and augmentation of cellular arginase levels. Moreover, tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2) was induced in macrophages by co-culturing with SCC cells. Depletion of TIPE2 in macrophages abolished the effects of co-cultured SCC cells on phenotypic modification of macrophages. Furthermore, patients with SCC were divided into two groups based on TIPE2 levels in TAMs at the time of tumor resection. We found that patients with high-TIPE2 TAMs had an overall poor 5-year survival. Together, our data suggest a previously unappreciated role of TIPE2 in the crosstalk between skin SCC and TAMs and highlight TIPE2 as a promising novel target for skin SCC treatment.

Duan Y, Wong W, Chua SC, et al.
Overexpression of Tyro3 and its implications on hepatocellular carcinoma progression.
Int J Oncol. 2016; 48(1):358-66 [PubMed] Related Publications
While various tyrosine kinases have been associated with the pathogenesis of hepatocellular carcinoma (HCC), the identification of a dominant therapeutic target among them remains a challenge. Here, we investigated the role of Tyro3, a relatively uncharacterized member of the TAM (Tyro3, Axl and Mer) receptor family. The present study aimed to profile and identify potential association between Tyro3 expression in HCC and cancer phenotypes. RNAs obtained from 55 HCC patients were quantified for Tyro3 expression in both cancerous tissue and the adjacent normal tissue. Expression profile was correlated with clinical data. These observations were further substantiated with in vitro HCC cell culture investigations.Tyro3 was strongly upregulated (>2-fold elevation) in the tumor tissue of ~42% of the patients. It was shown that higher expression level of Tyro3 was associated with the key tumor marker AFP, and the tumor diameter and liver injury marker ALT. Subsequent cell culture models indicated high expression in various HCC cell lines, in particular Hep3B. Gene silencing of Tyro3 in Hep3B effectively reduced cell proliferation, ERK phosphorylation and cyclin D1 expression, indicating a key in maintaining the proliferative state of these cells. Notably, silencing also suppressed the transcriptional and translational expression of HCC tumor marker AFP. Overall, these data suggest that Tyro3 contributes significantly to tumor growth, aggressiveness and liver dysfunction. Inhibition of Tyro3 and its aberrant signaling in tumors with high expression could present new opportunities for HCC treatment.

The Molecular Taxonomy of Primary Prostate Cancer.
Cell. 2015; 163(4):1011-25 [PubMed] Article available free on PMC after 06/10/2017 Related Publications
There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. STIM1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999