TGFBR3

Gene Summary

Gene:TGFBR3; transforming growth factor, beta receptor III
Aliases: BGCAN, betaglycan
Location:1p33-p32
Summary:This locus encodes the transforming growth factor (TGF)-beta type III receptor. The encoded receptor is a membrane proteoglycan that often functions as a co-receptor with other TGF-beta receptor superfamily members. Ectodomain shedding produces soluble TGFBR3, which may inhibit TGFB signaling. Decreased expression of this receptor has been observed in various cancers. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene.[provided by RefSeq, Sep 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transforming growth factor beta receptor type 3
HPRD
Source:NCBIAccessed: 17 August, 2015

Ontology:

What does this gene/protein do?
Show (52)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transcription
  • Non-Small Cell Lung Cancer
  • Gene Expression
  • Single Nucleotide Polymorphism
  • Protein-Serine-Threonine Kinases
  • ras Proteins
  • Veins
  • Activin Receptors, Type I
  • Soft Tissue Cancers
  • Cell Movement
  • Down-Regulation
  • Cancer DNA
  • RTPCR
  • Neoplasm Invasiveness
  • Transforming Growth Factor beta
  • Genetic Predisposition
  • Gene Expression Profiling
  • siRNA
  • FISH
  • Oligonucleotide Array Sequence Analysis
  • Western Blotting
  • Transforming Growth Factor beta Receptors
  • Messenger RNA
  • Translocation
  • Cancer RNA
  • Prostate Cancer
  • Genetic Markers
  • Chromosome 1
  • Case-Control Studies
  • Cell Differentiation
  • Cancer Gene Expression Regulation
  • Breast Cancer
  • Proteoglycans
  • Disease Models, Animal
  • Uterine Cancer
  • Neoplastic Cell Transformation
  • Soft Tissue Sarcoma
  • Loss of Heterozygosity
  • Lung Cancer
  • Cell Proliferation
Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TGFBR3 (cancer-related)

Drasin DJ, Guarnieri AL, Neelakantan D, et al.
TWIST1-Induced miR-424 Reversibly Drives Mesenchymal Programming while Inhibiting Tumor Initiation.
Cancer Res. 2015; 75(9):1908-21 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that relies on cellular plasticity. Recently, the process of an oncogenic EMT, followed by a reverse mesenchymal-to-epithelial transition (MET), has been implicated as critical in the metastatic colonization of carcinomas. Unlike governance of epithelial programming, regulation of mesenchymal programming is not well understood in EMT. Here, we describe and characterize the first microRNA that enhances exclusively mesenchymal programming. We demonstrate that miR-424 is upregulated early during a TWIST1 or SNAI1-induced EMT, and that it causes cells to express mesenchymal genes without affecting epithelial genes, resulting in a mixed/intermediate EMT. Furthermore, miR-424 increases motility, decreases adhesion, and induces a growth arrest, changes associated with a complete EMT that can be reversed when miR-424 expression is lowered, concomitant with an MET-like process. Breast cancer patient miR-424 levels positively associate with TWIST1/2 and EMT-like gene signatures, and miR-424 is increased in primary tumors versus matched normal breast. However, miR-424 is downregulated in patient metastases versus matched primary tumors. Correspondingly, miR-424 decreases tumor initiation and is posttranscriptionally downregulated in macrometastases in mice, suggesting the need for biphasic expression of miR-424 to transit the EMT-MET axis. Next-generation RNA sequencing revealed miR-424 regulates numerous EMT and cancer stemness-associated genes, including TGFBR3, whose downregulation promotes mesenchymal phenotypes, but not tumor-initiating phenotypes. Instead, we demonstrate that increased MAPK-ERK signaling is critical for miR-424-mediated decreases in tumor-initiating phenotypes. These findings suggest miR-424 plays distinct roles in tumor progression, potentially facilitating earlier, but repressing later, stages of metastasis by regulating an EMT-MET axis.

Ieremia E, Thway K
Myxoinflammatory fibroblastic sarcoma: morphologic and genetic updates.
Arch Pathol Lab Med. 2014; 138(10):1406-11 [PubMed] Related Publications
Myxoinflammatory fibroblastic sarcoma (MIFS) is a malignant mesenchymal neoplasm most frequently arising in the distal extremities of adults, which usually behaves in a low-grade manner but is capable of metastasizing to local and distant sites, rarely leading to death. It is a rare tumor whose unusual morphology can lead to erroneous histologic diagnosis, either as a nonneoplastic (infectious or inflammatory) process or as a variety of neoplastic diseases. While its exact origin is uncertain, ultrastructural studies have shown at least some of the constituent cells to be modified fibroblasts. Distinct and reproducible genetic abnormalities identified in MIFS are translocation t(1;10)(p22:q24), with rearrangements of the TGFBR3 and MGEA5 genes associated with increased levels of FGF8, and formation of marker/ring chromosome 3, with amplification of the VGLL3 locus. Because these genetic abnormalities are shared by both MIFS and hemosiderotic fibrohistiocytic lipomatous tumor, it is thought that these 2 morphologically distinct neoplasms may comprise a spectrum of disease defined by these genetics. We review the literature on MIFS and discuss morphology (including that of MIFS/hemosiderotic fibrohistiocytic lipomatous tumor hybrid lesions), immunohistochemistry, the differential diagnosis, and recent molecular genetic developments.

Bilandzic M, Wang Y, Ahmed N, et al.
Betaglycan blocks metastatic behaviors in human granulosa cell tumors by suppressing NFκB-mediated induction of MMP2.
Cancer Lett. 2014; 354(1):107-14 [PubMed] Related Publications
Metastatic ovarian granulosa cell tumors (GCT) exhibit loss of betaglycan. Here we test the hypothesis that betaglycan blocks GCT metastasis by suppressing NFκB/TGFβ2-induced matrix metalloprotinease-2 (MMP2). Human GCT and a human GCT cell model demonstrated prominent MMP2 expression, which was dependent on NFκB activity and stimulated by TGFβ2 in an NFκB-dependent manner. Betaglycan suppressed both basal and TGFβ2-induced MMP2 expression and countered metastatic behaviors of GCT cells in non-adherent spheroid culture and in vivo xenograft models of metastasis. These data suggest that NFκB/TGFβ2 promotes, and betaglycan impedes, the early stages of GCT metastasis, when tumor cells first invade the peritoneum.

Jovanović B, Beeler JS, Pickup MW, et al.
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Breast Cancer Res. 2014; 16(4):R69 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
INTRODUCTION: There is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor promoter in mesenchymal-stem like TNBC cells.
METHODS: Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all TNBC subtypes.
RESULTS: TβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells.
CONCLUSIONS: We have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TβRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and invasion, as determined by siRNA knockdown studies of both TβRIII and integrin-α2. Overall, our results indicate a potential mechanism in which TβRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and tumorigenicity.

Charbonneau B, Moysich KB, Kalli KR, et al.
Large-scale evaluation of common variation in regulatory T cell-related genes and ovarian cancer outcome.
Cancer Immunol Res. 2014; 2(4):332-40 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
The presence of regulatory T cells (Treg) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag single-nucleotide polymorphisms (SNP) in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC). The strongest associations were found for endometrioid carcinoma and IL2RA SNPs rs11256497 [HR, 1.42; 95% confidence interval (CI), 1.22-1.64; P = 5.7 × 10(-6)], rs791587 (HR, 1.36; 95% CI, 1.17-1.57; P = 6.2 × 10(-5)), rs2476491 (HR, = 1.40; 95% CI, 1.19-1.64; P = 5.6 × 10(-5)), and rs10795763 (HR, 1.35; 95% CI, 1.17-1.57; P = 7.9 × 10(-5)), and for clear cell carcinoma and CTLA4 SNP rs231775 (HR, 0.67; 95% CI, 0.54-0.82; P = 9.3 × 10(-5)) after adjustment for age, study site, population stratification, stage, grade, and oral contraceptive use. The rs231775 allele associated with improved survival in our study also results in an amino acid change in CTLA4 and previously has been reported to be associated with autoimmune conditions. Thus, we found evidence that SNPs in genes related to Tregs seem to play a role in ovarian cancer survival, particularly in patients with clear cell and endometrioid epithelial ovarian cancer.

Carter JM, Sukov WR, Montgomery E, et al.
TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms.
Am J Surg Pathol. 2014; 38(9):1182-992 [PubMed] Related Publications
Pleomorphic hyalinizing angiectatic tumor (PHAT) is a rare, locally aggressive tumor of the distal extremities with a proclivity for local recurrence. PHATs contain characteristic ectatic, thin-walled vessels, lined by fibrin, and are surrounded by groups of variably pleomorphic spindled to epithelioid neoplastic cells. The putative precursor lesion of PHAT, originally termed "early PHAT" shares many clinicopathologic features with hemosiderotic fibrolipomatous tumor (HFLT). HFLT, myxoinflammatory fibroblastic sarcoma (MIFS), and tumors showing hybrid features of HFLT and MIFS often show TGFBR3 and MGEA5 gene rearrangements. To date, only a small number of PHATs has been tested for either rearrangement; all have been negative. We hypothesized that PHATs contain TGFBR3 and/or MGEA5 rearrangements. Cases of PHAT (all containing areas of HFLT) (N=10), HFLT (N=7), MIFS (N=6), hybrid HFLT/MIFS (N=3), and PHAT-like undifferentiated pleomorphic sarcomas (N=7) were retrieved from our institutional and consultation archives and analyzed for TGFBR3 and MGEA5 rearrangements using a break-apart probe strategy for FISH. Six of 10 PHATs harbored TGFBR3 and/or MGEA5 gene rearrangements: 4 cases had both TGFBR3 and MGEA5 rearrangements, and 2 cases contained MGEA5 rearrangements. Two of 7 HFLTs were positive: 1 case had a TGFBR3 rearrangement, and 1 case had an MGEA5 rearrangement. One of 6 MIFSs had an MGEA5 rearrangement. All 3 hybrid HFLT/MIFS cases were positive: 2 cases had both TGFBR3 and MGEA5 rearrangements, and 1 case had a TGFBR3 rearrangement. All PHAT-like undifferentiated pleomorphic sarcomas were negative. We report, for the first time, the presence of TGFBR3 and/or MGEA5 rearrangements in tumors showing mixed features of HFLT and PHAT. The presence of such rearrangements strongly suggests that HFLT is related to both PHAT and MIFS and that the latter 2 tumors may represent morphologic variants of a single, genetically defined entity in which only MIFS has acquired the capacity to metastasize.

Michor F, Weaver VM
Understanding tissue context influences on intratumour heterogeneity.
Nat Cell Biol. 2014; 16(4):301-2 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Although human cancers exhibit intratumour heterogeneity, the influence of the tumour environment on this property is unclear. Single basal-like mammary epithelial cells are now shown to engage a dynamic TGFBR3-JUND signalling circuit in an extracellular-matrix-dependent manner. Cell transition between the distinct gene expression states underlying this circuit alters their properties and may modulate their propensity to malignancy.

Wang CC, Bajikar SS, Jamal L, et al.
A time- and matrix-dependent TGFBR3-JUND-KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies.
Nat Cell Biol. 2014; 16(4):345-56 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Basal-like breast carcinoma is characterized by poor prognosis and high intratumour heterogeneity. In an immortalized basal-like breast epithelial cell line, we identified two anticorrelated gene-expression programs that arise among single extracellular matrix (ECM)-attached cells during organotypic three-dimensional culture. The first contains multiple TGF-β-related genes including TGFBR3, whereas the second contains JUND and the basal-like marker KRT5. TGFBR3 and JUND interconnect through four negative-feedback loops to form a circuit that exhibits spontaneous damped oscillations in three-dimensional culture. The TGFBR3-JUND circuit is conserved in some premalignant lesions that heterogeneously express KRT5. The circuit depends on ECM engagement, as detachment causes a rewiring that is triggered by RPS6 dephosphorylation and maintained by juxtacrine tenascin C, which is critical for intraductal colonization of basal-like breast cancer cells in vivo. Intratumour heterogeneity need not stem from partial differentiation and could instead reflect dynamic toggling of cells between expression states that are not cell autonomous.

Szymanowska-Narloch A, Jassem E, Skrzypski M, et al.
Molecular profiles of non-small cell lung cancers in cigarette smoking and never-smoking patients.
Adv Med Sci. 2013; 58(2):196-206 [PubMed] Related Publications
PURPOSE: Molecular features of non-small cell lung cancer (NSCLC) in never-smokers are not well recognized. We assessed the expression of genes potentially related to lung cancer etiology in smoking vs. never-smoking NSCLC patients.
METHODS: We assayed frozen tumor samples from surgically resected 31 never-smoking and 54 clinically pair-matched smoking NSCLC patients, and from corresponding normal lung tissue from 27 and 43 patients, respectively. Expression of 21 genes, including cell membrane kinases, sex hormone receptors, transcription factors, growth factors and others was assessed by reverse transcription - quantitative PCR.
RESULTS: Expression of 5 genes was significantly higher in tumors of non-smokers vs. smokers: CSF1R (p<0.0001), RRAD (p<0.0001), PR (p=0.0004), TGFBR2 (p=0.0027) and EPHB6 (p=0.0033). Expression of AKR1B10 (p<0.0001), CDKN2A (p<0.0001), CHRNA6 (p<0.0001), SOX9 (p<0.0001), survivin (p<0.0001) and ER2 (p=0.002) was significantly higher in tumors compared to normal lung tissue. Expression of AR (p<0.0001), EPHB6 (p<0.0001), PR (p<0.0001), TGFBR2 (p<0.0001), TGFBR3 (p<0.0001), ER1 (p=0.0006) and DLG1 (p=0.0016) was significantly lower in tumors than in normal lung tissue. Expression of IGF2 was higher in tumors than in healthy lung tissue in never-smokers (p=0.003), and expression of AHR (p<0.0001), CSF1R (p<0.0001) and RRAD (p<0.0001) was lower in tumors than in healthy lung tissue in smokers.
CONCLUSION: Expression of several genes in NSCLC is strongly related to smoking history. Lower expression of PR and higher expression of ER2 in tumors suggests a possibility of hormonal therapeutic intervention in selected NSCLC patients. Distinct molecular features of NSCLC in never-smokers, e.g. CHRNA6 upregulation, may prompt new treatment strategies.

Rojo F, Domingo L, Sala M, et al.
Gene expression profiling in true interval breast cancer reveals overactivation of the mTOR signaling pathway.
Cancer Epidemiol Biomarkers Prev. 2014; 23(2):288-99 [PubMed] Related Publications
BACKGROUND: The development and progression of true interval breast cancers (tumors that truly appear after a negative screening mammogram) is known to be different from screen-detected cancers. However, the worse clinical behavior of true interval cancers is not fully understood from a biologic basis. We described the differential patterns of gene expression through microarray analysis in true interval and screen-detected cancers.
METHODS: An unsupervised exploratory gene expression profile analysis was performed on 10 samples (true interval cancers = 5; screen-detected cancers = 5) using Affymetrix Human Gene 1.0ST arrays and interpreted by Ingenuity Pathway Analysis. Differential expression of selected genes was confirmed in a validation series of 91 tumors (n = 12; n = 79) by immunohistochemistry and in 24 tumors (n = 8; n = 16) by reverse transcription quantitative PCR (RT-qPCR), in true interval and screen-detected cancers, respectively.
RESULTS: Exploratory gene expression analysis identified 1,060 differentially expressed genes (unadjusted P < 0.05) between study groups. On the basis of biologic implications, four genes were further validated: ceruloplasmin (CP) and ribosomal protein S6 kinase, 70 kDa, polypeptide 2 (RPS6KB2), both upregulated in true interval cancers; and phosphatase and tensin homolog (PTEN) and transforming growth factor beta receptor III (TGFBR3), downregulated in true interval cancers. Their differential expression was confirmed by RT-qPCR and immunohistochemistry, consistent with mTOR pathway overexpression in true interval cancers.
CONCLUSIONS: True interval and screen-detected cancers show differential expression profile both at gene and protein levels. The mTOR signaling is significantly upregulated in true interval cancers, suggesting this pathway may mediate their aggressiveness.
IMPACT: Linking epidemiologic factors and mTOR activation may be the basis for future personalized screening strategies in women at risk of true interval cancers.

Slattery ML, Lundgreen A, Stern MC, et al.
The influence of genetic ancestry and ethnicity on breast cancer survival associated with genetic variation in the TGF-β-signaling pathway: The Breast Cancer Health Disparities Study.
Cancer Causes Control. 2014; 25(3):293-307 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
The TGF-β signaling pathway regulates cellular proliferation and differentiation. We evaluated genetic variation in this pathway, its association with breast cancer survival, and survival differences by genetic ancestry and self-reported ethnicity. The Breast Cancer Health Disparities Study includes participants from the 4-Corners Breast Cancer Study (n = 1,391 cases) and the San Francisco Bay Area Breast Cancer Study (n = 946 cases) who have been followed for survival. We evaluated 28 genes in the TGF-β signaling pathway using a tagSNP approach. Adaptive rank truncated product (ARTP) was used to test the gene and pathway significance by Native American (NA) ancestry and by self-reported ethnicity (non-Hispanic white (NHW) and Hispanic/NA). Genetic variation in the TGF-β signaling pathway was associated with overall breast cancer survival (P ARTP = 0.05), especially for women with low NA ancestry (P ARTP = 0.007) and NHW women (P ARTP = 0.006). BMP2, BMP4, RUNX1, and TGFBR3 were significantly associated with breast cancer survival overall (P ARTP = 0.04, 0.02, 0.002, and 0.04, respectively). Among women with low NA, ancestry associations were as follows: BMP4 (P ARTP = 0.007), BMP6 (P ARTP = 0.001), GDF10 (P ARTP = 0.05), RUNX1 (P ARTP = 0.002), SMAD1 (P ARTP = 0.05), and TGFBR2 (P ARTP = 0.02). A polygenic risk model showed that women with low NA ancestry and high numbers of at-risk alleles had twice the risk of dying from breast cancer as did women with high NA ancestry. Our data suggest that genetic variation in the TGF-β signaling pathway influences breast cancer survival. Associations were similar when the analyses were stratified by genetic ancestry or by self-reported ethnicity.

Kumar MS, Armenteros-Monterroso E, East P, et al.
HMGA2 functions as a competing endogenous RNA to promote lung cancer progression.
Nature. 2014; 505(7482):212-7 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Non-small-cell lung cancer (NSCLC) is the most prevalent histological cancer subtype worldwide. As the majority of patients present with invasive, metastatic disease, it is vital to understand the basis for lung cancer progression. Hmga2 is highly expressed in metastatic lung adenocarcinoma, in which it contributes to cancer progression and metastasis. Here we show that Hmga2 promotes lung cancer progression in mouse and human cells by operating as a competing endogenous RNA (ceRNA) for the let-7 microRNA (miRNA) family. Hmga2 can promote the transformation of lung cancer cells independent of protein-coding function but dependent upon the presence of let-7 sites; this occurs without changes in the levels of let-7 isoforms, suggesting that Hmga2 affects let-7 activity by altering miRNA targeting. These effects are also observed in vivo, where Hmga2 ceRNA activity drives lung cancer growth, invasion and dissemination. Integrated analysis of miRNA target prediction algorithms and metastatic lung cancer gene expression data reveals the TGF-β co-receptor Tgfbr3 (ref. 12) as a putative target of Hmga2 ceRNA function. Tgfbr3 expression is regulated by the Hmga2 ceRNA through differential recruitment to Argonaute 2 (Ago2), and TGF-β signalling driven by Tgfbr3 is important for Hmga2 to promote lung cancer progression. Finally, analysis of NSCLC-patient gene-expression data reveals that HMGA2 and TGFBR3 are coordinately regulated in NSCLC-patient material, a vital corollary to ceRNA function. Taken together, these results suggest that Hmga2 promotes lung carcinogenesis both as a protein-coding gene and as a non-coding RNA; such dual-function regulation of gene-expression networks reflects a novel means by which oncogenes promote disease progression.

Knelson EH, Gaviglio AL, Tewari AK, et al.
Type III TGF-β receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma.
J Clin Invest. 2013; 123(11):4786-98 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Growth factors and their receptors coordinate neuronal differentiation during development, yet their roles in the pediatric tumor neuroblastoma remain unclear. Comparison of mRNA from benign neuroblastic tumors and neuroblastomas revealed that expression of the type III TGF-β receptor (TGFBR3) decreases with advancing stage of neuroblastoma and this loss correlates with a poorer prognosis. Patients with MYCN oncogene amplification and low TGFBR3 expression were more likely to have an adverse outcome. In vitro, TβRIII expression was epigenetically suppressed by MYCN-mediated recruitment of histone deacetylases to regions of the TGFBR3 promoter. TβRIII bound FGF2 and exogenous FGFR1, which promoted neuronal differentiation of neuroblastoma cells. TβRIII and FGF2 cooperated to induce expression of the transcription factor inhibitor of DNA binding 1 via Erk MAPK. TβRIII-mediated neuronal differentiation suppressed cell proliferation in vitro as well as tumor growth and metastasis in vivo. These studies characterize a coreceptor function for TβRIII in FGF2-mediated neuronal differentiation, while identifying potential therapeutic targets and clinical biomarkers for neuroblastoma.

Liu XL, Xue BX, Lei Z, et al.
TGFBR3 co-downregulated with GATA3 is associated with methylation of the GATA3 gene in bladder urothelial carcinoma.
Anat Rec (Hoboken). 2013; 296(11):1717-23 [PubMed] Related Publications
Bladder urothelial carcinoma (BUC) accounts for ∼90% of all cases of bladder cancer. Reduced expression of TGFBR3 has been frequently observed in several types of human cancers. However, little is known about whether expression of TGFBR3 reduced in BUC and the underlying mechanisms. In the present study, we performed quantitative real-time PCR to examine the mRNA expression of TGFBR3 and GATA3, and bisulfite genomic sequencing to evaluate the methylation status in TGFBR3 and GATA3 promoter regions in fresh tumor and the corresponding paracarcinoma tissues from 29 patients with BUC. As a result, the expression of TGFBR3 and GATA3, a transcriptional factor of the TGFBR3 gene, were found to be co-downregulated in BUC. Moreover, our findings indicated that GATA3 promoter methylation was one of the reasons for silencing of GATA3 and TGFBR3 in BUC, albeit TGFBR3 methylation and mutation were not associated with reduced expression of TGFBR3 mRNA in BUC. In summary, our findings suggest that methylation in the GATA3 promoter region may inhibit the expression of GATA3 mRNA, which leads to the reduced expression of TGFBR3 mRNA in BUC.

Semczuk A, Zakrzewski PK, Forma E, et al.
TGFβ-pathway is down-regulated in a uterine carcinosarcoma: a case study.
Pathol Res Pract. 2013; 209(11):740-4 [PubMed] Related Publications
Data assessing the role of various genetic alterations in uterine carcinosarcoma (CS), particularly the transforming growth factors-β (TGFβ) that play a crucial role in many cellular processes, including proliferation, differentiation, adhesion and migration, are scarce. TGFβ exert their effects through specific receptors and associated auxiliary receptors. In the current study, we investigated the expression of TGFβ isoforms and their receptors, as well as selected genes in a case of CS. We applied the real-time fluorescence detection PCR method with FAM dye-labeled TaqMan specific probes. In a comparison to the normal counterpart, TGFB1, TGFB2, TGFBRII, TGFBR3, ENG and CD109 were all down-regulated in uterine CS samples at different extents. BIRC5 and hTERT, markers of tumor survival, were up-regulated in CS as compared with normal counterparts. A concomitant increase of the hypoxia marker HIF1A expression pattern was noted, whereas the expression of GPR120, responsible for free fatty acids sensing, was not different in both counterparts evaluated. In conclusion, deregulation of various cellular mechanisms in uterine CS is associated with alterations at many levels - cell growth and proliferation, apoptosis, and impaired response to stimuli from extracellular environment.

Liu XL, Xiao K, Xue B, et al.
Dual role of TGFBR3 in bladder cancer.
Oncol Rep. 2013; 30(3):1301-8 [PubMed] Related Publications
Bladder cancer is one of the most common genitourinary malignant diseases worldwide. More than 90% of bladder cancer cases are bladder urothelial carcinoma (BUC). Although transforming growth factor-β III receptor (TGFBR3) has been suggested to play a dual role in cancer progression, little is known about TGFBR3 in bladder cancer. In the present study, fresh tumor and the corresponding paracarcinoma tissue specimens were collected from 56 bladder urothelial carcinoma patients. TGFBR3 expression in these tissues was determined by western blotting. TGFBR3 was also detected in the human normal urothelial cell line SV-HUC-1, the human superficial urothelial bladder cancer cell line 5637, and the human invasive bladder cancer cell line T24 using western blotting and quantitative PCR. Cell growth, motility and invasion were also analyzed in the control and the TGFBR3 gene-silenced T24 cells. As a result, the expression of TGFBR3 was reduced (18/30) in most superficial bladder urothelial carcinoma tissues compared to the corresponding normal tissues, whereas TGFBR3 expression was more enhanced (19/26) in the invasive samples. Similarly, an increase of TGFBR3 expression was found in T24 cells, but a decrease was observed in 5637 cells. Knockdown of TGFBR3 in T24 cells resulted in decreased cell growth, motility and invasion. In conclusion, these findings suggest that TGFBR3 may play a dichotomous role in human bladder cancer, acting as both a tumor suppressor and as a tumor promoter.

Zheng F, He K, Li X, et al.
Transient overexpression of TGFBR3 induces apoptosis in human nasopharyngeal carcinoma CNE-2Z cells.
Biosci Rep. 2013; 33(2):e00029 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
NPC (nasopharyngeal carcinoma) is a common malignancy in southern China without defined aetiology. Recent studies have shown that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), exhibits anticancer activities. This study was to investigate the effects of TGFBR3 on NPC growth and the mechanisms for its actions. Effects of TGFBR3 overexpression on cell viability and apoptosis were measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], AO/EB (acridine orange/ethidium bromide) staining and electron microscopy in human NPC CNE-2Z cells. The expression of apoptosis-related proteins, p-Bad, Bad, XIAP (X-linked inhibitor of apoptosis), AIF (apoptosis-inducing factor), Bax and Bcl-2, was determined by Western blot or immunofluorescence analysis. Caspase 3 activity was measured by caspase 3 activity kit and [Ca²⁺](i) (intracellular Ca²⁺ concentration) was detected by confocal microscopy. Transfection of TGFBR3 containing plasmid DNA at concentrations of 0.5 and 1 μg/ml reduced viability and induced apoptosis in CNE-2Z in concentration- and time-dependent manners. Forced expression of TGFBR3 up-regulated pro-apoptotic Bad and Bax protein, and down-regulated anti-apoptotic p-Bad, Bcl-2 and XIAP protein. Furthermore, transient overexpression of TGFBR3 also enhanced caspase 3 activity, increased [Ca²⁺](i) and facilitated AIF redistribution from the mitochondria to the nucleus in CNE-2Z cells, which is independent of the caspase 3 pathway. These events were associated with TGFBR3-regulated multiple targets involved in CNE-2Z proliferation. Therefore transient overexpression of TGFBR3 may be a novel strategy for NPC prevention and therapy.

Bilandzic M, Chu S, Wang Y, et al.
Betaglycan alters NFκB-TGFβ2 cross talk to reduce survival of human granulosa tumor cells.
Mol Endocrinol. 2013; 27(3):466-79 [PubMed] Related Publications
The molecular pathways controlling granulosa cell tumor (GCT) survival are poorly understood. In many cell types, nuclear factor-κB (NFκB) and TGFβ coordinately regulate cell survival to maintain tissue homeostasis. Because GCT cell lines exhibit constitutively activated NFκB, we hypothesized that NFκB blocks TGFβ-mediated cell death in GCT cells. To test this hypothesis, we used the human GCT cell line KGN, which exhibits loss of betaglycan, a TGFβ co-receptor. After inhibition of NFκB in KGN cells, re-expression of betaglycan resulted in a decrease in cell viability, which was further decreased by TGFβ2. Intriguingly, TGFβ2 increased NFκB reporter activity in control cells, but betaglycan expression suppressed both basal and TGFβ2-stimulated NFκB activity. Chemical inhibition of Mothers against decapentaplegic homolog 2/3 (SMAD2/3) signaling or SMAD2/3 gene silencing revealed that both SMADs contributed to cell survival. Furthermore, inhibiting NFκB activity resulted in a specific reduction in SMAD3 expression. Conversely, overexpression of SMAD3 increased basal NFκB activity and countered betaglycan-mediated suppression of NFκB activity. Finally, ERK1/2 activation emerged as the point of convergence of NFκB, SMAD3, and TGFβ2/betaglycan governance of GCT cell viability. Key findings in KGN cells were reproduced in a second GCT cell line, COV434. Collectively, our data establish that both SMAD2/3 and NFκB signaling pathways support GCT cell viability and suggest the existence of a positive feedback loop between NFκB and SMAD3 signaling in late-stage GCT. Furthermore, our data suggest that loss of betaglycan during tumor progression in GCT alters the functional outcomes generated by NFκB and TGFβ pathway cross talk.

Pal A, Huang W, Toy KA, Kleer CG
CCN6 knockdown disrupts acinar organization of breast cells in three-dimensional cultures through up-regulation of type III TGF-β receptor.
Neoplasia. 2012; 14(11):1067-74 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
While normal cells in the human breast are organized into acinar structures, disruption of the acinar architecture is a hallmark of cancer. In a three-dimensional model of morphogenesis, we show that down-regulation of the matrix-associated tumor suppressor protein CCN6 (WNT1-inducible-signaling pathway protein 3) disrupts breast epithelial cell polarity and organization into acini through up-regulation of the type III transforming growth factor-β receptor (TβRIII or betaglycan). Down-regulation of CCN6 in benign breast cells led to loss of tissue polarity and resulted in cellular disorganization with loss of α6 integrin-rich basement membrane and the basolateral polarity protein E-cadherin. Silencing of TβRIII with shRNA and siRNA rescued the ability of breast epithelial cells to form polarized acinar structures with reduced matrix invasion and restored the correct expression of α6 integrin and E-cadherin. Conversely, CCN6 overexpression in aggressive breast cancer cells reduced TβRIII in vitro and in a xenograft model of CCN6 overexpression. The relevance of our studies to human breast cancer is highlighted by the finding that CCN6 protein levels are inversely associated with TβRIII protein in 64%of invasive breast carcinomas. These results reveal a novel function of the matricellular protein CCN6 and establish a mechanistic link between CCN6 and TβRIII in maintaining acinar organization in the breast.

Xin Z, Zhang W, Xu A, et al.
Polymorphisms in the potential functional regions of the TGF-β 1 and TGF-β receptor genes and disease susceptibility in HBV-related hepatocellular carcinoma patients.
Mol Carcinog. 2012; 51 Suppl 1:E123-31 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a disease of multiple etiologies caused by the accumulation of genetic and epigenetic defects. Current evidence indicates that the transforming growth factor beta (TGF-β) signaling pathway has a significant impact on different cellular process. Members of the TGF-β superfamily (TGF-β1, the type I TGF-β receptor [TβRI], type II TGF-β receptor [TβRII], and type III TGF-β receptor]) play an important role in tumorigenesis. Numerous studies show that genetic polymorphisms in TGF-β superfamily genes are associated with HCC in East Asian populations. We studied 16 single nucleotide polymorphisms (SNPs) in four genes (TGF-β1, TβRI, TβRII, and TβRIII) to examine their associations with hepatocarcinogenesis. A total of 1228 Chinese Han participants were enrolled in the study (881 control participants who were negative for all hepatitis B virus [HBV] serum markers and 347 case participants with HBV-related HCC). Genotyping was conducted using the TaqMan method. The results showed that the frequency of the rs1805110 T allele was significantly higher in the case group than in the control group (P = 0.034). After stratification, the results for rs1805110 remained significant in male participants (P = 0.005), but there was no statistical difference in females. In males, the frequency of the C-C-G-C-A haplotype resulting from SNPs rs1805110, rs2810904, rs1805112, rs284878, and rs1804506 in TβRIII was significantly lower in the case group than in the control group (P = 0.001), whereas the reverse was true for the T-C-G-C-A haplotype (P = 0.036). We conclude that the rs1805110T allele is associated with susceptibility to HBV-related HCC in males.

Dalgaard MD, Weinhold N, Edsgärd D, et al.
A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation.
J Med Genet. 2012; 49(1):58-65 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
BACKGROUND: Testicular dysgenesis syndrome (TDS) is a common disease that links testicular germ cell cancer, cryptorchidism and some cases of hypospadias and male infertility with impaired development of the testis. The incidence of these disorders has increased over the last few decades, and testicular cancer now affects 1% of the Danish and Norwegian male population.
METHODS: To identify genetic variants that span the four TDS phenotypes, the authors performed a genome-wide association study (GWAS) using Affymetrix Human SNP Array 6.0 to screen 488 patients with symptoms of TDS and 439 selected controls with excellent reproductive health. Furthermore, they developed a novel integrative method that combines GWAS data with other TDS-relevant data types and identified additional TDS markers. The most significant findings were replicated in an independent cohort of 671 Nordic men.
RESULTS: Markers located in the region of TGFBR3 and BMP7 showed association with all TDS phenotypes in both the discovery and replication cohorts. An immunohistochemistry investigation confirmed the presence of transforming growth factor β receptor type III (TGFBR3) in peritubular and Leydig cells, in both fetal and adult testis. Single-nucleotide polymorphisms in the KITLG gene showed significant associations, but only with testicular cancer.
CONCLUSIONS: The association of single-nucleotide polymorphisms in the TGFBR3 and BMP7 genes, which belong to the transforming growth factor β signalling pathway, suggests a role for this pathway in the pathogenesis of TDS. Integrating data from multiple layers can highlight findings in GWAS that are biologically relevant despite having border significance at currently accepted statistical levels.

Gatza CE, Holtzhausen A, Kirkbride KC, et al.
Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth.
Neoplasia. 2011; 13(8):758-70 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
The type III TGF-β receptor (TβRIII or betagylcan) is a TGF-β superfamily coreceptor with emerging roles in regulating TGF-β superfamily signaling and cancer progression. Alterations in TGF-β superfamily signaling are common in colon cancer; however, the role of TβRIII has not been examined. Although TβRIII expression is frequently lost at the message and protein level in human cancers and suppresses cancer progression in these contexts, here we demonstrate that, in colon cancer, TβRIII messenger RNA expression is not significantly altered and TβRIII expression is more frequently increased at the protein level, suggesting a distinct role for TβRIII in colon cancer. Increasing TβRIII expression in colon cancer model systems enhanced ligand-mediated phosphorylation of p38 and the Smad proteins, while switching TGF-β and BMP-2 from inhibitors to stimulators of colon cancer cell proliferation, inhibiting ligand-induced p21 and p27 expression. In addition, increasing TβRIII expression increased ligand-stimulated anchorage-independent growth, a resistance to ligand- and chemotherapy-induced apoptosis, cell migration and modestly increased tumorigenicity in vivo. In a reciprocal manner, silencing endogenous TβRIII expression decreased colon cancer cell migration. These data support a model whereby TβRIII mediates TGF-β superfamily ligand-induced colon cancer progression and support a context-dependent role for TβRIII in regulating cancer progression.

Kim JH, Yu SJ, Park BL, et al.
TGFBR3 polymorphisms and its haplotypes associated with chronic hepatitis B virus infection and age of hepatocellular carcinoma occurrence.
Dig Dis. 2011; 29(3):278-83 [PubMed] Related Publications
OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the most common cancers and is mainly caused by viral infections including hepatitis B virus (HBV). Recently, the decreased expression level of the transforming growth factor, beta receptor III (TGFBR3) gene, has been implicated in HCC and other human cancers. This study investigated whether TGFBR3 polymorphisms might be associated with HBV clearance and HCC occurrence.
METHODS: This study identified 27 single nucleotide polymorphisms (SNPs) in the exon, promoter, and exon-intron boundary regions of TGFBR3 by resequencing in 24 individuals. Then, 9 SNPs in the promoter and exons of the gene were genotyped from 1,065 Koreans composed of 637 chronic carriers (CC) and 428 spontaneously recovered (SR) subjects.
RESULTS: Two SNPs, rs1805113 (Phe676Phe) in exon 13 and rs1805117 in 3'-UTR (p = 0.009 and p = 0.008, respectively) were significantly associated with HBV clearance. In addition, Cox relative hazards analyses revealed that haplotype BL2_ht2 showed a significant association with the age of HCC occurrence among chronic HBV patients (relative hazard = 1.38; p = 0.007).
CONCLUSION: Our findings suggest that TGFBR3 polymorphisms and its haplotypes might be associated with HBV clearance and age of HCC occurrence.

Rotunno M, Hu N, Su H, et al.
A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma.
Cancer Prev Res (Phila). 2011; 4(10):1599-608 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Affordable early screening in subjects with high risk of lung cancer has great potential to improve survival from this deadly disease. We measured gene expression from lung tissue and peripheral whole blood (PWB) from adenocarcinoma cases and controls to identify dysregulated lung cancer genes that could be tested in blood to improve identification of at-risk patients in the future. Genome-wide mRNA expression analysis was conducted in 153 subjects (73 adenocarcinoma cases, 80 controls) from the Environment And Genetics in Lung cancer Etiology study using PWB and paired snap-frozen tumor and noninvolved lung tissue samples. Analyses were conducted using unpaired t tests, linear mixed effects, and ANOVA models. The area under the receiver operating characteristic curve (AUC) was computed to assess the predictive accuracy of the identified biomarkers. We identified 50 dysregulated genes in stage I adenocarcinoma versus control PWB samples (false discovery rate ≤0.1, fold change ≥1.5 or ≤0.66). Among them, eight (TGFBR3, RUNX3, TRGC2, TRGV9, TARP, ACP1, VCAN, and TSTA3) differentiated paired tumor versus noninvolved lung tissue samples in stage I cases, suggesting a similar pattern of lung cancer-related changes in PWB and lung tissue. These results were confirmed in two independent gene expression analyses in a blood-based case-control study (n = 212) and a tumor-nontumor paired tissue study (n = 54). The eight genes discriminated patients with lung cancer from healthy controls with high accuracy (AUC = 0.81, 95% CI = 0.74-0.87). Our finding suggests the use of gene expression from PWB for the identification of early detection markers of lung cancer in the future.

Antonescu CR, Zhang L, Nielsen GP, et al.
Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor.
Genes Chromosomes Cancer. 2011; 50(10):757-64 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Despite their shared predilection for superficial soft tissue of distal extremities and frequent local recurrences, myxoinflammatory fibroblastic sarcoma (MIFS) and hemosiderotic fibrolipomatous tumor (HFLT) have distinct morphologic appearances. Recent studies have identified an identical t(1;10)(p22;q24) in five cases of MIFS and two of HFLT, as well as common amplifications on 3p11-12. To investigate further their potential relationship and to determine the incidence of t(1;10) in a larger cohort, we subjected seven MIFS, 14 HFLT, and three cases with mixed morphology, to molecular and cytogenetic analysis. Fluorescence in situ hybridization (FISH) analysis for rearrangements of TGFBR3 on 1p22 and of MGEA5 on 10q24 was performed in all cases, whereas the status of VGLL3 gene amplification on 3p12.1 was investigated in 12 cases. Conventional karyotyping was performed in one HFLT and two cases with mixed MIFS/HFLT histology. Overall 83% of cases showed rearrangements in both TGFBR3 and MGEA5. All three cases with mixed features of MIFS and HFLT were positive. Cytogenetic analysis performed in three cases confirmed an unbalanced der(10)t(1;10)(p22;q24). VGLL3 gene amplification was noted in 10/12 cases of both histologies. The high incidence of t(1;10) in MIFS and HFLT reinforces a shared pathogenetic relationship. Furthermore, the co-existence of both components either synchronously or metachronously in a primary or subsequent recurrence, suggest either different morphologic variants or different levels of tumor progression of a single biologic entity. FISH analysis for TGFBR3 and MGEA5 rearrangements can be applied as a reliable diagnostic molecular test when confronted with limited material or a challenging diagnosis.

Meng W, Xia Q, Wu L, et al.
Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts.
BMC Cancer. 2011; 11:88 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
BACKGROUND: The purpose of this study was to assess the expression levels for TβRI, TβRII, and TβRIII in epithelial layers of oral premalignant lesions (oral leukoplakia, OLK) and oral squamous cell carcinoma (OSCC), as well as in oral carcinoma-associated fibroblasts (CAFs), with the final goal of exploring the roles of various types of TβRs in carcinogenesis of oral mucosa.
METHODS: Normal oral tissues, OLK, and OSCC were obtained from 138 previously untreated patients. Seven primary human oral CAF lines and six primary normal fibroblast (NF) lines were established successfully via cell culture. The three receptors were detected using immunohistochemical (IHC), quantitative RT-PCR, and Western blot approaches.
RESULTS: IHC signals for TβRII and TβRIII in the epithelial layer decreased in tissue samples with increasing disease aggressiveness (P < 0.05); no expression differences were observed for TβRI, in OLK and OSCC (P > 0.05); and TβRII and TβRIII were significantly downregulated in CAFs compared with NFs, at the mRNA and protein levels (P < 0.05). Exogenous expression of TGF-β1 led to a remarkable decrease in the expression of TβRII and TβRIII in CAFs (P < 0.05).
CONCLUSION: This study provides the first evidence that the loss of TβRII and TβRIII expression in oral epithelium and stroma is a common event in OSCC. The restoration of the expression of TβRII and TβRIII in oral cancerous tissues may represent a novel strategy for the treatment of oral carcinoma.

Zakrzewski PK, Mokrosinski J, Cygankiewicz AI, et al.
Dysregulation of betaglycan expression in primary human endometrial carcinomas.
Cancer Invest. 2011; 29(2):137-44 [PubMed] Related Publications
TGFβ signaling cascade plays a vital role in neoplastic transformation, but the function of betaglycan, which is a TGFβ accessory receptor, is still unknown in particular cancer. Evaluation of betaglycan expression both at mRNA (real-time PCR) and protein (ELISA) level in the context of TGFβ canonical signaling components, i.e., TGFβ1, TGFβ2, and TGFβRII, in endometrial carcinomas was performed. Betaglycan mRNA expression level was significantly (p < .001) downregulated with simultaneous betaglycan protein level upregulation in cancer samples. Obtained results suggest that endometrial cancer is associated with disruption of accessory receptor betaglycan expression, what may alter TGFβ2-induced signaling.

Coulson-Thomas VJ, Gesteira TF, Coulson-Thomas YM, et al.
Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-β, and extracellular matrix down-regulation.
Exp Cell Res. 2010; 316(19):3207-26 [PubMed] Related Publications
Growth and survival of tumors at a site of metastasis involve interactions with stromal cells in the surrounding environment. Stromal cells aid tumor cell growth by producing cytokines as well as by modifying the environment surrounding the tumor through modulation of the extracellular matrix (ECM). Small leucine-rich proteoglycans (SLRPs) are biologically active components of the ECM which can be altered in the stroma surrounding tumors. The influence tumor cells have on stromal cells has been well elucidated. However, little is understood about the effect metastatic cancer cells have on the cell biology and behavior of the local stromal cells. Our data reveal a significant down-regulation in the expression of ECM components such as collagens I, II, III, and IV, and the SLRPs, decorin, biglycan, lumican, and fibromodulin in stromal cells when grown in the presence of two metastatic prostate cancer cell lines PC3 and DU145. Interestingly, TGF-β down-regulation was observed in stromal cells, as well as actin depolymerization and increased vimentin and α5β1 integrin expression. MT1-MMP expression was upregulated and localized in stromal cell protrusions which extended into the ECM. Moreover, enhanced stromal cell migration was observed after cross-talk with metastatic prostate tumor cells. Xenografting metastatic prostate cancer cells together with "activated" stromal cells led to increased tumorigenicity of the prostate cancer cells. Our findings suggest that metastatic prostate cancer cells create a metastatic niche by altering the phenotype of local stromal cells, leading to changes in the ECM.

Cooper SJ, Zou H, Legrand SN, et al.
Loss of type III transforming growth factor-beta receptor expression is due to methylation silencing of the transcription factor GATA3 in renal cell carcinoma.
Oncogene. 2010; 29(20):2905-15 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Loss of transforming growth factor-beta receptor III (TbetaRIII) correlates with loss of transforming growth factor-beta (TGF-beta) responsiveness and suggests a role for dysregulated TGF-beta signaling in clear cell renal cell carcinoma (ccRCC) progression and metastasis. Here we identify that for all stages of ccRCC TbetaRIII expression is downregulated in patient-matched tissue samples and cell lines. We find that this loss of expression is not due to methylation of the gene and we define GATA3 as the first transcriptional factor to positively regulate TbetaRIII expression in human cells. We localize GATA3's binding to a 10-bp region of the TbetaRIII proximal promoter. We demonstrate that GATA3 mRNA is downregulated in all stages, of ccRCC, mechanistically show that GATA3 is methylated in ccRCC patient tumor tissues as well as cell lines, and that inhibiting GATA3 expression in normal renal epithelial cells downregulates TbetaRIII mRNA and protein expression. These data support a sequential model whereby loss of GATA3 expression through epigenetic silencing decreases TbetaRIII expression during ccRCC progression.

Zhu R, Zhou X, Chen Y, et al.
Aberrantly increased mRNA expression of betaglycan, an inhibin co-receptor in the ovarian tissues in women with polycystic ovary syndrome.
J Obstet Gynaecol Res. 2010; 36(1):138-46 [PubMed] Related Publications
AIM: To compare the gene expressional levels of receptors for activins and inhibins in ovarian tissues between women with polycystic ovary syndrome (PCOS) and normal controls, and to analyze their biologically relevant associations with serum hormone levels.
METHODS: Total RNA of ovarian tissues from PCOS (n = 14) and normal controls (n = 21) were isolated during the follicular phase of the menstrual cycle. Real-time PCRs were performed to examine the relative mRNA expression levels of the activin receptors, including activin receptor type IA (ActRIA), type IB (ActRIB), type IIA (ActRIIA), and type IIB (ActRIIB), and the inhibin receptors, betaglycan and an inhibin binding protein (InhBP/p120). At the same time, the serum levels of estradiol (E(2)), testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), inhibin B and activin A were measured.
RESULTS: The PCOS patients showed endocrine characteristics with higher concentrations of LH, T and inhibin B, and a lower concentration of activin A. Real-time PCR demonstrated that the relative expression level of betaglycan against that of GAPDH was increased 1.5-fold in the ovarian tissues during the follicular phase of PCOS patients when compared with normal controls, while the activin receptors ActRIA, ActRIB, ActRIIA, ActRIIB, and the inhibin co-receptor InhBP/p120 were unchanged. Moreover, the betaglycan mRNA expression showed biologically relevant associations with serum FSH, LH, E(2) and inhibin B levels in both the PCOS and normal controls.
CONCLUSIONS: This is the first report to demonstrate the aberrantly increased expression of betaglycan mRNA in PCOS ovaries. The mechanism by which betaglycan contributes to the pathologic process of PCOS remains to be clarified.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TGFBR3, Cancer Genetics Web: http://www.cancer-genetics.org/TGFBR3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999