Gene Summary

Gene:LIN28B; lin-28 homolog B
Aliases: CSDD2
Summary:The protein encoded by this gene belongs to the lin-28 family, which is characterized by the presence of a cold-shock domain and a pair of CCHC zinc finger domains. This gene is highly expressed in testis, fetal liver, placenta, and in primary human tumors and cancer cell lines. It is negatively regulated by microRNAs that target sites in the 3' UTR, and overexpression of this gene in primary tumors is linked to the repression of let-7 family of microRNAs and derepression of let-7 targets, which facilitates cellular transformation. [provided by RefSeq, Jun 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein lin-28 homolog B
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
-LIN28B and Neuroectodermal Tumors, Primitive View Publications16
Liver CancerLIN28B and Liver Cancer View Publications8
Ovarian CancerLIN28B and Ovarian Cancer View Publications11
Brain Tumours, ChildhoodLIN28B and Brain Tumours View Publications7
Lung CancerLIN28B and Lung Cancer View Publications7
NeuroblastomaLIN28B and NeuroblastomaPrognostic
In a genome-wide association study (GWAS) of 2,817 neuroblastoma cases and 7,473 controls (Diskin et al 2012) found a LIN28B polymorphism (rs17065417) was associated with neuroblastoma, and also low HACE1 expression was a significant prognostic factor. In a subsequent large GWAS study (Capasso et al, 2013) also found LIN28B polymorphisms associated with neuroblastoma.
View Publications10
Wilms TumourLIN28B and Wilms Tumour View Publications1

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LIN28B (cancer-related)

Powers JT, Tsanov KM, Pearson DS, et al.
Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma.
Nature. 2016; 535(7611):246-51 [PubMed] Free Access to Full Article Related Publications
Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.

Speleman F, Park JR, Henderson TO
Neuroblastoma: A Tough Nut to Crack.
Am Soc Clin Oncol Educ Book. 2016; 35:e548-57 [PubMed] Related Publications
Neuroblastoma, an embryonal tumor arising from neural crest-derived progenitor cells, is the most common solid tumor in childhood, with more than 700 cases diagnosed per year in the United States. In the past several decades, significant advances have been made in the treatment of neuroblastoma. Treatment advances reflect improved understanding of the biology of neuroblastoma. Although amplification of MYCN was discovered in the early 1980s, our understanding of neuroblastoma oncogenesis has advanced in the last decade as a result of high-throughput genomic analysis, exome and whole-genome sequencing, genome-wide association studies, and synthetic lethal drug screens. Our refined understanding of neuroblastoma biology and genetics is reflected in improved prognostic stratification and appropriate tailoring of therapy in recent clinical trials. Moreover, for high-risk neuroblastoma, a disease that was uniformly fatal 3 decades ago, recent clinical trials incorporating autologous hematopoietic transplant and immunotherapy utilizing anti-GD2 antibody plus cytokines have shown improved event-free and overall survival. These advances have resulted in a growing population of long-term survivors of neuroblastoma. Examination of the late effects and second malignant neoplasms (SMNs) in both older generations of survivors and more recently treated survivors will inform both design of future trials and surveillance guidelines for long-term follow-up. As a consequence of advances in understanding of the biology of neuroblastoma, successful clinical trials, and refined understanding of the late effects and SMNs of survivors, the promise of precision medicine is becoming a reality for patients with neuroblastoma.

Kugel S, Sebastián C, Fitamant J, et al.
SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b.
Cell. 2016; 165(6):1401-15 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Chromatin remodeling proteins are frequently dysregulated in human cancer, yet little is known about how they control tumorigenesis. Here, we uncover an epigenetic program mediated by the NAD(+)-dependent histone deacetylase Sirtuin 6 (SIRT6) that is critical for suppression of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal malignancies. SIRT6 inactivation accelerates PDAC progression and metastasis via upregulation of Lin28b, a negative regulator of the let-7 microRNA. SIRT6 loss results in histone hyperacetylation at the Lin28b promoter, Myc recruitment, and pronounced induction of Lin28b and downstream let-7 target genes, HMGA2, IGF2BP1, and IGF2BP3. This epigenetic program defines a distinct subset with a poor prognosis, representing 30%-40% of human PDAC, characterized by reduced SIRT6 expression and an exquisite dependence on Lin28b for tumor growth. Thus, we identify SIRT6 as an important PDAC tumor suppressor and uncover the Lin28b pathway as a potential therapeutic target in a molecularly defined PDAC subset. PAPERCLIP.

Jin K, Su KK, Li T, et al.
Hepatic Premalignant Alterations Triggered by Human Nephrotoxin Aristolochic Acid I in Canines.
Cancer Prev Res (Phila). 2016; 9(4):324-34 [PubMed] Related Publications
Aristolochic acid I (AAI) existing in plant drugs from Aristolochia species is an environmental human carcinogen associated with urothelial cancer. Although gene association network analysis demonstrated gene expression profile changes in the liver of human TP53 knock-in mice after acute AAI exposure, to date, whether AAI causes hepatic tumorigenesis is still not confirmed. Here, we show that hepatic premalignant alterations appeared in canines after a 10-day AAI oral administration (3 mg/kg/day). We observed c-Myc oncoprotein and oncofetal RNA-binding protein Lin28B overexpressions accompanied by cancer progenitor-like cell formation in the liver by AAI exposure. Meanwhile, we found that forkhead box O1 (FOXO1) was robustly phosphorylated, thereby shuttling into the cytoplasm of hepatocytes. Furthermore, utilizing microarray and qRT-PCR analysis, we confirmed that microRNA expression significantly dysregulated in the liver treated with AAI. Among them, we particularly focused on the members in let-7 miRNAs and miR-23a clusters, the downstream of c-Myc and IL6 receptor (IL6R) signaling pathway linking the premalignant alteration. Strikingly, when IL6 was added in vitro, IL6R/NF-κB signaling activation contributed to the increase of FOXO1 phosphorylation by the let-7b inhibitor. Therefore, it highlights the new insight into the interplay of the network in hepatic tumorigenesis by AAI exposure, and also suggests that anti-premalignant therapy may be crucial for preventing AAI-induced hepatocarcinogenesis.

Helsmoortel HH, Bresolin S, Lammens T, et al.
LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia.
Blood. 2016; 127(9):1163-72 [PubMed] Related Publications
Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive stem cell disease of early childhood. RAS activation constitutes the core component of oncogenic signaling. In addition, leukemic blasts in one-fourth of JMML patients present with monosomy 7, and more than half of patients show elevated age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care and results in an event-free survival rate of 50% to 60%, indicating that novel molecular-driven therapeutic options are urgently needed. Using gene expression profiling in a series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression. LIN28B overexpression was significantly correlated with higher HbF levels, whereas patients with monosomy 7 seldom showed enhanced LIN28B expression. This finding gives a biological explanation of why patients with monosomy 7 are rarely diagnosed with high age-adjusted HbF levels. In addition, this new fetal-like JMML subgroup presented with reduced levels of most members of the let-7 microRNA family and showed characteristic overexpression of genes involved in fetal hematopoiesis and stem cell self-renewal. Lastly, high LIN28B expression was associated with poor clinical outcome in our JMML patient series but was not independent from other prognostic factors such as age and age-adjusted HbF levels. In conclusion, we identified elevated LIN28B expression as a hallmark of a novel fetal-like subgroup in JMML.

Carmel-Gross I, Bollag N, Armon L, Urbach A
LIN28: A Stem Cell Factor with a Key Role in Pediatric Tumor Formation.
Stem Cells Dev. 2016; 25(5):367-77 [PubMed] Related Publications
Differentiation and development are normally unidirectional processes in which progenitor/stem cells differentiate into more mature cells. Transformation of adult cells into cancer cells is accompanied in many cases by dedifferentiation of the adult cell, while differentiation failure of progenitor cells can result in the formation of unique type of cancers called pediatric cancer. LIN28A and its paralog LIN28B are pluripotent genes that are expressed mainly in stem/progenitor cells. Since the first identification of LIN28 in mammals, numerous studies demonstrated the general oncogenic features of these genes. In this review, we emphasize the unique role of LIN28 in pediatric tumor formation. We show, based on comprehensive literature screen and analysis of published microarray data, that LIN28 expression in pediatric tumors is even more common than in adult tumors, and discuss the possibility that in the case of pediatric cancers, LIN28 acts by preventing normal development/differentiation rather than by transformation of mature cells into cancer cells. Overall, this review highlights the role of LIN28 as a bridge point between embryonic development, stem cell biology, and cancer.

Di Fiore R, Drago-Ferrante R, Pentimalli F, et al.
Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells.
J Cell Physiol. 2016; 231(8):1832-41 [PubMed] Related Publications
Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 and p27 CDK-inhibitors. Let-7d also decreased sarcosphere-and-colony forming ability, two features associated with self-renewing, and it reduced the expression of stemness genes, including Oct3/4, Sox2, Nanog, Lin28B, and HMGA2. Moreover, let-7d induced mesenchymal-to-epithelial-transition, as shown by both N-Cadherin-E-cadherin-switch and decrease in vimentin. Surprisingly, such switch was accompanied by enhanced migratory/invasive capacities, with a strong increase in MMP9, CXCR4 and VersicanV1. Let-7d- overexpression also reduced cell sensitivity to apoptosis induced by both serum-starvation and various chemotherapy drugs, concomitant with decrease in caspase-3 and increase in BCL2 expression. Our data suggest that let-7d in 3AB-OS-CSCs could induce plastic-transitions from CSCs-to-non-CSCs and vice-versa. To our knowledge this is the first study to comprehensively examine the expression and functions of let-7d in OS-CSCs. By showing that let-7d has both tumor suppressor and oncogenic functions in this context, our findings suggest that, before prospecting new therapeutic strategies based on let-7d modulation, it is urgent to better define its multiple functions. J. Cell. Physiol. 231: 1832-1841, 2016. © 2015 Wiley Periodicals, Inc.

Enriquez VA, Cleys ER, Da Silveira JC, et al.
High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells.
Biomed Res Int. 2015; 2015:701390 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

Schnepp RW, Khurana P, Attiyeh EF, et al.
A LIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis.
Cancer Cell. 2015; 28(5):599-609 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
A more complete understanding of aberrant oncogenic signaling in neuroblastoma, a malignancy of the developing sympathetic nervous system, is paramount to improving patient outcomes. Recently, we identified LIN28B as an oncogenic driver in high-risk neuroblastoma. Here, we identify the oncogene RAN as a LIN28B target and show regional gain of chromosome 12q24 as an additional somatic alteration resulting in increased RAN expression. We show that LIN28B influences RAN expression by promoting RAN Binding Protein 2 expression and by directly binding RAN mRNA. Further, we demonstrate a convergence of LIN28B and RAN signaling on Aurora kinase A activity. Collectively, these findings demonstrate that LIN28B-RAN-AURKA signaling drives neuroblastoma oncogenesis, suggesting that this pathway may be amenable to therapeutic targeting.

Piccaluga PP, Navari M, De Falco G, et al.
Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas.
Oncotarget. 2016; 7(1):224-40 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Burkitt lymphoma (BL) is an aggressive neoplasm characterized by consistent morphology and phenotype, typical clinical behavior and distinctive molecular profile. The latter is mostly driven by the MYC over-expression associated with the characteristic translocation (8;14) (q24; q32) or with variant lesions. Additional genetic events can contribute to Burkitt Lymphoma pathobiology and retain clinical significance. A pathogenetic role for Epstein-Barr virus infection in Burkitt lymphomagenesis has been suggested; however, the exact function of the virus is largely unknown.In this study, we investigated the molecular profiles (genes and microRNAs) of Epstein-Barr virus-positive and -negative BL, to identify specific patterns relying on the differential expression and role of Epstein-Barr virus-encoded microRNAs.First, we found significant differences in the expression of viral microRNAs and in selected target genes. Among others, we identified LIN28B, CGNL1, GCET2, MRAS, PLCD4, SEL1L, SXX1, and the tyrosine kinases encoding STK10/STK33, all provided with potential pathogenetic significance. GCET2, also validated by immunohistochemistry, appeared to be a useful marker for distinguishing EBV-positive and EBV-negative cases. Further, we provided solid evidences that the EBV-encoded microRNAs (e.g. BART6) significantly mold the transcriptional landscape of Burkitt Lymphoma clones.In conclusion, our data indicated significant differences in the transcriptional profiles of EBV-positive and EBV-negative BL and highlight the role of virus encoded miRNA.

Madison BB, Jeganathan AN, Mizuno R, et al.
Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2.
PLoS Genet. 2015; 11(8):e1005408 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Let-7 miRNAs comprise one of the largest and most highly expressed family of miRNAs among vertebrates, and is critical for promoting differentiation, regulating metabolism, inhibiting cellular proliferation, and repressing carcinogenesis in a variety of tissues. The large size of the Let-7 family of miRNAs has complicated the development of mutant animal models. Here we describe the comprehensive repression of all Let-7 miRNAs in the intestinal epithelium via low-level tissue-specific expression of the Lin28b RNA-binding protein and a conditional knockout of the MirLet7c-2/Mirlet7b locus. This ablation of Let-7 triggers the development of intestinal adenocarcinomas concomitant with reduced survival. Analysis of both mouse and human intestinal cancer specimens reveals that stem cell markers were significantly associated with loss of Let-7 miRNA expression, and that a number of Let-7 targets were elevated, including Hmga1 and Hmga2. Functional studies in 3-D enteroids revealed that Hmga2 is necessary and sufficient to mediate many characteristics of Let-7 depletion, namely accelerating cell cycle progression and enhancing a stem cell phenotype. In addition, inactivation of a single Hmga2 allele in the mouse intestine epithelium significantly represses tumorigenesis driven by Lin28b. In aggregate, we conclude that Let-7 depletion drives a stem cell phenotype and the development of intestinal cancer, primarily via Hmga2.

Lin X, Chen L, Yao Y, et al.
CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis.
Oncotarget. 2015; 6(24):20485-99 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Our previous work has indicated that CCL18 secreted by tumor-associated macrophages (TAMs) promotes breast cancer metastasis, which is associated with poor patient prognosis. However, it remains unclear whether microRNAs (miRNAs), which may modulate multiple cellular pathways, are involved in the regulation of CCL18 signaling and the ensuing metastasis of breast cancer. In this study, we demonstrated that CCL18 reduces miR98 and miR27b expression via the N-Ras/ERK/PI3K/NFκB/Lin28b signaling pathway, while down-regulation of these mRNAs feedbacks to increase N-Ras and Lin28b levels. This cascade of events forms a positive feedback loop that sustains the activation of CCL18 signaling. More importantly, reduction in miR98 and miR27b enhances the epithelial-mesenchymal transition (EMT) of breast cancer cells, and thus promotes breast cancer metastasis. These findings suggest that down-regulation of miR98 and miR27b promotes CCL18-mediated invasion and migration of breast cancer cells.

Hsu KF, Shen MR, Huang YF, et al.
Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer.
Br J Cancer. 2015; 113(3):414-24 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
BACKGROUND: RNA-binding proteins have an important role in messenger RNA (mRNA) regulation during tumour development and carcinogenesis. In the present study, we examined the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; hereafter refered to as IMPs) and Lin28 family expressions in epithelial ovarian carcinoma (EOC) patients and correlated their expression levels with the response to chemotherapy, hCTR1 expression and patient survival.
METHODS: Patients clinical information, real-time RT-PCR, immunohistochemistry, western blot, Transwell migration invasion assays, and cytotoxicity assays were used.
RESULTS: From 140 EOC patients, high expression of IMP3 or Lin28B was associated with poor survival, and women diagnosed at advanced stages with elevated IMP3 and Lin28B were at higher risk of developing chemoresistance. High IMP3 levels combined with high Lin28B levels significantly correlated with the poorest 5-year survival rates. Knockdown of IMP3 or Lin28B decreased cell proliferation, migration, and invasion, and increased the platinum sensitivity, but not taxol sensitivity, of ovarian cancer cells through increased expression of hCTR1, a copper transporter involved in platinum uptake. High expression of hCTR1 correlated with low expression of IMP3/Lin28B and better progression-free survival in advanced-stage EOC patients.
CONCLUSION: Testing for a combination of elevated IMP3 and Lin28B levels could further facilitate the identification of a patient subgroup with the worst prognosis.

Yang J, Bennett BD, Luo S, et al.
LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells.
Mol Cell Biol. 2015; 35(18):3225-43 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes.

Beckers A, Van Peer G, Carter DR, et al.
MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma.
Cancer Lett. 2015; 366(1):123-32 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3'UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefore establishing an MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promoter, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underline the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process.

Wang T, Wang G, Hao D, et al.
Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer.
Mol Cancer. 2015; 14:125 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.

Zhang Z, Zhang S, Ma P, et al.
Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit.
Carcinogenesis. 2015; 36(9):937-45 [PubMed] Related Publications
It has been increasingly recognized that microRNAs (miRNAs) are often dysregulated in various human malignancies and can function as oncogenes or tumor-suppressors. However, the potential roles of miRNAs and components of the miRNA biogenesis pathway remain poorly defined in melanoma. Here, we systematically profiled miRNA expression in human melanocytes and melanoma cells, and identified a prominent function of miR-125a-5p in suppressing melanoma growth. Mechanistically, we discovered that Lin28B, a well-characterized inhibitor of let-7 miRNA biogenesis, was a direct target of miR-125a-5p in melanoma. We showed that the Lin28B was aberrantly expressed in a large proportion of melanoma patients and was functionally required for melanoma progression. We further demonstrated the involvement of let-7-dependent mechanism downstream of Lin28B, resulting in the activation of transforming growth factor-β signaling cascade. Collectively, our data implicate Lin28B as a novel oncogene in melanomagenesis by mediating a miRNA regulatory circuit.

Park SJ, Shim JW, Park HS, et al.
MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B.
Oncogene. 2016; 35(10):1292-301 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
The histone variant, macroH2A1, has an important role in embryonic stem cell differentiation and tumor progression in various types of tumors. However, the regulatory roles of macroH2A1 on bladder cancer progression have not been fully elucidated. Here, we show that macroH2A1 knockdown promotes stem-like properties of bladder cancer cells. The knockdown of macroH2A1 in bladder cancer cells increased tumorigenicity, radioresistance, degeneration of reactive oxygen species, increased sphere formation capability and an increase in the proportion of side populations. We found that macroH2A1 is required for the suppression of Lin28B identified as a novel downstream target of macroH2A1 in bladder cancer. Loss of macroH2A1 expression significantly correlated with the elevated levels of Lin28B expression and subsequently inhibited the mature let-7 microRNA expression. Furthermore, the stable overexpression of Lin28B enhances the several phenotypes, including tumorigenicity and sphere-forming ability, which are induced by macroH2A1 depletion. Importantly, Lin28B expression was regulated by macroH2A1-mediated reciprocal binding of p300 and EZH2/SUV39H1. Our results suggest that Lin28B/let-7 pathway is tightly regulated by macroH2A1 and its cofactors, and have a pivotal role in the bladder tumor progression and the regulation of stem-like characteristics of bladder cancer cells.

Tu HC, Schwitalla S, Qian Z, et al.
LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans.
Genes Dev. 2015; 29(10):1074-86 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt pathway to promote invasive intestinal adenocarcinoma in murine models. When LIN28 alone is induced genetically, half of the resulting tumors harbor Ctnnb1 (β-catenin) mutation. When overexpressed in Apc(Min/+) mice, LIN28 accelerates tumor formation and enhances proliferation and invasiveness. In conditional genetic models, enforced expression of a LIN28-resistant form of the let-7 microRNA reduces LIN28-induced tumor burden, while silencing of LIN28 expression reduces tumor volume and increases tumor differentiation, indicating that LIN28 contributes to tumor maintenance. We detected aberrant expression of LIN28A and/or LIN28B in 38% of a large series of human CRC samples (n = 595), where LIN28 expression levels were associated with invasive tumor growth. Our late-stage CRC murine models and analysis of primary human tumors demonstrate prominent roles for both LIN28 paralogs in promoting CRC growth and progression and implicate the LIN28/let-7 pathway as a therapeutic target.

Jakobiec FA, Kool M, Stagner AM, et al.
Intraocular Medulloepitheliomas and Embryonal Tumors With Multilayered Rosettes of the Brain: Comparative Roles of LIN28A and C19MC.
Am J Ophthalmol. 2015; 159(6):1065-1074.e1 [PubMed] Related Publications
PURPOSE: To compare immunohistochemical and genetic overlaps and differences between intraocular medulloepitheliomas and embryonal tumors with multilayered rosettes of the brain.
DESIGN: Retrospective histopathologic, immunohistochemical, and genetic analysis of 20 intraocular medulloepitheliomas.
METHODS: (1) Review of clinical data and hematoxylin-eosin-stained sections with (2) immunohistochemical staining of paraffin sections using a polyclonal antibody against the protein LIN28A, and (3) fluorescence in situ hybridization (FISH) testing for the amplification of the genetic locus 19q13.42 involving the C19MC cluster of miRNA. Ten retinoblastomas served as controls and to determine the specificity of these biomarkers for intraocular medulloepitheliomas.
RESULTS: Nineteen of the 20 intraocular medulloepitheliomas were either diffusely or focally LIN28A positive (weak, moderate, or strong). The most intense positivity correlated with aggressive behavior such as intraocular tissue invasion or extraocular extension. None of the cases studied by FISH harbored an amplicon for C19MC. The 10 retinoblastomas were LIN28A and C19MC negative.
CONCLUSION: LIN28A has a putative role in oncogenesis and is found only in embryonic cells and malignancies. Intraocular medulloepitheliomas and embryonal tumors with multilayered rosettes of the brain both display LIN28A positivity. Only the latter, however, display amplification of the 19q13.42 locus involving C19MC, implying that other causative factors are at play in intraocular medulloepitheliomas. More aggressive tumor behavior within the eye can be partially predicted by LIN28A staining intensity.

Chen C, Cao F, Bai L, et al.
IKKβ Enforces a LIN28B/TCF7L2 Positive Feedback Loop That Promotes Cancer Cell Stemness and Metastasis.
Cancer Res. 2015; 75(8):1725-35 [PubMed] Related Publications
Considerable evidence suggests that proinflammatory pathways drive self-renewal of cancer stem-like cells (CSC), but the underlying mechanisms remain mainly undefined. Here we report that the let7 repressor LIN28B and its regulator IKBKB (IKKβ) sustain cancer cell stemness by interacting with the Wnt/TCF7L2 (TCF4) signaling pathway to promote cancer progression. We found that LIN28B expression correlated with clinical progression and stemness marker expression in breast cancer patients. Functional studies demonstrated that the stemness properties of LIN28B-expressing human breast and lung cancer cells were enhanced by IKKβ, whereas loss of LIN28B abolished stemness properties in these settings. These phenomena were driven through interactions with TCF7L2, which enhanced LIN28B expression by direct binding to intron 1 of the LIN28B gene, which in turn promoted TCF7L2 mRNA translation through a positive feedback loop. Notably, RNAi-mediated silencing of LIN28B or pharmacologic inhibition of IKKβ was sufficient to suppress primary and metastatic tumor growth in vivo. Together, our results establish the LIN28B/TCF7L2 interaction loop as a central mediator of cancer stemness driven by proinflammatory processes during progression and metastasis, possibly offering a new therapeutic target for generalized interventions in advanced cancers.

Wang LD, Rao TN, Rowe RG, et al.
The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy.
Leukemia. 2015; 29(6):1320-30 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.

Weingart MF, Roth JJ, Hutt-Cabezas M, et al.
Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target.
Oncotarget. 2015; 6(5):3165-77 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Atypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers. We identified high-levels of LIN28A and LIN28B in AT/RT primary tumors and cell lines, with corresponding low levels of the LIN28-regulated microRNAs of the let-7 family. Knockdown of LIN28A by lentiviral shRNA in the AT/RT cell lines CHLA-06-ATRT and BT37 inhibited growth, cell proliferation and colony formation and induced apoptosis. Suppression of LIN28A in orthotopic xenograft models led to a more than doubling of median survival compared to empty vector controls (48 vs 115 days). LIN28A knockdown led to increased expression of let-7b and let-7g microRNAs and a down-regulation of KRAS mRNA. AT/RT primary tumors expressed increased mitogen activated protein (MAP) kinase pathway activity, and the MEK inhibitor selumetinib (AZD6244) decreased AT/RT growth and increased apoptosis. These data implicate LIN28/RAS/MAP kinase as key drivers of AT/RT tumorigenesis and indicate that targeting this pathway may be a therapeutic option in this aggressive pediatric malignancy.

Yang X, Cai H, Liang Y, et al.
Inhibition of c-Myc by let-7b mimic reverses mutidrug resistance in gastric cancer cells.
Oncol Rep. 2015; 33(4):1723-30 [PubMed] Related Publications
Chemotherapy is one of the few effective choices for patients with advanced or recurrent gastric cancer (GC). However, the development of mutidrug resistance (MDR) to cancer chemotherapy is a major obstacle to the effective treatment of advanced GC. Additionally, the mechanism of MDR remains to be determined. In the present study, we tested IC50 of cisplatin (DDP), vincristine (VCR) and 5-fluorouracil (5-FU) in SGC7901, SGC7901/DDP and SGC7901/VCR gastric cancer cells using an MTT assay. The expression of let-7b and c-Myc in these cells was detected by qPCR and western blot analysis. The relationship between let-7b and c-Myc was explored using a luciferase reporter assay. Transfection of let-7b mimic or inhibitor was used to confirm the effect of let-7b on drug sensitivity in chemotherapy via the regulation of c-Myc expression. We found that the expression of let-7b was lower in chemotherapy-resistant SGC7901/DDP and SGC7901/VCR gastric cancer cells than that in chemotherapy-sensitive SGC7901 cells. By contrast, the expression of c-Myc was higher in SGC7901/DDP and SGC7901/VCR cells than that in SGC7901 cells. Furthermore, we confirmed that let-7b suppresses c-Myc gene expression at the mRNA and protein levels in a sequence-specific manner, while transfection of let-7b mimic increases drug sensitivity in chemotherapy-resistant SGC7901/DDP and SGC7901/VCR cells by targeting downregulation of c-Myc. In SGC7901 drug-sensitive cells, however, the sensitivity of chemotherapy was significantly decreased following let-7b inhibitor transfection. The present study results demonstrated that let-7b increases drug sensitivity in chemotherapy‑resistant SGC7901/DDP and SGC7901/VCR gastric cancer cells by targeting the downregulation of c-Myc and that, let-7b mimic reverses MDR by promoting cancer stem cell differentiation controlled by double-negative autoregulatory loops (Lin28/let-7 and Myc/let-7) and a double-positive autoregulatory loop (Lin28/Lin28B/Myc) existing in GC cells, which remains to be confirmed.

Zhang Y, Zhu L, Wang R, et al.
Genetic variants in let-7/Lin28 modulate the risk of oral cavity cancer in a Chinese Han population.
Sci Rep. 2014; 4:7434 [PubMed] Related Publications
Let-7 and Lin28 establish a double-negative feedback loop to affect several biological processes, such as differentiation of stem cell, invasion and metastasis, and tumorigenesis. In this study, we systematically investigated the associations between 6 potentially functional SNPs of let7 and Lin28 genes and the risk of oral cavity cancer with a case-control study including 384 oral cavity cancer cases and 731 controls. We found that the variant allele (T) of rs221636 of Lin28B was significantly associated with a reduced risk of oral cavity cancer [odds ratio (OR) = 0.73, 95% confidence interval (CI) = 0.58-0.92, P = 7.55 × 10(-3) in additive model]. Bioinformatics prediction indicated that rs221636 was located at the binding site of hsa-miR-548p in the 3' UTR of Lin28B. Luciferase activity assay also showed a lower expression level for rs221636 T allele compared with A allele. These findings indicated that rs221236 located at Lin28B may contribute to the risk of oral cavity cancer through the interruption of miRNA binding.

Lozier AM, Rich ME, Grawe AP, et al.
Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma.
Oncotarget. 2015; 6(1):196-206 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
LIN28 has emerged as an oncogenic driver in a number of cancers, including neuroblastoma (NB). Overexpression of LIN28 correlates with poor outcome in NB, therefore drugs that impact the LIN28/Let-7 pathway could be beneficial in treating NB patients. The LIN28/Let-7 pathway affects many cellular processes including the regulation of cancer stem cells and glycolytic metabolism. Polyamines, regulated by ornithine decarboxylase (ODC) modulate eIF-5A which is a direct regulator of the LIN28/Let-7 axis. We propose that therapy inhibiting ODC will restore balance to the LIN28/Let-7 axis, suppress glycolytic metabolism, and decrease MYCN protein expression in NB. Difluoromethylornithine (DFMO) is an inhibitor of ODC in clinical trials for children with NB. In vitro experiments using NB cell lines, BE(2)-C, SMS-KCNR, and CHLA90 show that DFMO treatment reduced LIN28B and MYCN protein levels and increased Let-7 miRNA and decreased neurosphere formation. Glycolytic metabolic activity decreased with DFMO treatment in vivo. Additionally, sensitivity to DFMO treatment correlated with LIN28B overexpression (BE(2)-C>SMS-KCNR>CHLA90). This is the first study to demonstrate that DFMO treatment restores balance to the LIN28/Let-7 axis and inhibits glycolytic metabolism and neurosphere formation in NB and that PET scans may be a meaningful imaging tool to evaluate the therapeutic effects of DFMO treatment.

Alam M, Ahmad R, Rajabi H, Kufe D
MUC1-C Induces the LIN28B→LET-7→HMGA2 Axis to Regulate Self-Renewal in NSCLC.
Mol Cancer Res. 2015; 13(3):449-60 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
UNLABELLED: The LIN28B→let-7 pathway contributes to regulation of the epithelial-mesenchymal transition (EMT) and stem cell self-renewal. The oncogenic MUC1-C transmembrane protein is aberrantly overexpressed in lung and other carcinomas; however, there is no known association between MUC1-C and the LIN28B→let-7 pathway. Here in non-small cell lung cancer (NSCLC), silencing MUC1-C downregulates the RNA-binding protein LIN28B and coordinately increases the miRNA let-7. Targeting MUC1-C function with a dominant-negative mutant or a peptide inhibitor provided confirming evidence that MUC1-C induces LIN28B→let-7 signaling. Mechanistically, MUC1-C promotes NF-κB p65 chromatin occupancy of the LIN28B first intron and activates LIN28B transcription, which is associated with suppression of let-7. Consistent with let-7-mediated inhibition of HMGA2 transcripts, targeting of MUC1-C also decreases HMGA2 expression. HMGA2 has been linked to stemness, and functions as a competing endogenous RNA (ceRNA) of let-7-mediated regulation of the TGFβ coreceptor TGFBR3. Accordingly, targeting MUC1-C suppresses HMGA2 mRNA and protein, which is associated with decreases in TGFBR3, reversal of the EMT phenotype, and inhibition of self-renewal capacity. These findings support a model in which MUC1-C activates the ⇑LIN28B→⇓let-7→⇑HMGA2 axis in NSCLC and thereby promotes EMT traits and stemness.
IMPLICATIONS: A novel pathway is defined in which MUC1-C drives LIN28B→let-7→HMGA2 signaling, EMT, and self-renewal in NSCLC.

Capasso M, Diskin S, Cimmino F, et al.
Common genetic variants in NEFL influence gene expression and neuroblastoma risk.
Cancer Res. 2014; 74(23):6913-24 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single-nucleotide polymorphisms (SNP) associated with neuroblastoma at the CASC15, BARD1, LMO1, DUSP12, HSD17B12, HACE1, and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated eight additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNPs at these candidate genes were tested for association with disease susceptibility in 2,101 cases and 4,202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing, and cellular differentiation assays. The neurofilament gene NEFL harbored three SNPs associated with neuroblastoma (rs11994014: Pcombined = 0.0050; OR, 0.88; rs2979704: Pcombined = 0.0072; OR, 0.87; rs1059111: Pcombined = 0.0049; OR, 0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biologic investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens were associated with better overall survival (P = 0.03; HR, 0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and progression.

Zhang L, Qian J, Qiang Y, et al.
Down-regulation of miR-4500 promoted non-small cell lung cancer growth.
Cell Physiol Biochem. 2014; 34(4):1166-74 [PubMed] Related Publications
BACKGROUND: Lung cancer is the lead cause of cancer-related mortality around the world. Non-small cell lung cancer (NSCLC) accounts for nearly 85% of all case of lung cancer. Accumulating evidence revealed the importance of miRNAs in the pathogenesis of NSCLC. Whether miR-4500 promotes NSCLC or not is still unknown. The potential targeted genes needed to be investigated.
METHODS: The level of miR-4500 was measured by qRT-PCR. The role of miR-4500 in patient survival was revealed by the Kaplan-Meier plot of overall survival of NSCLC patients. miR-4500 was up or down regulated by miRNAs mimics or ASO transfection. Cell proliferation and apoptosis were assayed by the MTT assay and FACS analysis separately. Targeted genes were predicted by a bioinformatic algorithm and confirmed by the Dual Luciferase reporter assay system.
RESULTS: NSCLC cell lines and tissues showed lower level of miR-4500. High miR-4500 expression was correlated with high patient survival rate. MiR-4500 overexpression inhibited NSCLC proliferation and induced apoptosis and vice versa. LIN28B and NRAS were targeted by miR-4500.
CONCLUSIONS: Low expression of miR-4500 in NSCLC promoted tumor growth by targeting LIN28B and NRAS. MiR-4500 may be a prognosis predictor and potential target for NSCLC therapy.

Li F, Li XJ, Qiao L, et al.
miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6.
Exp Mol Med. 2014; 46:e116 [PubMed] Article available free on PMC after 02/06/2017 Related Publications
Dysregulated microRNA (miRNA) expression has a critical role in tumor development and metastasis. However, the mechanism by which miRNAs control melanoma metastasis is unknown. Here, we report reduced miR-98 expression in melanoma tissues with increasing tumor stage as well as metastasis; its expression is also negatively associated with melanoma patient survival. Furthermore, we demonstrate that miR-98 inhibits melanoma cell migration in vitro as well as metastatic tumor size in vivo. We also found that IL-6 is a target gene of miR-98, and IL-6 represses miR-98 levels via the Stat3-NF-κB-lin28B pathway. In an in vivo melanoma model, we demonstrate that miR-98 reduces melanoma metastasis and increases survival in part by reducing IL-6 levels; it also decreases Stat3 and p65 phosphorylation as well as lin28B mRNA levels. These results suggest that miR-98 inhibits melanoma metastasis in part through a novel miR-98-IL-6-negative feedback loop.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LIN28B, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999