THY1

Gene Summary

Gene:THY1; Thy-1 cell surface antigen
Aliases: CD90, CDw90
Location:11q23.3
Summary:This gene encodes a cell surface glycoprotein and member of the immunoglobulin superfamily of proteins. The encoded protein is involved in cell adhesion and cell communication in numerous cell types, but particularly in cells of the immune and nervous systems. The encoded protein is widely used as a marker for hematopoietic stem cells. This gene may function as a tumor suppressor in nasopharyngeal carcinoma. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:thy-1 membrane glycoprotein
Source:NCBIAccessed: 09 March, 2017

Ontology:

What does this gene/protein do?
Show (28)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 10 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • B-Cell Lymphoma
  • Immunohistochemistry
  • Cell Line
  • Genetic Markers
  • alpha-Crystallin B Chain
  • Western Blotting
  • Southern Blotting
  • Messenger RNA
  • Breast Cancer
  • Transfection
  • DNA Methylation
  • Translocation
  • Succinate Dehydrogenase
  • Tumor Stem Cell Assay
  • Chromosome 14
  • Chromosome Mapping
  • Cell Differentiation
  • Carcinoma
  • DNA Probes
  • Base Sequence
  • Chromosome 4
  • Antigens, CD3
  • Chromosome 11
  • Promoter Regions
  • RTPCR
  • Nasopharyngeal Cancer
  • Flow Cytometry
  • Chromosome Banding
  • Cell Proliferation
  • Cancer Stem Cells
  • Thyrotropin
  • Leukaemia
  • Gene Expression Profiling
  • Antigens, Thy-1
  • Tumor Suppressor Gene
  • Cancer Gene Expression Regulation
  • Young Adult
  • Oligonucleotide Array Sequence Analysis
  • Hybrid Cells
  • Biomarkers, Tumor
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: THY1 (cancer-related)

Razmkhah F, Soleimani M, Mehrabani D, et al.
Leukemia microvesicles affect healthy hematopoietic stem cells.
Tumour Biol. 2017; 39(2):1010428317692234 [PubMed] Related Publications
Microvesicles are released by different cell types and shuttle mRNAs and microRNAs which have the possibility to transfer genetic information to a target cell and alter its function. Acute myeloid leukemia is a malignant disorder, and leukemic cells occupy all the bone marrow microenvironment. In this study, we investigate the effect of leukemia microvesicles on healthy umbilical cord blood hematopoietic stem cells to find evidence of cell information transferring. Leukemia microvesicles were isolated from acute myeloid leukemia patients and were co-incubated with healthy hematopoietic stem cells. After 7 days, cell count, hematopoietic stem cell-specific cluster of differentiation (CD) markers, colony-forming unit assay, and some microRNA gene expressions were assessed. Data showed a higher number of hematopoietic stem cells after being treated with leukemia microvesicles compared with control (treated with no microvesicles) and normal (treated with normal microvesicles) groups. Also, increased levels of microRNA-21 and microRNA-29a genes were observed in this group, while colony-forming ability was still maintained and high ranges of CD34(+), CD34(+)CD38(-), CD90(+), and CD117(+) phenotypes were observed as stemness signs. Our results suggest that leukemia microvesicles are able to induce some effects on healthy hematopoietic stem cells such as promoting cell survival and some microRNAs deregulation, while stemness is maintained.

Wu WR, Zhang R, Shi XD, et al.
Notch2 is a crucial regulator of self-renewal and tumorigenicity in human hepatocellular carcinoma cells.
Oncol Rep. 2016; 36(1):181-8 [PubMed] Related Publications
The Notch pathway plays an important role in both stem cell biology and cancer. Notch2 was reported to be upregulated in human hepatocellular carcinoma (HCC) tissues. However, the biological function of Notch2 in human HCC cells has not yet been documented. The aim of this study was to investigate its possible function on the progression of human HCC cells. The expression of Notch2 was detected in four human HCC cell lines by western blotting. Next, Notch2 was knocked down by small interference RNA (siRNA) in human HCC cells. The role of Notch2 in human HCC cells was investigated by cell proliferation assay, colony formation assay, chemoresistance and xenograft formation assay. In the present study, western blotting revealed that the expression of Notch2 was upregulated in human HCC cell lines. Genetic depletion of Notch2 in HCC cells not only resulted in significantly inhibited proliferation, cell cycle progression and colony formation ability but also increased its sensitivity to 5-fluorouracil (5-FU) compared with controls. In addition, upregulation of Notch2 was discovered in CD90 positive HCC cells, CD90 is a marker of hepatic stem cells. Most importantly, knockdown of Notch2 in HCC cells impaired the tumor formation in vivo. Taken together, our findings indicate that Notch2 may confer stemness properties in HCC; downregulation of Notch2 inhibited the proliferation and tumor formation of HCC cells and increase their sensitivity to 5-FU, suggesting Notch2 as a potential therapeutic target for HCC.

Shaikh MV, Kala M, Nivsarkar M
CD90 a potential cancer stem cell marker and a therapeutic target.
Cancer Biomark. 2016; 16(3):301-7 [PubMed] Related Publications
Cancer Stem Cells (CSCs) have been recently identified and their role in carcinogenesis has been ascertained. CSCs have been correlated with high relapse in certain cancers, multiple drug resistance against chemotherapy and metastasis. Several markers such as CD133, CD24, CD44, EpCAM, and CD26 have been identified to isolate and characterize CSCs. None of these markers or their combinations are universal in nature and can be used to isolate CSCs from all types of cancer. CD90 is one such marker whose expression has been extensively studied in recent years. CD90+ cells have been isolated from several types of tumors and shown to exhibit cardinal properties of CSCs such as proliferation, differentiation, spheroid formation, metastasis and ability to form tumor xenograft in immunodeficient mice. It is also found to be co-expressed with several other CSC markers. CD90 is therefore, suggested as a candidate marker as well as a potential therapeutic target for elimination of CSCs.

Gosnell ME, Anwer AG, Mahbub SB, et al.
Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features.
Sci Rep. 2016; 6:23453 [PubMed] Free Access to Full Article Related Publications
Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos.

Yamaguchi T, Okumura T, Hirano K, et al.
p75 neurotrophin receptor expression is a characteristic of the mitotically quiescent cancer stem cell population present in esophageal squamous cell carcinoma.
Int J Oncol. 2016; 48(5):1943-54 [PubMed] Related Publications
Mitotically quiescent cancer stem cells (CSC) are hypothesized to exhibit a more aggressive phenotype involving greater therapeutic resistance and metastasis. The aim of our study was to develop a method for identifying quiescent CSC in esophageal squamous cell carcinoma (ESCC) based on their expression of the p75 neurotrophin receptor (p75NTR) and other proposed CSC markers, such as CD44 and CD90. Double immunostaining of surgical ESCC specimens revealed that the mean Ki-67-labeling index of the p75NTR-positive cells was significantly lower than that of the p75NTR-negative cells. Real-time PCR analysis of sorted fractions of ESCC cell lines (KYSE cells) revealed that stem cell-related genes (Nanog, p63 and Bmi-1) and epithelial-mesenchymal transition (EMT)-related genes (N-cadherin and fibronectin) were expressed at significantly higher levels in the p75NTR-positive fractions than in the CD44-positive or CD90-positive fractions. In addition, the p75NTR-positive fractions exhibited significantly higher colony formation in vitro, significantly enhanced tumor formation in mice, and significantly greater chemoresistance against cisplatin (CDDP) than the CD44‑positive or CD90‑positive fractions. Furthermore, in both the cultured cells and those from the mouse xenograft tumors, the p75NTR‑positive/CD44-negative and p75NTR‑positive/CD90-negative KYSE cell fractions contained significantly higher proportions of mitotically quiescent cells. These results suggest that the mitotically quiescent CSC population in ESCC can be identified and isolated based on their p75NTR expression, providing researchers with a novel diagnostic and therapeutic target.

Weigand A, Boos AM, Tasbihi K, et al.
Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells.
Breast Cancer Res. 2016; 18(1):32 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is a need to establish more cell lines from breast tumors in contrast to immortalized cell lines from metastatic effusions in order to represent the primary tumor and not principally metastatic biology of breast cancer. This investigation describes the simultaneous isolation, characterization, growth and function of primary mammary epithelial cells (MEC), mesenchymal cells (MES) and adipose derived stem cells (ADSC) from four normal breasts, one inflammatory and one triple-negative ductal breast tumors.
METHODS: A total of 17 cell lines were established and gene expression was analyzed for MEC and MES (n = 42) and ADSC (n = 48) and MUC1, pan-KRT, CD90 and GATA-3 by immunofluorescence. DNA fingerprinting to track cell line identity was performed between original primary tissues and isolates. Functional studies included ADSC differentiation, tumor MES and MEC invasion co-cultured with ADSC-conditioned media (CM) and MES adhesion and growth on 3D-printed scaffolds.
RESULTS: Comparative analysis showed higher gene expression of EPCAM, CD49f, CDH1 and KRTs for normal MEC lines; MES lines e.g. Vimentin, CD10, ACTA2 and MMP9; and ADSC lines e.g. CD105, CD90, CDH2 and CDH11. Compared to the mean of all four normal breast cell lines, both breast tumor cell lines demonstrated significantly lower ADSC marker gene expression, but higher expression of mesenchymal and invasion gene markers like SNAI1 and MMP2. When compared with four normal ADSC differentiated lineages, both tumor ADSC showed impaired osteogenic and chondrogenic but enhanced adipogenic differentiation and endothelial-like structures, possibly due to high PDGFRB and CD34. Addressing a functional role for overproduction of adipocytes, we initiated 3D-invasion studies including different cell types from the same patient. CM from ADSC differentiating into adipocytes induced tumor MEC 3D-invasion via EMT and amoeboid phenotypes. Normal MES breast cells adhered and proliferated on 3D-printed scaffolds containing 20 fibers, but not on 2.5D-printed scaffolds with single fiber layers, important for tissue engineering.
CONCLUSION: Expression analyses confirmed successful simultaneous cell isolations of three different phenotypes from normal and tumor primary breast tissues. Our cell culture studies support that breast-tumor environment differentially regulates tumor ADSC plasticity as well as cell invasion and demonstrates applications for regenerative medicine.

Peng YC, Lu SD, Zhong JH, et al.
Combination of 5-fluorouracil and 2-morphilino-8-phenyl-4H-chromen-4-one may inhibit liver cancer stem cell activity.
Tumour Biol. 2016; 37(8):10943-58 [PubMed] Related Publications
This work aims to evaluate the impact of 2-morpholino-8-phenyl-4H-chromen-4-one (LY294002) combined 5-fluorouracil (5-FU) for the activity of CD90+ liver cancer cells derived from the human liver cancer cell line MHCC97H. MHCC97H sphere-forming cells (MSFCs) were amplified in serum-free medium and CD90+ cells were isolated from bulk MSFCs using flow cytometry. The phenotype of these CD90+ cells which show liver cancer stem cells (LCSCs) behavior was validated in vitro and in a xenograft model in nude mice. MSFCs, CD90+ liver cancer cells (CD90+ LCCs), and parental MHCC97H cells were treated with no drug, LY294002 alone, 5-FU alone, or both drugs together and then compared in terms of stem cell-related gene expression, proliferation, and invasion. Stem cell phenotype increased with increasing proportion of CD90+ cells, in ascending order: parental MHCC97H cells, MSFCs, and CD90+ liver cancer cells. LY294002 reduced the expression of CD90, Nanog, SALL4, and SHP2 in a concentration-dependent manner in CD90+ LCCs and MSFCs, but not in parental cells. LY294002 blocked AKT phosphorylation via the PI3K/AKT signaling pathway and inhibited CD90+ LCCs proliferation and tumorigenicity in vitro and in vivo. CD90+ liver cancer cells can express liver cancer stem cell phenotype. LY294002 inhibits the proliferation and invasion of MHCC97H-derived CD90+ LCCs and sensitized CD90+ LCCs-derived tumors to 5-FU in the current study which may provide insight into the association between the LY294002 combined 5-FU and liver cancer stem cell (LCSCs).

Luo J, Wang P, Wang R, et al.
The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma.
Oncotarget. 2016; 7(8):9525-37 [PubMed] Free Access to Full Article Related Publications
CD90 has been identified as a marker for liver cancer stem cells (CSCs) that are responsible for tumorigenic activity, but it is not known how CD90+ cells contribute to tumor initiation and progression. Our data demonstrated that high expression of CD90 in Hepatocellular Carcinoma (HCC) tissues correlated with venous filtration in HCC patients. CD90+ cells isolated from HCC cell lines exhibited increased tumorigenicity, chemoresistance, tumor invasion and metastasis. Notch pathway was activated in CD90+ cells and we found that inhibition of Notch pathway in CD90+ CSCs decreased tumorigenicity, cell invasion, migration and expression of stem cell related genes. Activation of Notch pathway in CD90- cells induced self-renewal, invasion and migration. Furthermore, we observed that cancer stem cell features were facilitated by stimulating G1-S transition in the cell cycle phase and inhibiting apoptosis mediated by Notch pathway. Our findings suggested CD90 could be used as a potential biomarker for HCC CSCs, and that cancer stem cell activity was elevated through up activated Notch pathway in CD90+ CSCs.

Skowron MA, Niegisch G, Fritz G, et al.
Phenotype plasticity rather than repopulation from CD90/CK14+ cancer stem cells leads to cisplatin resistance of urothelial carcinoma cell lines.
J Exp Clin Cancer Res. 2015; 34:144 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumour heterogeneity and resistance to systemic treatment in urothelial carcinoma (UC) may arise from cancer stem cells (CSC). A recent model describes cellular differentiation states within UC based on corresponding expression of surface markers (CD) and cytokeratins (CK) with CD90 and CK14 positive cells representing the least differentiated and most tumourigenic population. Based on the fact that this population is postulated to constitute CSCs and the origin of cisplatin resistance, we enriched urothelial carcinoma cell lines (UCCs) for CD90 and studied the tumour-initiating potential of these separated cells in vitro.
METHODS: Magnetic- and fluorescence-activated- cell sorting were used for separation of CD90(+) and CD90(-) UCCs. Distribution of cell surface markers CD90, CD44, and CD49f and cytokeratins CK14, CK5, and CK20 as well as the effects of short- and long-term treatment with cisplatin were assessed in vitro and measured by qRT-PCR, immunocytochemistry, reporter assay and flow cytometry in 11 UCCs.
RESULTS: We observed cell populations with surface markers according to those reported in tumour xenografts. However, expression of cytokeratins did not concord regularly with that of the surface markers. In particular, expression of CD90 and CK14 diverged during enrichment of CD90(+) cells by immunomagnetic sorting or following cisplatin treatment. Enriched CD90(+) cells did not exhibit CSC-like characteristics like enhanced clonogenicity and cisplatin resistance. Moreover, selection of cisplatin-resistant sublines by long-term drug treatment did not result in enrichment of CD90(+) cells. Rather, these sublines displayed significant phenotypic plasticity expressing EMT markers, an altered pattern of CKs, and WNT-pathway target genes.
CONCLUSIONS: Our findings indicate that the correspondence between CD surface markers and cytokeratins reported in xenografts is not maintained in commonly used UCCs and that CD90 may not be a stable marker of CSC in UC. Moreover, UCCs cells are capable of substantial phenotypic plasticity that may significantly contribute to the emergence of cisplatin resistance.

Pang YB, Zhong JH, Luo XL, et al.
Clinicopathological characteristics and liver stem cell marker expression in hepatocellular carcinoma involving bile duct tumor thrombi.
Tumour Biol. 2016; 37(5):5879-84 [PubMed] Related Publications
The aim of this study was to analyze the clinicopathological characteristics and expression of liver stem cell markers of hepatocellular carcinoma (HCC) involving bile duct tumor thrombi (BDTT). A total of 35 patients with HCC and BDTT in a consecutive series of HCC patients who underwent surgical treatment were studied retrospectively and compared with 916 patients without BDTT from the same series. Clinicopathological characteristics, overall survival (OS), and tumor expression of liver stem cell markers CD133, CD90, EpCAM, CK19, VEGF, and C-kit were compared between the two patient groups. Analysis was performed for the entire patient groups as well as for 35 pairs of patients with or without BDTT matched by propensity score. HCC patients with BDTT tended to have smaller tumors than those without BDTT, as well as a higher probability of having poorly differentiated tumor, Child-Pugh class B, liver cirrhosis, and microvascular invasion. Tumor tissue in patients with BDTT showed significantly higher expression rates of all liver stem cell markers examined. OS was significantly lower for patients with BDTT at 1 year (69 vs 84 %), 3 years (37 vs 64 %), and 5 years (20 vs 55 %) (P < 0.001). Patients with HCC and BDTT show lower OS than patients without BDTT. The higher frequency of liver stem cell marker expression in the presence of BDTT suggests that such stem cells may play a role in the pathogenesis of this form of HCC.

Chen WC, Chang YS, Hsu HP, et al.
Therapeutics targeting CD90-integrin-AMPK-CD133 signal axis in liver cancer.
Oncotarget. 2015; 6(40):42923-37 [PubMed] Free Access to Full Article Related Publications
CD90 is used as a marker for cancer stem cell in liver cancer. We aimed to study the mechanism by which CD90 promoted liver cancer progression and identify the new therapeutic targets on CD90 signal pathway. Ectopic expression of CD90 in liver cancer cell lines enhanced anchorage-independent growth and tumor progression. Furthermore, CD90 promoted sphere formation in vitro and upregulated the expression of the cancer stem cell marker CD133. The CD133 expression was higher in CD45-CD90+ cells in liver cancer specimen. The natural carcinogenic molecules TGF-β-1, HGF, and hepatitis B surface antigen increased the expression of CD90 and CD133. Inhibition of CD90 by either shRNA or antibody attenuated the induction of CD133 and anchorage-independent growth. Lentiviral delivery of CD133 shRNA abolished the tumorigenicity induced by CD90. Ectopic expression of CD90 induced mTOR phosphorylation and AMPK dephosphorylation. Mutation of integrin binding-RLD domain in CD90 attenuated the induction of CD133 and anchorage-independent growth. Similar results were observed after silencing β3 integrin. Signaling analyses revealed that AMPK/mTOR and β3 integrin were required for the induction of CD133 and tumor formation by CD90. Importantly, the energy restriction mimetic agent OSU-CG5 reduced the CD90 population in fresh liver tumor sample and repressed the tumor growth. In contrast, sorafenib did not decrease the CD90+ population. In conclusion, the signal axis of CD90-integrin-mTOR/AMPK-CD133 is critical for promoting liver carcinogenesis. Molecules inhibiting the signal axis, including OSU-CG5 and other inhibitors, may serve as potential novel cancer therapeutic targets in liver cancer.

Otte A, Rauprich F, von der Ohe J, et al.
c-Met inhibitors attenuate tumor growth of small cell hypercalcemic ovarian carcinoma (SCCOHT) populations.
Oncotarget. 2015; 6(31):31640-58 [PubMed] Free Access to Full Article Related Publications
A cellular model (SCCOHT-1) of the aggressive small cell hypercalcemic ovarian carcinoma demonstrated constitutive chemokine and growth factor production including HGF. A simultaneous presence of c-Met in 41% SCCOHT-1 cells suggested an autocrine growth mechanism. Expression of c-Met was also observed at low levels in the corresponding BIN-67 cell line (6.5%) and at high levels in ovarian adenocarcinoma cells (NIH:OVCAR-3 (84.4%) and SK-OV-3 (99.3%)). Immunohistochemistry of c-Met expression in SCCOHT tumors revealed a heterogeneous distribution between undetectable levels and 80%. Further characterization of SCCOHT-1 and BIN-67 cells by cell surface markers including CD90 and EpCAM demonstrated similar patterns with differences to the ovarian adenocarcinoma cells. HGF stimulation of SCCOHT-1 cells was associated with c-Met phosphorylation at Tyr1349 and downstream Thr202/Tyr204 phosphorylation of p44/42 MAP kinase. This HGF-induced signaling cascade was abolished by the c-Met inhibitor foretinib. Cell cycle analysis after foretinib treatment demonstrated enhanced G2 accumulation and increasing apoptosis within 72 h. Moreover, the IC50 of foretinib revealed 12.4 nM in SCCOHT-1 cells compared to 411 nM and 481 nM in NIH:OVCAR-3 and SK-OV-3 cells, respectively, suggesting potential therapeutic effects. Indeed, SCCOHT-1 and BIN-67 tumor xenografts in NODscid mice exhibited an approximately 10-fold and 5-fold reduced tumor size following systemic application of foretinib, respectively. Furthermore, foretinib-treated tumors revealed a significantly reduced vascularization and little if any c-Met-mediated signal transduction. Similar findings of reduced proliferative capacity and declined tumor size were observed after siRNA-mediated c-Met knock-down in SCCOHT-1 cells demonstrating that in vivo inhibition of these pathways contributed to an attenuation of SCCOHT tumor growth.

Hayashi H, Higashi T, Yokoyama N, et al.
An Imbalance in TAZ and YAP Expression in Hepatocellular Carcinoma Confers Cancer Stem Cell-like Behaviors Contributing to Disease Progression.
Cancer Res. 2015; 75(22):4985-97 [PubMed] Related Publications
Transcriptional coactivator with PDZ-binding motif (TAZ) and yes-associated protein (YAP) are equivalently placed downstream effectors of the Hippo pathway with oncogenic roles in human cancers. However, the expression profiles of TAZ/YAP differ depending on the cancer cell type, suggesting that these proteins have different roles during cancer progression, yet no studies have examined the biologic significance of the balance between TAZ and YAP expression levels. Here we examined the functional roles of TAZ/YAP in hepatocellular carcinoma progression. We found that TAZ, but not YAP, was predominantly expressed in HCC. TAZ knockdown under normal conditions attenuated cell growth in HCC cells; however, TAZ knockdown combined with 5-fluorouracil treatment significantly increased chemoresistance compared with control cells. Notably, TAZ knockdown induced compensatory YAP expression and was accompanied by upregulation of CD90, a HCC-specific cancer stem cell marker. Continuous treatment with 5-fluorouracil also induced YAP expression and promoted tumor formation in vivo. Conversely, double knockdown of TAZ/YAP reduced chemoresistance and tumorigenicity. Moreover, YAP knockdown aggravated HCC cell growth to a greater degree than TAZ knockdown, and YAP overexpression was strongly associated with poor prognoses in patients with HCC. Collectively, these studies demonstrate that TAZ and YAP exhibit different functional roles in cancer progression, and a shift to predominant YAP expression upon TAZ depletion conferred cancer stem cell-like properties including chemoresistance and tumorigenicity in HCC. Therefore, targeting of both TAZ/YAP will be required for a complete antitumor response in HCC.

Zhu GC, Gao L, He J, et al.
CD90 is upregulated in gastric cancer tissues and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein.
Oncol Rep. 2015; 34(5):2497-506 [PubMed] Related Publications
Cluster of differentiation 90 (CD90) (Thy-1) plays important roles in the oncogenesis in various types of malignancies. In the present study, we investigated the expression of CD90 in gastric cancer (GC) tissues by q-PCR, immunohistochemistry (IHC), and western blot technologies. The results showed that CD90 was overexpressed in gastric cancer tissues compared with the level in the adjacent non‑cancerous tissues. To explore the possible mechanism of CD90 in GC, we elucidated the effect of CD90 on the apoptosis of AGS gastric cancer cells, and found that a considerable decrease in apoptotic cells was observed for AGS cells with CD90 overexpression. Meanwhile, the rate of apoptotic cells was increased in the AGS cells with CD90 interference (siCD90) compared with that in the AGS cells. Cell apoptosis is closely related to a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of CD90 in the AGS gastric cancer cells led to an increase in ΔΨm and a decrease in intracellular ROS and Ca2+ concentrations. At the same time, siCD90 reduced ΔΨm and the increase in intracellular ROS and Ca2+ concentrations. Furthermore, we identified and confirmed that CD90 functions by modulating the expression level of secreted protein, acidic, cysteine‑rich (osteonectin) (SPARC) in vitro through LC‑MS/MS analyses and western blot technology. In summary, our results suggest that CD90 is upregulated in gastric cancer and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein.

Wang X, Liu Y, Zhou K, et al.
Isolation and characterization of CD105+/CD90+ subpopulation in breast cancer MDA-MB-231 cell line.
Int J Clin Exp Pathol. 2015; 8(5):5105-12 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The epithelial-mesenchymal transition (EMT) generates cells with properties of stem cells, if that happened, the stem cell should be with mesenchymal property. This study aimed to identify a group of cells with mesenchymal stem cell (MSC)-like characteristics in breast cancer bone metastatic cell line MDA-MB-231, moreover, the relevance between breast cancer stem cells and the EMT was observed. CD105 and CD90, identified as the standards of MSCs, were used for the identification.
METHODS: The CD105+/CD90+ and CD105-/CD90- subpopulation of MDA-MB-231 cells were detected and sorted by flow cytometry. MSC-like characteristics in cell proliferation, migration and cell cycle were investigated here by MTT asaay, transwell migration assay, and PI staining respectively. The expression profiles of some stem cell-associated genes were also observed by quantitative real time PCR.
RESULTS: Around 0.99% and 90.77% of parental cells were identified as CD105+/CD90+ and CD105-/CD90- cell subpopulations respectively. The CD105+/CD90+ cells exhibited stronger migratory capacity as compared to parental and CD105-/CD90- cells, while less CD105+/CD90+ cells were arrested in the S phase. Besides, pluripotent stem cell factors, like Oct-4, Nanog, Klf4 and Sox-2, were all upregulated in CD105+/CD90+ cells, with also proliferation increase, as compared with other two populations.
CONCLUSION: The CD105+/CD90+ subpopulation from breast cancer MDA-MB-231 cells was proven to possess "mesenchymal stem cell-like" characteristics, and its high migratory ability might be associated with EMT. Moreover, using the surface markers of CD105 and CD90 for the identification of MSCs might provide new theoretical basis for the recurrence and metastasis of breast cancer.

Chen X, Hu C, Zhang W, et al.
Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro.
Tumour Biol. 2015; 36(12):9873-83 [PubMed] Related Publications
Metformin is an oral drug that has been widely used to treat type 2 diabetes mellitus. Interestingly, accumulated evidence indicate that metformin may reduce the risk of cancer in patients with type 2 diabetes and inhibit tumor cell growth and survival in numerous malignancies, including osteosarcoma (OS) cells. In the present study, we aimed to investigate the effects of metformin on the proliferation, migration, invasion, and sphere formation in OS MG63 cells in vitro. Metformin suppressed OS MG63 cell proliferation in a dose- and time-dependent manner and markedly blocked anti-metastatic potentials, migration, and invasion, by downregulating matrix metalloproteinase 2 (MMP2) and MMP9. Besides, we established OS cancer stem-like cell (CSC) model with sarcosphere formation assay and demonstrated that metformin posed damage on CSCs in OS by inhibiting sphere formation and by inducing their stemness loss. The stemness of CSCs in OS such as self-renewal and differentiation potentials was both impaired with a significant decrease of Oct-4 and Nanog activation. Consistent with this, the positive rates of CD90, CD133, and stage-specific embryonic antigen-4 (SSEA-4) were all observed with reductions in response to metformin exposure. In addition, Western blot showed that metformin activated AMPKα at Tyr172, followed by a downregulated phosphorylation of mammalian target of rapamycin (mTOR)/S6 and feedback activation of p-AKT Ser(473) in both OS MG63 cells and CSCs. This indicates that AMPK/mTOR/S6 signaling pathway might be involved in the growth inhibition of both OS MG63 cells and CSCs. These results suggest that metformin, a potential anti-neoplastic agent, might make it a novel therapeutic choice for the treatment of OS in the future.

Tanaka K, Tomita H, Hisamatsu K, et al.
ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma.
Oncotarget. 2015; 6(28):24722-32 [PubMed] Free Access to Full Article Related Publications
Aldehyde dehydrogenase 1A1 (ALDH1A1) is considered to be a cancer stem cell marker in several human malignancies. However, the role of ALDH1A1 in hepatocellular carcinoma (HCC) has not been well elucidated. In this study, we investigated the relationship between ALDH1A1 and clinicopathological findings and examined whether ALDH1A1 deserves to be a cancer stem cell marker in HCC. Sixty HCC samples obtained from surgical resection were collected for immunohistochemical (IHC) staining. Of these 60 samples, 47 samples of HCC tumorous and non-tumorous tissues were evaluated with qRT-PCR. There was no significant difference in the ALDH1A1-mRNA level between tumorous and non-tumorous tissues. Tumorous ALDH1A1-mRNA level had no relationship with the clinicopathological features. Immunoreactivity of ALDH1A1 was classified into two groups based on the percentage of ALDH1A1-overexpressing cells. The ALDH1A1-high group was significantly associated with low serum levels of α-fetoprotein, small tumor diameter, very little lymphovascular invasion, more differentiated pathology and good stage. The ALDH1A1-high group showed more favorable prognosis for recurrence-free survival. In double-staining IHC, ALDH1A1 was not co-expressed with BMI1, EpCAM, CD13, CD24, CD90 and CD133, which reported as cancer stem cell markers in HCC. In conclusion, ALDH1A1-overexpressing cells could appear to be differentiated cells rather than cancer stem cells in HCC.

Huang R, Wang J, Zhong Y, et al.
Mitochondrial DNA Deficiency in Ovarian Cancer Cells and Cancer Stem Cell-like Properties.
Anticancer Res. 2015; 35(7):3743-53 [PubMed] Related Publications
BACKGROUND: A low quantity of mitochondrial DNA (mtDNA) is a risk factor in a variety of tumor types. However, it is unclear how mtDNA reduction influences tumor behavior.
MATERIAL AND METHODS: mtDNA-deficient ovarian cancer cells were established by ethidium bromide (EtBr) treatment with additive combination of pyruvate and uridine.
RESULTS: The mtDNA-deficient cells had a low growth and colony-forming efficiency compared to the control cells. RNA sequencing revealed down-regulation of mitochondrion-related genes and up-regulation of genes related to cell proliferation and anti-apoptosis. The expression of genes involved in cancer metastasis, proliferation, angiogenesis, drug resistance and cancer cell stemness were also up-regulated. Intriguingly, cancer stem cell markers CD90 and CD117 were both up-regulated by EtBr dose-dependently in both cell lines.
CONCLUSION: MtDNA deficiency may induce ovarian cancer stem cell-like properties through different ways in vitro, therefore contributing to different tumor behaviors.

Iskender B, Izgi K, Karaca H, Canatan H
Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9.
J Nat Med. 2015; 69(4):543-54 [PubMed] Related Publications
Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics.

Garg S, Shanmukhaiah C, Marathe S, et al.
Differential antigen expression and aberrant signaling via PI3/AKT, MAP/ERK, JAK/STAT, and Wnt/β catenin pathways in Lin-/CD38-/CD34+ cells in acute myeloid leukemia.
Eur J Haematol. 2016; 96(3):309-17 [PubMed] Related Publications
Acute myeloid leukemia is often called as stem cell disease that presents with treatment failure and poor disease outcome. Leukemic stem cells in acute myeloid leukemia (AML) are enriched in Lineage-/CD38-/CD34+ compartment of CD34-positive AML. Many markers important for stem cell biology have been reported for their association with leukemic stem cell population, but what remains clinically most important is a rapid identification of prognostic information. In this study, we evaluated four signal transduction pathways and thirteen markers on Lin-/CD38-/CD34+ population in AML. Expressions were compared in different AML subtypes, survival, and treatment outcome groups. We observed that markers important in homing, cell quiescence, and signal propagation such as CD44, CD96, CD90, WT-1, CD123 and CD25 were most significantly differentially expressed on Lin-/CD38-/CD34+ population in AML from their normal counterparts (P < 0.05, Mann-Whitney). Constitutive activation of phospho ERK, AKT, and STAT5 in these cells was associated with poor outcome. Also, an increased frequency of putative leukemic stem cell population shows negative impact on treatment outcome and overall survival, suggesting that initial evaluation of AML samples for pLSC frequency and constitutively activated signaling pathway can provide prognostic and therapeutic information at the time of diagnosis.

Burgos-Ojeda D, Wu R, McLean K, et al.
CD24+ Ovarian Cancer Cells Are Enriched for Cancer-Initiating Cells and Dependent on JAK2 Signaling for Growth and Metastasis.
Mol Cancer Ther. 2015; 14(7):1717-27 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer is known to be composed of distinct populations of cancer cells, some of which demonstrate increased capacity for cancer initiation and/or metastasis. The study of human cancer cell populations is difficult due to long requirements for tumor growth, interpatient variability, and the need for tumor growth in immune-deficient mice. We therefore characterized the cancer initiation capacity of distinct cancer cell populations in a transgenic murine model of ovarian cancer. In this model, conditional deletion of Apc, Pten, and Trp53 in the ovarian surface epithelium (OSE) results in the generation of high-grade metastatic ovarian carcinomas. Cell lines derived from these murine tumors express numerous putative stem cell markers, including CD24, CD44, CD90, CD117, CD133, and ALDH. We show that CD24(+) and CD133(+) cells have increased tumor sphere-forming capacity. CD133(+) cells demonstrated a trend for increased tumor initiation while CD24(+) cells versus CD24(-) cells had significantly greater tumor initiation and tumor growth capacity. No preferential tumor-initiating or growth capacity was observed for CD44(+), CD90(+), CD117(+), or ALDH(+) versus their negative counterparts. We have found that CD24(+) cells, compared with CD24(-) cells, have increased phosphorylation of STAT3 and increased expression of STAT3 target Nanog and c-myc. JAK2 inhibition of STAT3 phosphorylation preferentially induced cytotoxicity in CD24(+) cells. In vivo JAK2 inhibitor therapy dramatically reduced tumor metastases, and prolonged overall survival. These findings indicate that CD24(+) cells play a role in tumor migration and metastasis and support JAK2 as a therapeutic target in ovarian cancer.

Oudijk L, Neuhofer CM, Lichtenauer UD, et al.
Immunohistochemical expression of stem cell markers in pheochromocytomas/paragangliomas is associated with SDHx mutations.
Eur J Endocrinol. 2015; 173(1):43-52 [PubMed] Related Publications
OBJECTIVE: Pheochromocytomas (PCCs) are neuroendocrine tumors that occur in the adrenal medulla, whereas paragangliomas (PGLs) arise from paraganglia in the head, neck, thorax, or abdomen. In a variety of tumors, cancer cells with stem cell-like properties seem to form the basis of tumor initiation because of their ability to self-renew and proliferate. Specifically targeting this small cell population may lay the foundation for more effective therapeutic approaches. In the present study, we intended to identify stem cells in PCCs/PGLs.
DESIGN: We examined the immunohistochemical expression of 11 stem cell markers (SOX2, LIN28, NGFR, THY1, PREF1, SOX17, NESTIN, CD117, OCT3/4, NANOG, and CD133) on tissue microarrays containing 208 PCCs/PGLs with different genetic backgrounds from five European centers.
RESULTS: SOX2, LIN28, NGFR, and THY1 were expressed in more than 10% of tumors, and PREF1, SOX17, NESTIN, and CD117 were expressed in <10% of the samples. OCT3/4, NANOG, and CD133 were not detectable at all. Double staining for chromogranin A/SOX2 and S100/SOX2 demonstrated SOX2 immunopositivity in both tumor and adjacent sustentacular cells. The expression of SOX2, SOX17, NGFR, LIN28, PREF1, and THY1 was significantly associated with mutations in one of the succinate dehydrogenase (SDH) genes. In addition, NGFR expression was significantly correlated with metastatic disease.
CONCLUSION: Immunohistochemical expression of stem cell markers was found in a subset of PCCs/PGLs. Further studies are required to validate whether some stem cell-associated markers, such as SOX2, could serve as targets for therapeutic approaches and whether NGFR expression could be utilized as a predictor of malignancy.

Cardinale V, Renzi A, Carpino G, et al.
Profiles of cancer stem cell subpopulations in cholangiocarcinomas.
Am J Pathol. 2015; 185(6):1724-39 [PubMed] Free Access to Full Article Related Publications
Cholangiocarcinomas (CCAs) comprise a mucin-secreting form, intrahepatic or perihilar, and a mixed form located peripherally. We characterized cancer stem cells (CSCs) in CCA subtypes and evaluated their cancerogenic potential. CSC markers were investigated in 25 human CCAs in primary cultures and established cell lines. Tumorigenic potential was evaluated in vitro or in xenografted mice after s.c. or intrahepatic injection in normal and cirrhotic (carbon tetrachloride-induced) mice. CSCs comprised more than 30% of the tumor mass. Although the CSC profile was similar between mucin-intrahepatic and mucin-perihilar subtypes, CD13(+) CSCs characterized mixed-intrahepatic, whereas LGR5(+) characterized mucin-CCA subtypes. Many neoplastic cells expressed epithelial-mesenchymal transition markers and coexpressed mesenchymal and epithelial markers. In primary cultures, epithelial-mesenchymal transition markers, mesenchymal markers (vimentin, CD90), and CD13 largely predominated over epithelial markers (CD133, EpCAM, and LGR5). In vitro, CSCs expressing epithelial markers formed a higher number of spheroids than CD13(+) or CD90(+) CSCs. In s.c. tumor xenografts, tumors dominated by stromal markers were formed primarily by CD90(+) and CD13(+) cells. By contrast, in intrahepatic xenografts in cirrhotic livers, tumors were dominated by epithelial traits reproducing the original human CCAs. In conclusion, CSCs were rich in human CCAs, implicating CCAs as stem cell-based diseases. CSC subpopulations generate different types of cancers depending on the microenvironment. Remarkably, CSCs reproduce the original human CCAs when injected into cirrhotic livers.

Yamada T, Abei M, Danjoh I, et al.
Identification of a unique hepatocellular carcinoma line, Li-7, with CD13(+) cancer stem cells hierarchy and population change upon its differentiation during culture and effects of sorafenib.
BMC Cancer. 2015; 15:260 [PubMed] Free Access to Full Article Related Publications
BACKGROUNDS: Cancer stem cell (CSC) research has highlighted the necessity of developing drugs targeting CSCs. We investigated a hepatocellular carcinoma (HCC) cell line that not only has CSC hierarchy but also shows phenotypic changes (population changes) upon differentiation of CSC during culture and can be used for screening drugs targeting CSC.
METHODS: Based on a hypothesis that the CSC proportion should decrease upon its differentiation into progenitors (population change), we tested HCC cell lines (HuH-7, Li-7, PLC/PRF/5, HLF, HLE) before and after 2 months culture for several markers (CD13, EpCAM, CD133, CD44, CD90, CD24, CD166). Tumorigenicity was tested using nude mice. To evaluate the CSC hierarchy, we investigated reconstructivity, proliferation, ALDH activity, spheroid formation, chemosensitivity and microarray analysis of the cell populations sorted by FACS.
RESULTS: Only Li-7 cells showed a population change during culture: the proportion of CD13 positive cells decreased, while that of CD166 positive cells increased. The high tumorigenicity of the Li-7 was lost after the population change. CD13(+)/CD166(-) cells showed slow growth and reconstructed the bulk Li-7 populations composed of CD13(+)/CD166(-), CD13(-)/CD166(-) and CD13(-)/CD166(+) fractions, whereas CD13(-)/CD166(+) cells showed rapid growth but could not reproduce any other population. CD13(+)/CD166(-) cells showed high ALDH activity, spheroid forming ability and resistance to 5-fluorouracil. Microarray analysis demonstrated higher expression of stemness-related genes in CD166(-) than CD166(+) fraction. These results indicated a hierarchy in Li-7 cells, in which CD13(+)/CD166(-) and CD13(-)/CD166(+) cells serve as slow growing CSCs and rapid growing progenitors, respectively. Sorafenib selectively targeted the CD166(-) fraction, including CD13(+) CSCs, which exhibited higher mRNA expression for FGF3 and FGF4, candidate biomarkers for sorafenib. 5-fluorouracil followed by sorafenib inhibited the growth of bulk Li-7 cells more effectively than the reverse sequence or either alone.
CONCLUSIONS: We identified a unique HCC line, Li-7, which not only shows heterogeneity for a CD13(+) CSC hierarchy, but also undergoes a "population change" upon CSC differentiation. Sorafenib targeted the CSC in vitro, supporting the use of this model for screening drugs targeting the CSC. This type of "heterogeneous, unstable" cell line may prove more useful in the CSC era than conventional "homogeneous, stable" cell lines.

Sukowati CH, Anfuso B, Crocé LS, Tiribelli C
The role of multipotent cancer associated fibroblasts in hepatocarcinogenesis.
BMC Cancer. 2015; 15:188 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The presence of tumor supporting cells in various cancer, including in hepatocellular carcinoma (HCC), has become an important target in the study of carcinogenesis. The cancer-associated fibroblast (CAF), one of the most important cellular components in the cancer stroma, might contribute to the progression of the disease due to its plasticity, a behavior of the stem cells. In this study, we investigate the significance of the CAF and its role in the HCC progression and metastasis.
METHODS: Primary CAF and non-tumoral fibroblast (NTF) from nine paired HCC and distant non-tumoral liver tissues were isolated and cultured. The cells were characterized by flow cytometry, RT-PCR, anchorage-independent assay and in vitro cells directed trans-differentiation. Co-culture study was performed in Transwell system and xenograft assay was performed in immunodeficient mice.
RESULTS: CAF and NTF were positive for CD90, CD44, αSMA, and vimentin and negative for CD34, CD45, CD117, and CD133. When stimulated, they showed the potential to differentiate into adipocytes, osteoblasts, and pancreatic cells. When co-cultured with human HCC cell lines, CAF up-regulated gene expressions of TGFB1 and FAP of HuH-7 and JHH-6 while NTF did not induced either of the genes. Xenograft assay showed that the CAF had the capacity to enter into circulation as confirmed by RT-PCR and DNA sequencing.
CONCLUSION: Our data provides evidence of the plasticity of the CAF and the NTF as stem cells in the process of hepatocarcinogenesis and metastasis. These cells mutually interacts with HCC cells. Their trans-differentiation flexibility may induce a switch from normal to cancerous microenvironment.

Park SC, Zeng C, Tschudy-Seney B, et al.
Clonogenically Culturing and Expanding CD34+ Liver Cancer Stem Cells in Vitro.
Stem Cells Dev. 2015; 24(13):1506-14 [PubMed] Free Access to Full Article Related Publications
A large number of cancer stem cells (CSCs) have been isolated and identified; however, none has been cultured in an unlimited manner in vitro without losing tumorigenicity and multipotency. In this study, we successfully clonogenically cultured a newly identified CD34+ liver CSC (LCSC) on feeder cells up to 22 passages (to date) without losing CSC property. Cloned CD34+ LCSC formed a round packed morphology and it could also be cryopreserved and recultured. Stem cell markers, CD34, CD117, and SOX2; normal liver stem cell markers, alpha fetoprotein, CK19, CK18, and OV6; putative CSC markers, CD44, CD133, EpCAM, and CD90; as well as CD31 were expressed in cloned CD34+ LCSC. SOX2 was the major factor in maintaining this LCSC before colonization, and interestingly, OCT4, SOX2, NAONG, Klf4, c-Myc, and Lin28 were upregulated in association with symmetric self-renewal for colony growth of CD34+ LCSC on feeder cells. Gene expression patterns of in vitro differentiation were consistent with our in vivo finding; furthermore, the tumorigenicity of cloned CD34+ LCSC was not different from uncloned CD34+ LCSC sorted from parental PLC. These results show that our cloned CD34+ LCSC maintained CSC property, including self-renewal, bipotency, and tumorigenicity after long-term culture, demonstrating that this LCSC can be cultured in an unlimited manner in vitro. Thus, establishing pure population of CSCs isolated from the patients will provide an opportunity to explore the mechanisms of tumorigenesis and cancer development, and to identify unique biomarkers presenting potential indicators of drug efficacy against CSCs for establishment of a novel strategy for cancer therapy.

Huang JC, Basu SK, Zhao X, et al.
Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration.
Blood Cancer J. 2015; 5:e302 [PubMed] Free Access to Full Article Related Publications
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation.

Ge C, Wu S, Wang W, et al.
miR-942 promotes cancer stem cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/β-catenin signalling pathway.
Oncotarget. 2015; 6(13):10964-77 [PubMed] Free Access to Full Article Related Publications
The Wnt/β-catenin signalling pathway is known to play a vital role in the maintenance of cancer stem cells (CSCs), which are reported to be the origin of malignant cancers, and result in poor prognosis of multiple kinds of cancer. Therefore, it is of great importance to illuminate the mechanism by which the Wnt/β-catenin pathway regulates the cancer stem cell-like traits in cancers. Here, we report that miR-942 is significantly upregulated in esophageal squamous cell carcinoma (ESCC), and miR-942 levels are associated with poor prognosis in ESCC patients. Overexpression of miR-942 promotes, whereas inhibition of miR-942 decreases, the tumor sphere formation, the CD90+ subpopulation cells and the expression of pluripotency associated markers. Moreover, in vivo assay shows that miR-942 overexpressing cells form larger tumors and display higher tumourigenesis. Furthermore, we demonstrate that miR-942 upregulates the Wnt/β-catenin signaling activity via directly targeting sFRP4, GSK3β and TLE1, which are multiple level negative regulators of the Wnt/β-catenin signaling cascade. In addition, our results indicate that c-myc directly binds to the miR-942 promoter and promotes its expression. Taken together, our findings establish an oncogenic role of miR-942 in ESCC and indicate that miR-942 might be an effective therapeutic target for ESCC.

Shuen WH, Kan R, Yu Z, et al.
Novel lentiviral-inducible transgene expression systems and versatile single-plasmid reporters for in vitro and in vivo cancer biology studies.
Cancer Gene Ther. 2015; 22(4):207-14 [PubMed] Related Publications
Many of the cancer cell lines derived from solid tumors are difficult to transfect using commonly established transfection approaches. This hurdle for some DNA transfection systems has hindered cancer biology studies. Moreover, there are limited tools for studying pathway activities. Therefore, highly efficient improved gene transfer and versatile genetic tools are required. In this study, we established and developed a comprehensive set of new lentiviral tools to study gene functions and pathway activities. Using the optimized conditions, cancer cell lines achieved >90% transduction efficiency. Novel lentiviral doxycycline-regulated pTet-IRES-EGFP (pTIE) systems for transgene expression and TRE reporters used for pathway activity determination were developed and tested. The pTIE Tet-Off system showed in vitro doxycycline-sensitive responses with low or undetectable leakage of protein expression and in vivo tumor suppression as illustrated using candidate tumor suppressors, Fibulin-2 and THY1. In contrast, the Tet-On system showed dose-dependent responses. The pTRE-EGFP (pTE) and pTRE-FLuc-EF1α-RLuc (pT-FER) reporters with the NFκB p65 subunit consensus sequence showed GFP and firefly luciferase responses, which were directly correlated with TNFα stimulation, respectively. Taken together, these newly developed lentiviral systems provide versatile in vitro and in vivo platforms to strengthen our capabilities for cancer biology studies.

Zhu L, Zhang W, Wang J, Liu R
Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma.
Tumour Biol. 2015; 36(7):5353-60 [PubMed] Related Publications
Primary hepatocellular carcinoma (HCC) often invades into vessels and has a distal metastasis at an early stage, resulting in poor prognosis and therapeutic outcome. The metastasis has been attributable to the dissemination of tumor cells into circulation as circulating tumor cells (CTCs). Moreover, cancer stem cells (CSCs) within CTCs, which are termed as circulating tumor stem cells (CTSCs), are critical for formation of distal metastatic tumors. Although CD133 and CD90 have been used to characterize and isolate CTCs or CSCs in HCC, no good marker (cocktail) has been identified so far for CTSCs in HCC. Here, we show evidence that CD90+CXCR4+ HCC cells may be CTSCs in HCC. CD90+CXCR4+ HCC cells formed tumor spheres in culture and developed tumors after serial adoptive transplantations into NOD/SCID mice, while the CD90-CXCR4-, CD90-CXCR4+ or CD90+CXCR4- cells did not. Moreover, tumor cells were significantly more frequently detected in the circulation when CD90+CXCR4+ HCC cells were subcutaneously transplanted. Further, subcutaneous transplantation of CD90+CXCR4+ HCC cells, but not transplantation of CD90-CXCR4-, CD90-CXCR4+, or CD90+CXCR4- cells significantly developed distal metastatic tumors. Together, these data suggest that CD90+CXCR4+ HCC cells may be CTSCs and selective elimination of these cells may substantially improve the current HCC therapy by reducing cancer metastasis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. THY1, Cancer Genetics Web: http://www.cancer-genetics.org/THY1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999