Gene Summary

Gene:CCL21; C-C motif chemokine ligand 21
Aliases: ECL, SLC, CKb9, TCA4, 6Ckine, SCYA21
Summary:This antimicrobial gene is one of several CC cytokine genes clustered on the p-arm of chromosome 9. Cytokines are a family of secreted proteins involved in immunoregulatory and inflammatory processes. The CC cytokines are proteins characterized by two adjacent cysteines. Similar to other chemokines the protein encoded by this gene inhibits hemopoiesis and stimulates chemotaxis. This protein is chemotactic in vitro for thymocytes and activated T cells, but not for B cells, macrophages, or neutrophils. The cytokine encoded by this gene may also play a role in mediating homing of lymphocytes to secondary lymphoid organs. It is a high affinity functional ligand for chemokine receptor 7 that is expressed on T and B lymphocytes and a known receptor for another member of the cytokine family (small inducible cytokine A19). [provided by RefSeq, Sep 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:C-C motif chemokine 21
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (38)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Mice, Inbred BALB C
  • Chemokine CCL21
  • Cancer Vaccines
  • Up-Regulation
  • Gene Expression
  • Chemotaxis
  • Gene Expression Profiling
  • Chemokines
  • Staging
  • Chemokine CCL19
  • Breast Cancer
  • Neoplasm Invasiveness
  • Immunohistochemistry
  • Receptors, Chemokine
  • Lung Cancer
  • Western Blotting
  • Transduction
  • Lymph Nodes
  • Cultured Cells
  • Survival Rate
  • Signal Transduction
  • Cancer Gene Expression Regulation
  • Messenger RNA
  • Cell Movement
  • Genetic Vectors
  • Transfection
  • Chemokine CXCL12
  • Colorectal Cancer
  • Oligonucleotide Array Sequence Analysis
  • Lymphatic Metastasis
  • CXCR4
  • Chromosome 9
  • Receptors, CCR7
  • Skin Cancer
  • Cancer RNA
  • Transcription
  • Chemokines, CC
  • TNF
  • beta-Defensins
  • ZAP-70 Protein-Tyrosine Kinase
  • Transplantation, Heterotopic
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCL21 (cancer-related)

Moeini S, Saeidi M, Fotouhi F, et al.
Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine.
Arch Virol. 2017; 162(2):333-346 [PubMed] Related Publications
The use of DNA vaccines has become an attractive approach for generating antigen-specific cytotoxic CD8(+) T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be improved by using an adjuvant injected together with checkpoint antibodies. In the current study, we evaluated whether the therapeutic effects of a DNA vaccine encoding human papilloma virus type 16 (HPV-16) E7 can be enhanced by combined application of an immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway and secondary lymphoid tissue chemokine (SLC) also known as CCL21 adjuvant, in a mouse cervical cancer model. The therapeutic effects of the DNA vaccine in combination with CCL21 adjuvant plus PD-1 blockade was evaluated using a tumor growth curve. To further investigate the mechanism underlying the antitumor response, cytolytic and lymphocyte proliferation responses in splenocytes were measured using non-radioactive cytotoxicity and MTT assays, respectively. Vascular endothelial growth factor (VEGF) and IL-10 expression in the tumor and the levels of IFN-γ and IL-4 in supernatants of spleno-lymphocyte cultures were measured using ELISA. The immune efficacy was evaluated by in vivo tumor regression assay. The results showed that vaccination with a DNA vaccine in combination with the CCL21 adjuvant plus PD-1 blockade greatly enhanced cytotoxic T lymphocyte production and lymphocyte proliferation rates and greatly inhibited tumor progression. Moreover, the vaccine in combination with adjuvant and blockade significantly reduced intratumoral VEGF, IL-10 and splenic IL-4 but induced the expression of splenic IFN-γ. This formulation could be an effective candidate for a vaccine against cervical cancers and merits further investigation.

Fossmark R, Calvete O, Mjønes P, et al.
ECL-cell carcinoids and carcinoma in patients homozygous for an inactivating mutation in the gastric H(+) K(+) ATPase alpha subunit.
APMIS. 2016; 124(7):561-6 [PubMed] Related Publications
A family with a missense variant of the ATP4A gene encoding the alpha subunit of the gastric proton pump (H(+) K(+) ATPase) has recently been described. Homozygous siblings were hypergastrinemic (median gastrin 486 pM) and had gastric tumours diagnosed at a median age of 33 years. In the current histopathological study, we further characterized the tumours found in the gastric corpus. The tumours had the histological appearance of carcinoids (NET G1 or G2) and were immunoreactive for the general neuroendocrine markers chromogranin A (CgA) and synaptophysin as well as the ECL-cell markers vesicular monoamine transporter 2 (VMAT2) and histidine decarbozylase (HDC). One of the tumours consisted of a NET G2 component, but also had a component with glandular growth, which morphologically was classified as an intestinal type adenocarcinoma. Many glands of the adenocarcinoma contained a large proportion of cells positive for neuroendocrine markers, especially the small vesicle marker synaptophysin and the cytoplasmic enzyme HDC. In conclusion, patients homozygous for an inactivating ATP4A mutation develop gastric ECL-cell carcinoids in their 3rd or 4th decade. The adenocarcinoma may be classified as neuroendocrine with ECL-cell differentiation.

Nguyen-Hoai T, Pham-Duc M, Gries M, et al.
CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model.
Cancer Gene Ther. 2016; 23(6):162-7 [PubMed] Related Publications
Chemokines are key regulators of both innate and adaptive immune responses. CCL4 (macrophage inflammatory protein-1β, MIP-1β) is a CC chemokine that has a broad spectrum of target cells including immature dendritic cells, which express the cognate receptor CCR5. We asked whether a plasmid encoding CCL4 is able to improve tumor protection and immune responses in a Her2/neu+ mouse tumor model. Balb/c mice were immunized twice intramuscularly with plasmid DNA on days 1 and 15. On day 25, a tumor challenge was performed with 2 × 10(5) syngeneic Her2/neu+ D2F2/E2 tumor cells. Different groups of mice were vaccinated with pDNA(Her2/neu) plus pDNA(CCL4), pDNA(Her2/neu), pDNA(CCL4) or mock vector alone. Our results show that CCL4 is able to (i) improve tumor protection and (ii) augment a TH1-polarized immune response against Her2/neu. Although Her2/neu-specific humoral and T-cell immune responses were comparable with that induced in previous studies using CCL19 or CCL21 as adjuvants, tumor protection conferred by CCL4 was inferior. Whether this is due to a different spectrum of (innate) immune cells, remains to be clarified. However, combination of CCL19/21 with CCL4 might be a reasonable approach in the future, particularly for DNA vaccination in Her2/neu+ breast cancer in the situation of minimal residual disease.

Sun L, Zhang Q, Li Y, et al.
CCL21/CCR7 up-regulate vascular endothelial growth factor-D expression via ERK pathway in human non-small cell lung cancer cells.
Int J Clin Exp Pathol. 2015; 8(12):15729-38 [PubMed] Free Access to Full Article Related Publications
Lymphangiogenesis has received considerable attention and become a new research hotspot of tumor metastasis. Recently, C-C chemokine receptor 7 (CCR7) is known to promote metastasis of non-small cell lung cancer (NSCLC) cells into lymph nodes. In this study, we investigated the relationship between CCL21/CCR7 and the lymphangiogenic factor vascular endothelial growth factor (VEGF)-D in human lung cancer cells and its impact on patients' prognosis. We found that CCL21/CCR7 increase the expression of VEGF-D in NSCLC Cell Lines through induced ERK1/2 and Akt phosphorylation. In addition, our study found that the expression levels of CCR7 and CCL21 were correlated with VEGF-D, lymphatic vessels density (LVD), clinical stages, lymph node metastasis, and patient Survival in 90 human non-small cell lung cancer (NSCLC) specimens. Taken together, our results provide evidence that CCL21/CCR7 induce VEGF-D up-regulation and promote lymphangiogenesis via ERK/Akt pathway in lung cancer.

Elsnerova K, Mohelnikova-Duchonova B, Cerovska E, et al.
Gene expression of membrane transporters: Importance for prognosis and progression of ovarian carcinoma.
Oncol Rep. 2016; 35(4):2159-70 [PubMed] Related Publications
Membrane transporters (such as ABCs, SLCs and ATPases) act in carcinogenesis and chemoresistance development, but their relevance for prognosis of epithelial ovarian cancer (EOC) remains poorly understood. We evaluated the gene expression profile of 39 ABC and 12 SLC transporters and three ATPases in EOC tissues and addressed their putative role in prognosis and clinical course of EOC patients. Relative gene expression in a set of primary EOC (n=57) and in control ovarian tissues (n=14) was estimated and compared with clinical data and survival of patients. Obtained data were validated in an independent set of patients (n=60). Six ABCs and SLC22A18 gene were significantly overexpressed in carcinomas when compared with controls, while expression of 12 ABCs, five SLCs, ATP7A and ATP11B was decreased. Expression of ABCA12, ABCC3, ABCC6, ABCD3, ABCG1 and SLC22A5 was higher in high grade serous carcinoma compared with other subtypes. ABCA2 gene expression significantly associated with EOC grade in both sets of patients. Notably, expression level of ABCA9, ABCA10, ABCC9 and SLC16A14 significantly associated with progression-free survival (PFS) of the disease in either pilot or validation sets. ABCG2 level associated with PFS in the pooled set of patients. In conclusion, ABCA2, ABCA9, ABCA10, ABCC9, ABCG2 and SLC16A14 present novel putative markers of EOC progression and together with the revealed relationship between ABCA12, ABCC3, ABCC6, ABCD3, ABCG1 and SLC22A5 expression, and high grade serous type of EOC should be further examined by larger follow-up study.

Bock S, Murgueitio MS, Wolber G, Weindl G
Acute myeloid leukaemia-derived Langerhans-like cells enhance Th1 polarization upon TLR2 engagement.
Pharmacol Res. 2016; 105:44-53 [PubMed] Related Publications
Langerhans cells (LCs) represent a highly specialized subset of epidermal dendritic cells (DCs), yet not fully understood in their function of balancing skin immunity. Here, we investigated in vitro generated Langerhans-like cells obtained from the human acute myeloid leukaemia cell line MUTZ-3 (MUTZ-LCs) to study TLR- and cytokine-dependent activation of epidermal DCs. MUTZ-LCs revealed high TLR2 expression and responded robustly to TLR2 engagement, confirmed by increased CD83, CD86, PD-L1 and IDO expression, upregulated IL-6, IL-12p40 and IL-23p19 mRNA levels IL-8 release. TLR2 activation reduced CCR6 and elevated CCR7 mRNA expression and induced migration of MUTZ-LCs towards CCL21. Similar results were obtained by stimulation with pro-inflammatory cytokines TNF-α and IL-1β whereas ligands of TLR3 and TLR4 failed to induce a fully mature phenotype. Despite limited cytokine gene expression and production for TLR2-activated MUTZ-LCs, co-culture with naive CD4(+) T cells led to significantly increased IFN-γ and IL-22 levels indicating Th1 differentiation independent of IL-12. TLR2-mediated effects were blocked by the putative TLR2/1 antagonist CU-CPT22, however, no selectivity for either TLR2/1 or TLR2/6 was observed. Computer-aided docking studies confirmed non-selective binding of the TLR2 antagonist. Taken together, our results indicate a critical role for TLR2 signalling in MUTZ-LCs considering the leukemic origin of the generated Langerhans-like cells.

Shi M, Chen D, Yang D, Liu XY
CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1.
J Exp Clin Cancer Res. 2015; 34:149 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: CCR7 and MUC1 are correlated with lymph node metastasis in ESCC, but the role of MUC1 in the CCR7-induced lymphatic metastasis and the underlying molecular mechanism is still unclear.
METHODS: The expression of CCR7 and MUC1 was detected in the ESCC samples by IHC, and the clinical significance of CCR7 and MUC1 in ESCC was analyzed. The expression of CCR7 and MUC1 in ESCC cell lines was detected by qRT-PCR and western blot. The effect of CCL21 on the migration and invasion of ESCC cells was determined by transwell assay. The activity of MUC1 promoter was determined by luciferase reporter assay. The activation of Erk, Akt and Sp1 was detected by western blot and the binding of Sp1 to the MUC1 promoter was determined by ChIP.
RESULTS: The co-expression of CCR7 and MUC1 was detected in 153 ESCC samples by IHC, and both were correlated with lymph node metastasis, regional lymphatic recurrence and poor prognosis. Correspondingly, increasing levels of MUC1 mRNA and protein were detected in the ESCC cell lines KYSE410 and Eca9706 after treatment with CCL21 in a time- and dose-dependent manner. Furthermore, silencing MUC1 could remarkably suppress the invasion and migration of ESCC cells induced by CCL21. Moreover, heterologous CCR7 promoted the invasion and migration of KYSE150 and up-regulated MUC1 expression. Increasing levels of activated ERK1/2 and Akt were detected in KYSE410 after treating the cells with CCL21, and inhibiting the activation of ERK1/2 but not Akt caused the increased transcription of MUC1. Finally, the phosphorylation of Sp1 induced by ERK1/2 and subsequent increases in the binding of Sp1 to the muc1 promoter at -99/-90 were confirmed to cause the up-regulation of MUC1 induced by CCL21-CCR7.
CONCLUSIONS: Our findings suggested that MUC1 plays an important role in CCL21-CCR7-induced lymphatic metastasis and may serve as a therapeutic target in ESCC.

Igawa T, Sato Y, Kawai H, et al.
Spontaneous regression of plasmablastic lymphoma in an elderly human immunodeficiency virus (HIV)-negative patient.
Diagn Pathol. 2015; 10:183 [PubMed] Free Access to Full Article Related Publications
Plasmablastic lymphoma (PBL) is an aggressive lymphoma commonly associated with human immunodeficiency virus (HIV) infection. Herein we describe a rare case of PBL that spontaneously regressed. An 80-year-old man was referred to our hospital owing to an exophytic gingival tumor in the right maxillary second molar region. He had no significant past medical history, and a screening test for HIV was negative. Imaging showed that the tumor measured 26 × 23 × 16 mm and was confined in the alveolar bone. The tumor was histologically comprised of highly proliferative immunoblastic cells positive for CD138 and Epstein-Barr virus (EBV)-encoded RNA. Monoclonal IgH chain gene rearrangement was detected via polymerase chain reaction. After biopsy and diagnosis of PBL, the tumor began to decrease in size and had apparently disappeared at the time of surgery. There was no histological evidence of a residual lesion in the surgical specimen. In conclusion, a minority of immunosenescence-associated PBLs in the elderly should be recognized as a unique clinicopathological entity distinct from common aggressive PBL.

Polillo M, Galimberti S, Baratè C, et al.
Pharmacogenetics of BCR/ABL Inhibitors in Chronic Myeloid Leukemia.
Int J Mol Sci. 2015; 16(9):22811-29 [PubMed] Free Access to Full Article Related Publications
Chronic myeloid leukemia was the first haematological neoplasia that benefited from a targeted therapy with imatinib nearly 15 years ago. Since then, several studies have investigated the role of genes, their variants (i.e., polymorphisms) and their encoded proteins in the pharmacokinetics and pharmacodynamics of BCR-ABL1 tyrosine kinase activity inhibitors (TKIs). Transmembrane transporters seem to influence in a significant manner the disposition of TKIs, especially that of imatinib at both cellular and systemic levels. In particular, members of the ATP-binding cassette (ABC) family (namely ABCB1 and ABCG2) together with solute carrier (SLC) transporters (i.e., SLC22A1) are responsible for the differences in drug pharmacokinetics. In the case of the newer TKIs, such as nilotinib and dasatinib, the substrate affinity of these drugs for transporters is variable but lower than that measured for imatinib. In this scenario, the investigation of genetic variants as possible predictive markers has led to some discordant results. With the partial exception of imatinib, these discrepancies seem to limit the application of discovered biomarkers in the clinical settings. In order to overcome these issues, larger prospective confirmative trials are needed.

Chen S, Villeneuve L, Jonker D, et al.
ABCC5 and ABCG1 polymorphisms predict irinotecan-induced severe toxicity in metastatic colorectal cancer patients.
Pharmacogenet Genomics. 2015; 25(12):573-83 [PubMed] Related Publications
OBJECTIVE: Irinotecan is a cytotoxic agent used widely for the treatment of solid tumors, particularly for metastatic colorectal cancers. Treatment with this drug frequently results in severe neutropenia and diarrhea that can markedly impact the course of treatment and patients' quality of life. Pharmacogenomic tailoring of irinotecan-based chemotherapy has been the subject of several investigations, but with limited data on ATP-binding cassette (ABC) and solute carrier (SLC) transporter genes.
MATERIALS AND METHODS: In this study, we aimed to discover toxicity-associated markers in seven transporter genes participating in irinotecan pharmacokinetics involving the ABC transporter genes ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, and ABCG2 and the solute carrier organic anion transporter gene SLCO1B1 and using a haplotype-tagging single-nucleotide polymorphisms (n=210 htSNPs) strategy. The profiles of 167 metastatic colorectal cancer Canadian patients treated with FOLFIRI-based regimens were examined and the findings were replicated in an independent cohort of 250 Italian patients.
RESULTS: In combined cohorts, a two-marker ABCC5 rs3749438 and rs10937158 haplotype (T-C) predicted lower risk of severe diarrhea [odds ratio (OR) of 0.43; P=0.001]. The co-occurrence of ABCG1 rs225440T and ABCC5 rs2292997A predicted the risk of severe neutropenia (OR=5.93; P=0.0002), which was further improved when incorporating the well-known risk marker UGT1A1*28 rs8175347 (OR=7.68; P<0.0001). In contrast, carriers of one protective marker (UGT1 rs11563250G) but none of these risk alleles experienced significantly less severe neutropenia (8.2 vs. 34.0%; P<0.0001).
CONCLUSION: This combination of predictive genetic markers could potentially lead to better risk assessment and may thus improve personalized treatment.

Pedraz-Cuesta E, Christensen S, Jensen AA, et al.
The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells.
BMC Cancer. 2015; 15:411 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer death globally and new biomarkers and treatments are severely needed.
METHODS: Here, we employed HCT116 and LoVo human CRC cells made resistant to either SN38 or oxaliplatin, to investigate whether altered expression of the high affinity glutamate transporters Solute Carrier (SLC)-1A1 and -1A3 (EAAT3, EAAT1) is associated with the resistant phenotypes. Analyses included real-time quantitative PCR, immunoblotting and immunofluorescence analyses, radioactive tracer flux measurements, and biochemical analyses of cell viability and glutathione content. Results were evaluated using one- and two-way ANOVA and Students two-tailed t-test, as relevant.
RESULTS: In SN38-resistant HCT116 and LoVo cells, SLC1A1 expression was down-regulated ~60 % and up-regulated ~4-fold, respectively, at both mRNA and protein level, whereas SLC1A3 protein was undetectable. The changes in SLC1A1 expression were accompanied by parallel changes in DL-Threo-β-Benzyloxyaspartic acid (TBOA)-sensitive, UCPH101-insensitive [(3)H]-D-Aspartate uptake, consistent with increased activity of SLC1A1 (or other family members), yet not of SLC1A3. DL-TBOA co-treatment concentration-dependently augmented loss of cell viability induced by SN38, while strongly counteracting that induced by oxaliplatin, in both HCT116 and LoVo cells. This reflected neither altered expression of the oxaliplatin transporter Cu(2+)-transporter-1 (CTR1), nor changes in cellular reduced glutathione (GSH), although HCT116 cell resistance per se correlated with increased cellular GSH. DL-TBOA did not significantly alter cellular levels of p21, cleaved PARP-1, or phospho-Retinoblastoma protein, yet altered SLC1A1 subcellular localization, and reduced chemotherapy-induced p53 induction.
CONCLUSIONS: SLC1A1 expression and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments CRC cell death induced by SN38, while attenuating that induced by oxaliplatin. These findings may point to novel treatment options in treatment-resistant CRC.

Fontemaggi G, Bellissimo T, Donzelli S, et al.
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
RNA Biol. 2015; 12(7):690-700 [PubMed] Free Access to Full Article Related Publications
Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination, as for example the post-transcriptional regulation of the Polo-like kinase 1 (PLK1) by miR-22-3p and let-7e-5p.

Pang MF, Georgoudaki AM, Lambut L, et al.
TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.
Oncogene. 2016; 35(6):748-60 [PubMed] Free Access to Full Article Related Publications
Tumor cells frequently disseminate through the lymphatic system during metastatic spread of breast cancer and many other types of cancer. Yet it is not clear how tumor cells make their way into the lymphatic system and how they choose between lymphatic and blood vessels for migration. Here we report that mammary tumor cells undergoing epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β1) become activated for targeted migration through the lymphatic system, similar to dendritic cells (DCs) during inflammation. EMT cells preferentially migrated toward lymphatic vessels compared with blood vessels, both in vivo and in 3D cultures. A mechanism of this targeted migration was traced to the capacity of TGF-β1 to promote CCR7/CCL21-mediated crosstalk between tumor cells and lymphatic endothelial cells. On one hand, TGF-β1 promoted CCR7 expression in EMT cells through p38 MAP kinase-mediated activation of the JunB transcription factor. Blockade of CCR7, or treatment with a p38 MAP kinase inhibitor, reduced lymphatic dissemination of EMT cells in syngeneic mice. On the other hand, TGF-β1 promoted CCL21 expression in lymphatic endothelial cells. CCL21 acted in a paracrine fashion to mediate chemotactic migration of EMT cells toward lymphatic endothelial cells. The results identify TGF-β1-induced EMT as a mechanism, which activates tumor cells for targeted, DC-like migration through the lymphatic system. Furthermore, it suggests that p38 MAP kinase inhibition may be a useful strategy to inhibit EMT and lymphogenic spread of tumor cells.

Brossier NM, Prechtl AM, Longo JF, et al.
Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells.
J Neuropathol Exp Neurol. 2015; 74(6):568-86 [PubMed] Free Access to Full Article Related Publications
Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.

Videla Richardson GA, Garcia CP, Roisman A, et al.
Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence.
Brain Pathol. 2016; 26(1):43-61 [PubMed] Related Publications
Although BMP4-induced differentiation of glioma stem cells (GSCs) is well recognized, details of the cellular responses triggered by this morphogen are still poorly defined. In this study, we established several GSC-enriched cell lines (GSC-ECLs) from high-grade gliomas. The expansion of these cells as adherent monolayers, and not as floating neurospheres, enabled a thorough study of the phenotypic changes that occurred during their differentiation. Herein, we evaluated GSC-ECLs' behavior toward differentiating conditions by depriving them of growth factors and/or by adding BMP4 at different concentrations. After analyzing cellular morphology, proliferation and lineage marker expression, we determined that GSC-ECLs have distinct preferences in lineage choice, where some of them showed an astrocyte fate commitment and others a neuronal one. We found that this election seems to be dictated by the expression pattern of BMP signaling components present in each GSC-ECL. Additionally, treatment of GSC-ECLs with the BMP antagonist, Noggin, also led to evident phenotypic changes. Interestingly, under certain conditions, some GSC-ECLs adopted an unexpected smooth muscle-like phenotype. As a whole, our findings illustrate the wide differentiation potential of GSCs, highlighting their molecular complexity and paving a way to facilitate personalized differentiating therapies.

Antonova O, Yossifova L, Staneva R, et al.
Changes in the gene expression profile of the bladder cancer cell lines after treatment with Helix lucorum and Rapana venosa hemocyanin.
J BUON. 2015 Jan-Feb; 20(1):180-7 [PubMed] Related Publications
PURPOSE: The purpose of this study was to elucidate the mechanism of action of the Helix lucorum hemocyanin (HlH), b-HlH-h, and RvH2-g hemocyanins as potential agents against bladder cancer.
METHODS: We evaluated the viability of 647-V, T-24, and CAL-29 bladder cancer cell lines after treatment with the tested hemocyanins. The cell viability was measured at 72 hrs with MTT and WST-1 assays. Acridine orange/propidium iodide double staining was used to discriminate between apoptotic and necrotic cells. Gene expression profiling of the 168 genes from human inflammatory cytokines and signal transduction pathways were performed on the tumor cells before and after hemocyanins' treatment.
RESULTS: The results showed decreased survival of cancer cells in the presence of HlH and two functional units: b-HlH-h and RvH2-g. Acridine orange/propidium iodide double staining revealed that the decreased viability was due to apoptosis. The gene expression data showed upregulation of genes involved in the apoptosis as well as of the immune system activation, and downregulation of the CCL2, CCL17, CCL21, CXCL1, and ABCF1 genes.
CONCLUSIONS: The present study is the first to report gene expression in human cells under the influence of hemocyanins. The mechanism of antitumor activity of the HlH, b-HlH-h, and RvH2-g hemocyanins includes induction of apoptosis. In addition to the antiproliferative effect, downregulation of the genes with metastatic potential was observed. Together with the already known immunogenic effect, these findings support further studies on hemocyanins as potential therapeutic agents against bladder cancer.

Tutunea-Fatan E, Majumder M, Xin X, Lala PK
The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis.
Mol Cancer. 2015; 14:35 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor-induced lymphangiogenesis facilitates breast cancer progression by generating new lymphatic vessels that serve as conduits for tumor dissemination to lymph nodes and beyond. Given the recent evidence suggesting the implication of C-C chemokine ligand 21/chemokine receptor 7 (CCL21/CCR7) in lymph node metastasis, the aim of our study was to define the role of this chemokine pair in breast cancer-associated lymphangiogenesis.
METHODS: The expression analysis of CCL21/CCR7 pair and lymphatic endothelial cell (LEC) markers in breast cancer specimens was performed by means of quantitative real-time PCR. By utilizing CCR7 and CCL21 gene manipulated breast cancer cell implants into orthotopic sites of nude mice, lymphatic vessel formation was assessed through quantitative real-time PCR, immunohistochemistry and immunofluorescence assays. Finally, the lymphangiogenic potential of CCL21/CCR7 was assessed in vitro with primary LECs through separate functional assays, each attempting to mimic different stages of the lymphangiogenic process.
RESULTS: We found that CCR7 mRNA expression in human breast cancer tissues positively correlates with the expression of lymphatic endothelial markers LYVE-1, podoplanin, Prox-1, and vascular endothelial growth factor-C (VEGF-C). We demonstrated that the expression of CCL21/CCR7 by breast cancer cells has the ability to promote tumor-induced lymph-vascular recruitment in vivo. In vitro, CCL21/CCR7 chemokine axis regulates the expression and secretion of lymphangiogenic factor VEGF-C and thereby promotes proliferation, migration, as well as tube formation of the primary human LECs. Finally, we showed that protein kinase B (AKT) signaling pathway is the intracellular mechanism of CCR7-mediated VEGF-C secretion by human breast cancer cells.
CONCLUSIONS: These results reveal that CCR7 and VEGF-C display a significant crosstalk and suggest a novel role of the CCL21/CCR7 chemokine axis in the promotion of breast cancer-induced lymphangiogenesis.

Majumder M, Landman E, Liu L, et al.
COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation.
Mol Cancer Res. 2015; 13(6):1022-33 [PubMed] Related Publications
UNLABELLED: MicroRNAs (miRs) are small regulatory molecules emerging as potential biomarkers in cancer. Previously, it was shown that COX-2 expression promotes breast cancer progression via multiple mechanisms, including induction of stem-like cells (SLC), owing to activation of the prostaglandin E2 receptor EP4 (PTGER4). COX-2 overexpression also upregulated microRNA-526b (miR-526b), in association with aggressive phenotype. Here, the functional roles of miR-526b in breast cancer and the mechanistic role of EP4 signaling in miR-526b upregulation were examined. A positive correlation was noted between miR-526b and COX-2 mRNA expression in COX-2 disparate breast cancer cell lines. Stable overexpression of miR-526b in poorly metastatic MCF7 and SKBR3 cell lines resulted in increased cellular migration, invasion, EMT phenotype and enhanced tumorsphere formation in vitro, and lung colony formation in vivo in immunodeficient mice. Conversely, knockdown of miR-526b in aggressive MCF7-COX-2 and SKBR3-COX-2 cells reduced oncogenic functions and reversed the EMT phenotype, in vitro. Furthermore, it was determined that miR-526b expression is dependent on EP4 receptor activity and downstream PI3K-AKT and cyclic AMP (cAMP) signaling pathways. PI3K-AKT inhibitors blocked EP4 agonist-mediated miR-526b upregulation and tumorsphere formation in MCF7 and SKBR3 cells. NF-κB inhibitor abrogates EP agonist-stimulated miRNA expression in MCF7 and T47D cells, indicating that the NF-κB pathway is also involved in miR-526b regulation. In addition, inhibition of COX-2, EP4, PI3K, and PKA in COX-2-overexpressing cells downregulated miR-526b and its functions in vitro. Finally, miR-526b expression was significantly higher in cancerous than in noncancerous breast tissues and associated with reduced patient survival. In conclusion, miR-526b promotes breast cancer progression, SLC-phenotype through EP4-mediated signaling, and correlates with breast cancer patient survival.
IMPLICATIONS: This study presents novel findings that miRNA 526b is a COX-2 upregulated, oncogenic miRNA promoting SLCs, the expression of which follows EP4 receptor-mediated signaling, and is a promising biomarker for monitoring and personalizing breast cancer therapy.

Chen Z, Wang Y, Warden C, Chen S
Cross-talk between ER and HER2 regulates c-MYC-mediated glutamine metabolism in aromatase inhibitor resistant breast cancer cells.
J Steroid Biochem Mol Biol. 2015; 149:118-27 [PubMed] Free Access to Full Article Related Publications
Resistance to endocrine therapies in hormone receptor (HR)-positive breast cancer is a significant clinical problem for a considerable number of patients. The oncogenic transcription factor c-MYC (hereafter referred to as MYC), which regulates glutamine metabolism in cancer cells, has been linked to endocrine resistance. We were interested in whether MYC-mediated glutamine metabolism is also associated with aromatase inhibitor (AI) resistant breast cancer. We studied the expression and regulation of MYC and the effects of inhibition of MYC expression in both AI sensitive and resistant breast cancer cells. Considering the role of MYC in glutamine metabolism, we evaluated the contribution of glutamine to the proliferation of AI sensitive and resistant cells, and performed RNA-sequencing to investigate mechanisms of MYC-mediated glutamine utilization in AI resistance. We found that glutamine metabolism was independent of estrogen but still required estrogen receptor (ER) in AI resistant breast cancer cells. The expression of MYC oncogene was up-regulated through the cross-talk between ER and human epidermal growth factor receptor 2 (HER2) in AI resistant breast cancer cells. Moreover, the glutamine transporter solute carrier family (SLC) 1A5 was significantly up-regulated in AI resistant breast cancer cells. ER down-regulator fulvestrant inhibited MYC, SLC1A5, glutaminase (GLS) and glutamine consumption in AI resistant breast cancer cells. Inhibition of MYC, SLC1A5 and GLS decreased AI resistant breast cancer cell proliferation. Our study has uncovered that MYC expression is up-regulated by the cross-talk between ER and HER2 in AI resistant breast cancer cells. MYC-mediated glutamine metabolism is associated with AI resistance of breast cancer.

Akin D, Wang SK, Habibzadegah-Tari P, et al.
A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors.
Autophagy. 2014; 10(11):2021-35 [PubMed] Free Access to Full Article Related Publications
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.

Shi JY, Yang LX, Wang ZC, et al.
CC chemokine receptor-like 1 functions as a tumour suppressor by impairing CCR7-related chemotaxis in hepatocellular carcinoma.
J Pathol. 2015; 235(4):546-58 [PubMed] Related Publications
Atypical chemokine receptors (ACRs) have been discovered to participate in the regulation of tumour behaviour. Here we report a tumour-suppressive role of a novel ACR member, CC chemokine receptor like 1 (CCRL1), in human hepatocellular carcinoma (HCC). Both mRNA and protein expressions of CCRL1 correlated with the malignant phenotype of HCC cells and were significantly down-regulated in tumour tissue compared with paired normal liver tissue. In both the initial and validation cohorts (n = 240 and n = 384, respectively), CCRL1 deficiency was associated with advanced tumour stage and was an independent index for worse survival and increased recurrence. Furthermore, knock-down or forced expression of CCRL1 revealed that CCRL1 suppressed the proliferation and invasion of HCC cells in vitro and reduced tumour growth and lung metastasis in vivo, with depressed levels of CCL19 and CCL21. By sequestrating CCL19 and CCL21, CCRL1 reduced their binding to CCR7 and consequently mitigated the detrimental impact of CCR7, including Akt-GSK3β pathway activation and nuclear accumulation of β-catenin in tumour cells. Clinically, the prognostic value of the CCR7 expression in HCC depended on the expression level of CCRL1, suggesting that CCRL1 may serve as an upstream switch for the CCR7 signalling cascade. Together, our findings suggest that CCRL1 impairs chemotactic events associated with CCR7 in the progression and metastasis of HCC. Our results also show a potential interplay between typical and atypical chemokine receptors in human cancer. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Rizzo M, Bayo J, Piccioni F, et al.
Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction.
PLoS One. 2014; 9(9):e107944 [PubMed] Free Access to Full Article Related Publications
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA--a poorly immunogenic molecule--represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.

Chen P, Luo S, Wen YJ, et al.
Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer.
Cancer Sci. 2014; 105(11):1393-401 [PubMed] Free Access to Full Article Related Publications
Secondary lymphoid tissue chemokine (SLC/CCL21), one of the CC chemokines, exerts potent antitumor immunity by co-localizing T cells and dendritic cells at the tumor site and is currently tested against human solid tumors. Here, we investigated whether the combination of recombinant adenovirus encoding murine CCL21 (Ad-mCCL21) with low-dose paclitaxel would improve therapeutic efficacy against murine cancer. Immunocompetent mice bearing B16-F10 melanoma or 4T1 breast carcinoma were treated with either Ad-mCCL21, paclitaxel, or both agents together. Our results showed that Ad-mCCL21 + low-dose paclitaxel more effectively reduced the growth of tumors as compared with either treatment alone and significantly prolonged survival time of the tumor-bearing animals. These antitumor effects of the combined therapy were linked to altered cytokine network at the tumor site, enhanced apoptosis of tumor cells, and decreased formation of new vessels in tumors. Importantly, the combined therapy elicited a strong therapeutic antitumor immunity, which could be partly abrogated by the depletion of CD4(+) or CD8(+) T lymphocytes. Collectively, these preclinical evaluations may provide a combined strategy for antitumor immunity and should be considered for testing in clinical trials.

Cheng S, Han L, Guo J, et al.
The essential roles of CCR7 in epithelial-to-mesenchymal transition induced by hypoxia in epithelial ovarian carcinomas.
Tumour Biol. 2014; 35(12):12293-8 [PubMed] Related Publications
The chemokine receptor CCR7 and its ligands CCL19/21 mediate the tumor mobility, invasion, and metastasis (Wu et al. Curr Pharm Des. 15:742-57, 2009). Hypoxia induced epithelial-to-mesenchymal transition (EMT) to facilitate the tumor biology. Here, we addressed the roles of CCR7 in epithelial ovarian carcinoma tissues and hypoxia-induced serous papillary cystic adenocarcinoma (SKOV-3) EMT. The expression level of CCR7 protein was analyzed by immunohistochemistry in 30 specimens of epithelial ovarian carcinomas. Western blot was used to investigate the expression of hypoxia-induced CCR7, HIF-1α, and EMT markers (N-cadherin, Snail, MMP-9). In addition, wound healing and Transwell assay were introduced to observe the capacity of migration and invasiveness. Our data showed CCR7 expression was observed in 22 cases of tissues and closely associated with lymph node metastasis and FIGO stage (III + IV). At 6, 12, 24, and 36 h following hypoxia, CCR7 and HIF-1α proteins were both obviously upregulated in a time-dependent method, compared with normal oxygen. In vitro, SKOV-3 expressed N-cadherin, Snail, and MMP-9 once either CCL21 stimulation or hypoxia induction, while hypoxia accompanied with CCL21 induction exhibited strongest upregulation of N-cadherin, Snail, and MMP-9 proteins. Besides, wound healing and Transwell assay further identified that hypoxia with CCL21 stimulation can remarkably promote cell migration and invasiveness. Taken together, CCR7 can constitutively express in epithelial ovarian carcinomas and be induced rapidly in response to hypoxia, which indeed participates in EMT development and prompts the cell migration and invasion. Thus, this study suggested that the epithelial ovarian cancer invasion and metastasis can be inhibited by antagonizing CCR7.

Li F, Zou Z, Suo N, et al.
CCL21/CCR7 axis activating chemotaxis accompanied with epithelial-mesenchymal transition in human breast carcinoma.
Med Oncol. 2014; 31(9):180 [PubMed] Related Publications
Secondary lymphoid tissue chemokine (SLC/CCL21) and its receptor CCR7 have been implicated in lymph node metastasis, whereas the mechanism of which remains unclear. Epithelial-mesenchymal transition (EMT) plays an important role in invasion and migration of cancer cells. We presumed that CCL21/CCR7 axis activates EMT process to induce cancer cell invasion and metastasis. Firstly, the expressions of CCR7 and EMT markers were examined by immunohistochemical staining in the primary breast carcinoma tissues from 60 patients who underwent radical mastectomy. Then, we investigated whether CCL21/CCR7 induces EMT process during mediating cancer cell invasion or migration in vitro. By immunohistolochemistry, high expressions of CCR7, Slug and N-cadherin were seen in 60, 65, and 76.67 % of tumors, respectively, and significantly associated with lymph node metastases as well as clinical pathological stage. Furthermore, the CCR7 expression was significantly correlated to Slug and N-cadherin. In vitro, stimulating breast cancer cell lines 1428, MCF-7 and MDA-MB-231 with CCL21, the invasion and migration of tumor cells were promoted, and simultaneously, EMT phenotype of tumor cells was enhanced, including down-regulation of E-cadherin, up-regulation of Slug, Vimentin and N-cadherin at both protein and mRNA levels. Inversely, knockdown of CCR7 by shRNA suppressed tumor cell invasion, migration and EMT phenotype induced by CCL21. These results indicated that CCL21/CCR7 axis could activate EMT process during chemotaxis of breast carcinoma cells.

Chen X, He Y, Zhang Y, et al.
Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor.
Nanoscale. 2014; 6(19):11196-203 [PubMed] Related Publications
A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)3(2+) on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.

Hashikawa K, Yasumoto S, Nakashima K, et al.
Microarray analysis of gene expression by microdissected epidermis and dermis in mycosis fungoides and adult T-cell leukemia/lymphoma.
Int J Oncol. 2014; 45(3):1200-8 [PubMed] Related Publications
The characteristic histopathological feature of mycosis fungoides (MF) and adult T-cell leukemia/lymphoma (ATLL) is epidermotropism. To identify the mechanism for epidermotropism of lymphoma cells, total RNAs were obtained from skin biopsies of epidermis and dermis of MF and ATLL patients by means of laser capture microdissection, and used for subsequent complementary DNA (cDNA) microarray experiments. This procedure has made it possible for us to observe and evaluate the regional environment of MF and ATLL. Hierarchical cluster analysis revealed that the cDNAs could be clearly differentiated into MF and ATLL. CCL27 was expressed in the dermis generated from keratinocytes, CCR4/CCR6/CCR7/CCR10/cutaneous lymphocyte-associated antigen (CLA) lymphoma cells in the dermis, and CCL21 in the extracellular matrix (stroma). Lymphotoxin (LT) β and CCL21 expression was significantly higher and that of CCR10 relatively for MF, while CCR4 and CLA expression was relatively higher for ATLL. In the epithelium, keratinocytes expressed CCL20/CCL27, and lymphoma cells CCR4/CCR6/CCR10, while CCR4, CCR6, CCL20 and CCL27 expression was relatively higher for ATLL than MF. The dermis of MF, but not that of ATLL, showed correlation between CCR7 and CCL21. These findings support the suggestion that chemokines and chemokine receptors are involved in the pathogenesis of MF and ATLL, indicate that cutaneous homing seems to be different for MF and ATLL, and point to the possibility that cutaneous T-cell lymphomas originate in regulatory T cells, especially in the case of ATLL.

Zhao DX, Li ZJ, Zhang Y, et al.
Enhanced antitumor immunity is elicited by adenovirus-mediated gene transfer of CCL21 and IL-15 in murine colon carcinomas.
Cell Immunol. 2014 May-Jun; 289(1-2):155-61 [PubMed] Related Publications
The chemokine CCL21 is a potent chemoattractant for T cells and dendritic cells. IL-15 elicits powerful antitumor immune responses through the stimulation of natural killer cells. We constructed a CCL21/IL-15-expressing adenovirus (Ad-CCL21-IL-15) and evaluated its antitumor effects in vitro and in vivo. We found that the intratumoral injection of Ad-CCL21-IL-15 into murine colon carcinomas significantly inhibited tumor growth. Splenocytes from mice treated with Ad-CCL21-IL-15 developed tumor-specific cytotoxic T cells and were protected from subsequent challenges with tumor cells. This study indicates that providing cancer therapy by combining CCL21 and IL-15 can induce antitumor immune responses and is an effective strategy for cancer immunotherapy.

Januchowski R, Zawierucha P, Ruciński M, et al.
Drug transporter expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.
Biomed Pharmacother. 2014; 68(4):447-53 [PubMed] Related Publications
Ovarian cancer is characterized by the higher mortality among gynecological cancers. In results of MDR development during chemotherapy cancer cells become resistant to further treatment. Microarray techniques can provide information about MDR development at gene expression level. ABC and SLC transporters are most important proteins responsible for this phenomenon. In this study changes of ABC and SLC genes expression pattern in drugs resistant sublines of the A2780 ovarian cancer cell line were demonstrated. The cytostatic resistant sublines were generated by culture of A2780 cell line with an increasing concentration of the indicated drugs. As screening methods, we used Affymetrix U219 Human Genome microarrays. Independent t-tests were used to determinate statistical significances of results. Genes that expression levels were higher than assumed threshold (upregulated above threefold and downregulated under -3 fold) were visualized using scatter plot method, selected and listed in table. Between the ABC genes increased expression of seven genes and decreased expression of three genes were observed. Expression of two genes was increased or decreased depending on the cell line. We observed significant (more than tenfold) increase in expression of four ABC genes: ABCA8, ABCB1, ABCB4 and ABCG2 and decreased expression of ABCA3 gene. We also observed changes in expression of 32 SLC genes. Between them we observe increased expression of 17 genes and decreased expression of 15 genes. Expression of four genes was increased or decreased dependent on cell line. The expression of nine SLC genes increased or decreased very significantly (more than tenfold). Five genes were significantly upregulated: SLC2A9, SLC16A3, SLC16A14, SLC38A4 and SLC39A8. Four additional genes were significantly downregulated: SLC2A14, SLC6A15, SLC8A1 and SLC27A2. Expression profiles of these genes give strong arguments for assumption of correlation between expression of ABC and SLC genes and drug resistance phenomenon. Identifying correlations between specific drug transporters and cytostatic drug resistance will require further investigation.

Irino T, Takeuchi H, Matsuda S, et al.
CC-Chemokine receptor CCR7: a key molecule for lymph node metastasis in esophageal squamous cell carcinoma.
BMC Cancer. 2014; 14:291 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: CC-chemokine receptor 7 (CCR7), a known lymph node homing receptor for immune cells, has been reported as a key molecule in lymph node metastasis. We hypothesized a clinicopathological correlation and functional causality between CCR7 expression and lymph node metastasis in patients with esophageal squamous cell carcinoma (ESCC).
METHODS: We performed immunohistochemical analysis of 105 consecutive and 61 exclusive pathological T1 ESCC patients, followed by adhesion assay and in vivo experiment using a newly developed lymph node metastasis mouse model. The adhesive ability in response to CC-chemokine ligand 21/secondary lymphoid-tissue chemokine (CCL21/SLC) was assessed in the presence or absence of lymphatic endothelial cells and anti-CCR7 antibody. We established a heterotopic transplantation mouse model and analyzed lymph node metastasis by quantitative real-time RT-PCR.
RESULTS: Positive CCR7 expression in immunohistochemistory was detected in 28 (27%) of 105 consecutive patients and 17 (28%) of 61 T1 patients, which significantly correlated with lymph node metastasis (p = 0.037 and p = 0.040, respectively) and poor five-year survival (p = 0.013 and p = 0.012, respectively). Adhesion assay revealed an enhanced adhesive ability of CCR7-expressing cells in response to CCL21/SLC, in particular, in the presence of lymphatic endothelial cells (p = 0.005). In the mouse model, lymph nodes from mice transplanted with CCR7-expressing cells showed significantly higher DNA levels at 5 weeks (p = 0.019), indicating a high metastatic potential of CCR7-expressing cells.
CONCLUSION: These results demonstrated the significant clinicopathological relationship and functional causality between CCR7 expression and lymph node metastasis in ESCC patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCL21, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999