Gene Summary

Gene:CDK5; cyclin dependent kinase 5
Aliases: LIS7, PSSALRE
Summary:This gene encodes a proline-directed serine/threonine kinase that is a member of the cyclin-dependent kinase family of proteins. Unlike other members of the family, the protein encoded by this gene does not directly control cell cycle regulation. Instead the protein, which is predominantly expressed at high levels in mammalian postmitotic central nervous system neurons, functions in diverse processes such as synaptic plasticity and neuronal migration through phosphorylation of proteins required for cytoskeletal organization, endocytosis and exocytosis, and apoptosis. In humans, an allelic variant of the gene that results in undetectable levels of the protein has been associated with lethal autosomal recessive lissencephaly-7. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cyclin-dependent-like kinase 5
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (89)
Pathways:What pathways are this gene/protein implicaed in?
Show (10)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Signal Transduction
  • Breast Cancer
  • Cancer Gene Expression Regulation
  • Single Nucleotide Polymorphism
  • Antineoplastic Agents
  • Messenger RNA
  • Cyclin-Dependent Kinase 5
  • Nerve Tissue Proteins
  • Cell Differentiation
  • Neoplasm Proteins
  • Purines
  • Xenopus laevis
  • Western Blotting
  • Cell Cycle
  • Adenocarcinoma
  • p21-Activated Kinases
  • Gene Expression Profiling
  • Apoptosis
  • Thyroid Cancer
  • Enzyme Activation
  • Transfection
  • Tetraspanins
  • DNA Damage
  • Pseudogenes
  • TGFB1
  • ral GTP-Binding Proteins
  • Oligonucleotide Array Sequence Analysis
  • Cell Survival
  • Drug Resistance
  • Phosphorylation
  • RB1
  • Chromosome 7
  • Lung Cancer
  • siRNA
  • Neuroblastoma
  • Cyclin-Dependent Kinases
  • Cell Cycle Proteins
  • Cell Movement
  • Cell Proliferation
  • Genome, Human
  • ras Proteins
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CDK5 (cancer-related)

Dorand RD, Nthale J, Myers JT, et al.
Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity.
Science. 2016; 353(6297):399-403 [PubMed] Free Access to Full Article Related Publications
Cancers often evade immune surveillance by adopting peripheral tissue- tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)-induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4(+) T cell-mediated tumor rejection. Loss of Cdk5 results in persistent expression of the PD-L1 transcriptional repressors, the interferon regulatory factors IRF2 and IRF2BP2, which likely leads to reduced PD-L1 expression on tumors. Our finding highlights a central role for Cdk5 in immune checkpoint regulation by tumor cells.

Zhang D, Li Y, Wang R, et al.
Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.
Int J Mol Sci. 2016; 17(5) [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy.

Aznar N, Kalogriopoulos N, Midde KK, Ghosh P
Heterotrimeric G protein signaling via GIV/Girdin: Breaking the rules of engagement, space, and time.
Bioessays. 2016; 38(4):379-93 [PubMed] Free Access to Full Article Related Publications
Canonical signal transduction via heterotrimeric G proteins is spatially and temporally restricted, that is, triggered exclusively at the plasma membrane (PM), only by agonist activation of G protein-coupled receptors (GPCRs) via a process that completes within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a non-canonical pathway for activation of heterotrimeric G proteins by the non-receptor guanidine-nucleotide exchange factor (GEF), GIV/Girdin. This pathway has distinctive temporal and spatial features and an unusual profile of receptor engagement: diverse classes of receptors, not just GPCRs can engage with GIV to trigger such activation. Such activation is spatially and temporally unrestricted, that is, can occur both at the PM and on internal membranes discontinuous with the PM, and can continue for prolonged periods of time. Here, we provide the most complete up-to-date review of the molecular mechanisms that govern the unique spatiotemporal aspects of non-canonical G protein activation by GIV and the relevance of this new paradigm in health and disease.

van der Mijn JC, Broxterman HJ, Knol JC, et al.
Sunitinib activates Axl signaling in renal cell cancer.
Int J Cancer. 2016; 138(12):3002-10 [PubMed] Related Publications
Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies.

Kibel AS, Ahn J, Isikbay M, et al.
Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma.
Prostate. 2016; 76(5):479-90 [PubMed] Related Publications
BACKGROUND: Because a significant number of patients with prostate cancer (PCa) are diagnosed with disease unlikely to cause harm, genetic markers associated with clinically aggressive PCa have potential clinical utility. Since cell cycle checkpoint dysregulation is crucial for the development and progression of cancer, we tested the hypothesis that common germ-line variants within cell cycle genes were associated with aggressive PCa.
METHODS: Via a two-stage design, 364 common sequence variants in 88 genes were tested. The initial stage consisted of 258 aggressive PCa patients and 442 controls, and the second stage added 384 aggressive PCa Patients and 463 controls. European-American and African-American samples were analyzed separately. In the first stage, SNPs were typed by Illumina Goldengate assay while in the second stage SNPs were typed by Pyrosequencing assays. Genotype frequencies between cases and controls were compared using logistical regression analysis with additive, dominant and recessive models.
RESULTS: Eleven variants within 10 genes (CCNC, CCND3, CCNG1, CCNT2, CDK6, MDM2, SKP2, WEE1, YWHAB, YWHAH) in the European-American population and nine variants in 7 genes (CCNG1, CDK2, CDK5, MDM2, RB1, SMAD3, TERF2) in the African-American population were found to be associated with aggressive PCa using at least one model. Of particular interest, CCNC (rs3380812) was associated with risk in European-American cohorts from both institutions. CDK2 (rs1045435) and CDK5 (rs2069459) were associated with risk in the African-American cohorts from both institutions. Lastly, variants within MDM2 and CCNG1 were protective for aggressive PCa in both ethnic groups.
CONCLUSIONS: This study confirms that polymorphisms within cell cycle genes are associated with clinically aggressive PCa. Validation of these markers in additional populations is necessary, but these markers may help identify patients at risk for potentially lethal carcinoma.

Li R, Liu GZ, Luo SY, et al.
Cyclin I promotes cisplatin resistance via Cdk5 activation in cervical cancer.
Eur Rev Med Pharmacol Sci. 2015; 19(23):4533-41 [PubMed] Related Publications
OBJECTIVE: Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents and is widely used in the treatment of cervical cancer (CC), but cancer cell acquired resistance to this drug during the course of its treatment. The aim of this study was to investigate the role of cyclin I to cisplatin resistance in CC cell.
PATIENTS AND METHODS: Cervical tumor specimens from 30 patients were recruited in this study. We analyzed the expression of cyclin I by real-time polymerase chain reaction (qRT-PCR), Western blotting examination of downstream effectors. Cell proliferation assay and xenograft experiments were performed for cisplatin cytotoxicity assay. Lentivirus-mediated and siRNA-mediated genes overexpression or knockdown were applied to investigate the role of cyclin I to cisplatin resistance in CC cell.
RESULTS: We found that high level of cyclin I was associated with cisplatin resistance in CC. Here, we described that cyclin I protein becomes highly expressed in human CC patients resistant to cisplatin chemotherapy. Stable overexpressed cyclin I promotes Hela cell resistance to higher concentrations of cisplatin. In addition, upregulated level of cyclin I increased tumor cells growth in vitro and enhanced tumor resistance to cisplatin in vivo. The further mechanism investigated showed that cyclin I upregulated the expression of cyclin-dependent kinase 5 (Cdk5) promoting cisplatin resistance by preventing apoptosis in CC cell line. Consistently, the cyclin I overexpressed Hela cell lines produce increased sensitivity to cisplatin treatment through knockdown of Cdk5 protein with siRNA.
CONCLUSIONS: These data suggest that a cyclin I-Cdk5 complex forms a critical antiapoptotic factor in the process of generating cisplatin resistance in cervical cancer.

Sun SS, Zhou X, Huang YY, et al.
Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma.
Mol Cancer. 2015; 14:213 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Abnormal activation of STAT3 and miR-21 plays a vital role in progression and invasion of solid tumors. The cyclin-dependent kinase 5 (CDK5) is reported to contribute to cancer metastasis by regulating epithelial-mesenchymal transition (EMT). However, the role of STAT3/miR-21 axis and CDK5 in head and neck squamous cell carcinoma remains unclear.
METHODS: We measured the expression of miR-21, CDK5 and EMT markers in 60 HNSCC tumor samples. We used Immunohistochemistry and in situ hybridization assay to examine the role of STAT3/miR-21 axis and CDK5 activation in the invasiveness of HNSCC. The clinical survival relevance was analyzed by Kaplan-Meier analysis and univariate/multivariate COX regression model. Multiple approaches including scratch, transwell chamber assay and other molecular biology techniques were used to validate the anti-invasion effect of targeting miR-21 in Tca8113 and Hep-2 cell lines in vitro. Furthermore, whether miR-21 depletion inhibits HNSCC invasion in vivo was confirmed in Tca8113 xenograft tumor model.
RESULTS: The expression of miR-21 and CDK5 were significantly correlated with lymph node metastasis in HNSCC. Hep-2 and Tca8113 cell lines showed co-overexpression of miR-21 and CDK5. WP1066 or asON-miR-21 treatment depleted miR-21 and CDK5 expression and significantly inhibited migration or invasion in Hep-2 and Tca8113 cells. The expression levels of CDK5/p35, N-cadherin, vimentin, β-catenin were inhibited while E-cadherin level was increased by miR-21 depletion in vitro and in vivo. Conversely, ectopic CDK5 overexpression significantly induced tumor cell motility and EMT. Moreover, ectopic CDK5 overexpression in Hep-2 and Tca8113 cells rescued the observed phenotype after miR-21 silencing or WP1066 treatment.
CONCLUSIONS: miR-21 cooperates with CDK5 to promote EMT and invasion in HNSCC. This finding suggests that CDK5 may be an important cofactor for targeting when designing metastasis-blocking therapy by targeting STAT3/miR-21 axis with STAT3 inhibitor or miR-21 antisense oligonucleotide. This is the first demonstration of the novel role of STAT3/miR-21 axis and CDK5/CDK5R1 (p35) in metastasis of HNSCC.

Çelen İ, Ross KE, Arighi CN, Wu CH
Bioinformatics Knowledge Map for Analysis of Beta-Catenin Function in Cancer.
PLoS One. 2015; 10(10):e0141773 [PubMed] Free Access to Full Article Related Publications
Given the wealth of bioinformatics resources and the growing complexity of biological information, it is valuable to integrate data from disparate sources to gain insight into the role of genes/proteins in health and disease. We have developed a bioinformatics framework that combines literature mining with information from biomedical ontologies and curated databases to create knowledge "maps" of genes/proteins of interest. We applied this approach to the study of beta-catenin, a cell adhesion molecule and transcriptional regulator implicated in cancer. The knowledge map includes post-translational modifications (PTMs), protein-protein interactions, disease-associated mutations, and transcription factors co-activated by beta-catenin and their targets and captures the major processes in which beta-catenin is known to participate. Using the map, we generated testable hypotheses about beta-catenin biology in normal and cancer cells. By focusing on proteins participating in multiple relation types, we identified proteins that may participate in feedback loops regulating beta-catenin transcriptional activity. By combining multiple network relations with PTM proteoform-specific functional information, we proposed a mechanism to explain the observation that the cyclin dependent kinase CDK5 positively regulates beta-catenin co-activator activity. Finally, by overlaying cancer-associated mutation data with sequence features, we observed mutation patterns in several beta-catenin PTM sites and PTM enzyme binding sites that varied by tissue type, suggesting multiple mechanisms by which beta-catenin mutations can contribute to cancer. The approach described, which captures rich information for molecular species from genes and proteins to PTM proteoforms, is extensible to other proteins and their involvement in disease.

Bhullar KS, Jha A, Rupasinghe HP
Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells.
Chem Biol Interact. 2015; 242:107-22 [PubMed] Related Publications
Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations.

Zhang X, Zhong T, Dang Y, et al.
Aberrant expression of CDK5 infers poor outcomes for nasopharyngeal carcinoma patients.
Int J Clin Exp Pathol. 2015; 8(7):8066-74 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Aberrant expression of CDK5 involved in epithelial-to-mesenchymal transition had been reported in various types of cancers, but its functions in nasopharyngeal carcinoma have not been fully clarified yet. The principal purpose of this research was to investigate the clinicopathological significance of CDK5 and its potential effect on NPC carcinogenesis.
METHODS: Pre-treated formalin-fixed paraffin-embedded biopsy samples of 393 patients between January 2011 and December 2013 were collected for tissue microarrays (TMAs). Immunohistochemistry was performed on sequential TMA sections stained with antibodies against CDK5, EGFR and P53.
RESULTS: The expression of CDK5 in NPC tissues was significantly higher than that in normal nasopharyngeal tissues. Among squamous carcinomas, the expression of CDK5 in undifferentiated tissues was noticeably increased compared with that in differentiated tissues. NPC patients in advanced T category showed a perceptibly higher level of CDK5 than those in early T category. The relative level of CDK5 in NPC sufferers with lymph node metastasis was obviously higher than that of patients without. Compared with patients in early TNM stages, the relative expression level of CDK5 of those in advanced TNM stages was notably up-regulated. Moreover, the CDK5 expression was positively correlated with EGFR and P53 expression. Nevertheless, no significant association was observed between CDK5 and gender, age or histological type.
CONCLUSION: Overexpression of CDK5 might be considered as a warning signal for NPC. Consequently, CDK5 could serve as a potential target for diagnosis and gene therapy for NPC patients.

Sathe A, Koshy N, Schmid SC, et al.
CDK4/6 Inhibition Controls Proliferation of Bladder Cancer and Transcription of RB1.
J Urol. 2016; 195(3):771-9 [PubMed] Related Publications
PURPOSE: The retinoblastoma signaling network is frequently altered in advanced bladder cancer. We investigated the potential of CDK4/6 as a therapeutic target and determined biomarkers for patient stratification.
MATERIALS AND METHODS: Genetic alterations were analyzed using public databases, including TCGA (The Cancer Genome Atlas), COSMIC (Catalogue of Somatic Mutations in Cancer) and CCLE (Cancer Cell Line Encyclopedia). Effects of the CDK4/6-inhibitor PD-0332991 or LY2835219 were examined in 10 bladder cancer cell lines by immunoblot, cell viability, apoptosis and cell cycle progression. Efficacy of the PD-0332991 and cisplatin combination was analyzed using the combination index. Gene expression level was determined by quantitative polymerase chain reaction. Cytomegalovirus promoter regulated recombinant retinoblastoma was used for reconstitution. Three-dimensional xenografts were grown on chicken chorioallantoic membrane and analyzed by measuring tumor weight and immunohistochemical expression of total retinoblastoma and Ki-67.
RESULTS: PD-0332991 treatment decreased the proliferation of retinoblastoma positive bladder cancer cell lines and was synergistic in combination with cisplatin. PD-0332991 or LY2835219 treatment decreased the phosphorylation, total protein and transcript level of retinoblastoma. Treatment resulted in a decrease in E2F target gene expression (CCNA2 and CCNE2) and cell cycle progression from G0/G1 to the S-phase but did not affect apoptosis. In retinoblastoma negative cells reconstituted with recombinant retinoblastoma PD-0332991 affected only phosphorylation and not the total retinoblastoma level. These cells remained resistant to treatment. In 3-dimensional retinoblastoma xenografts, treatment resulted in reduced tumor weight and decreased expression of total retinoblastoma and Ki-67.
CONCLUSIONS: We provide preclinical evidence that CDK4/6 inhibition is a potential therapeutic strategy for retinoblastoma positive bladder cancer that probably acts by negatively regulating retinoblastoma transcription.

Chiang IT, Wang WS, Liu HC, et al.
Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro.
Oncol Rep. 2015; 34(4):1853-74 [PubMed] Related Publications
Lung cancer is the most common cause of cancer mortality and new cases are on the increase worldwide. However, the treatment of lung cancer remains unsatisfactory. Curcumin has been shown to induce cell death in many human cancer cells, including human lung cancer cells. However, the effects of curcumin on genetic mechanisms associated with these actions remain unclear. Curcumin (2 µM) was added to NCI-H460 human lung cancer cells and the cells were incubated for 24 h. Total RNA was extracted from isolated cells for cDNA synthesis, labeling, microarray hybridization and flour‑labeled cDNA hybridized on chip. Localized concentrations of fluorescent molecules were detected and quantified using Expression Console software (Affymetrix) with default RMA parameters. GeneGo software was used for the key genes involved and their possible interaction pathways. The results showed that ~170 genes were significantly upregulated and 577 genes were significantly downregulated in curcumin‑treated cells. Specifically, the up‑ and downregulated genes included CCNE2, associated with DNA damage; ID3, associated with cell survival and 146 genes with a >2- to 3-fold change including the TP53INP1 gene, associated with DNA damage; CDC6, CDCA5, TAKMIP2, CDK14, CDK5, CDCA76, CDC25A, CDC5L and SKP2, associated with cell cycle; the CARD6, ID1 and ID2 genes, associated with cell survival and the BRMS1L, associated with cell migration and invasion. Additionally, 59 downregulated genes exhibited a >4-fold change, including the DDIT3 gene, associated with DNA damage; while 97 genes had a >3- to 4-fold change including the DDIT4 gene, associated with DNA damage; the CCPG1 gene, associated with cell cycle and 321 genes with a >2- to 3-fold including the GADD45A and CGREF1 genes, associated with DNA damage; the CCPG1 gene, associated with cell cycle, the TNFRSF10B, GAS5, TSSC1 and TNFRSF11B gene, associated with cell survival and the ARHAP29 and CADM2 genes, associated with cell migration and invasion. In conclusion, gene alterations provide information regarding the cytotoxic mechanism of curcumin at the genetic level and provide additional biomarkers or targets for the treatment of human lung cancer.

Woolston A, Sintupisut N, Lu TP, et al.
Putative effectors for prognosis in lung adenocarcinoma are ethnic and gender specific.
Oncotarget. 2015; 6(23):19483-99 [PubMed] Free Access to Full Article Related Publications
Lung adenocarcinoma possesses distinct patterns of EGFR/KRAS mutations between East Asian and Western, male and female patients. However, beyond the well-known EGFR/KRAS distinction, gender and ethnic specific molecular aberrations and their effects on prognosis remain largely unexplored. Association modules capture the dependency of an effector molecular aberration and target gene expressions. We established association modules from the copy number variation (CNV), DNA methylation and mRNA expression data of a Taiwanese female cohort. The inferred modules were validated in four external datasets of East Asian and Caucasian patients by examining the coherence of the target gene expressions and their associations with prognostic outcomes. Modules 1 (cis-acting effects with chromosome 7 CNV) and 3 (DNA methylations of UBIAD1 and VAV1) possessed significantly negative associations with survival times among two East Asian patient cohorts. Module 2 (cis-acting effects with chromosome 18 CNV) possessed significantly negative associations with survival times among the East Asian female subpopulation alone. By examining the genomic locations and functions of the target genes, we identified several putative effectors of the two cis-acting CNV modules: RAC1, EGFR, CDK5 and RALBP1. Furthermore, module 3 targets were enriched with genes involved in cell proliferation and division and hence were consistent with the negative associations with survival times. We demonstrated that association modules in lung adenocarcinoma with significant links of prognostic outcomes were ethnic and/or gender specific. This discovery has profound implications in diagnosis and treatment of lung adenocarcinoma and echoes the fundamental principles of the personalized medicine paradigm.

Dráberová E, D'Agostino L, Caracciolo V, et al.
Overexpression and Nucleolar Localization of γ-Tubulin Small Complex Proteins GCP2 and GCP3 in Glioblastoma.
J Neuropathol Exp Neurol. 2015; 74(7):723-42 [PubMed] Related Publications
The expression, cellular distribution, and subcellular sorting of the microtubule (MT)-nucleating γ-tubulin small complex (γTuSC) proteins, GCP2 and GCP3, were studied in human glioblastoma cell lines and in clinical tissue samples representing all histologic grades of adult diffuse astrocytic gliomas (n = 54). Quantitative real-time polymerase chain reaction revealed a significant increase in the expression of GCP2 and GCP3 transcripts in glioblastoma cells versus normal human astrocytes; these were associated with higher amounts of both γTuSC proteins. GCP2 and GCP3 were concentrated in the centrosomes in interphase glioblastoma cells, but punctate and diffuse localizations were also detected in the cytosol and nuclei/nucleoli. Nucleolar localization was fixation dependent. GCP2 and GCP3 formed complexes with γ-tubulin in the nucleoli as confirmed by reciprocal immunoprecipitation experiments and immunoelectron microscopy. GCP2 and GCP3 depletion caused accumulation of cells in G2/M and mitotic delay but did not affect nucleolar integrity. Overexpression of GCP2 antagonized the inhibitory effect of the CDK5 regulatory subunit-associated tumor suppressor protein 3 (C53) on DNA damage G2/M checkpoint activity. Tumor cell GCP2 and GCP3 immunoreactivity was significantly increased over that in normal brains in glioblastoma samples; it was also associated with microvascular proliferation. These findings suggest that γTuSC protein dysregulation in glioblastomas may be linked to altered transcriptional checkpoint activity or interaction with signaling pathways associated with a malignant phenotype.

Pozo K, Hillmann A, Augustyn A, et al.
Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis.
Oncotarget. 2015; 6(14):12080-93 [PubMed] Free Access to Full Article Related Publications
Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer of thyroid C-cells, for which few treatment options are available. We have recently reported a role for cyclin-dependent kinase 5 (CDK5) in MTC pathogenesis. We have generated a mouse model, in which MTC proliferation is induced upon conditional overexpression of the CDK5 activator, p25, in C-cells, and arrested by interrupting p25 overexpression. Here, we identify genes and proteins that are differentially expressed in proliferating versus arrested benign mouse MTC. We find that downstream target genes of the tumor suppressor, retinoblastoma protein, including genes encoding cell cycle regulators such as CDKs, cyclins and CDK inhibitors, are significantly upregulated in malignant mouse tumors in a CDK5-dependent manner. Reducing CDK5 activity in human MTC cells down-regulated these cell cycle regulators suggesting that CDK5 activity is critical for cell cycle progression and MTC proliferation. Finally, the same set of cell cycle proteins was consistently overexpressed in human sporadic MTC but not in hereditary MTC. Together these findings suggest that aberrant CDK5 activity precedes cell cycle initiation and thus may function as a tumor-promoting factor facilitating cell cycle protein expression in MTC. Targeting aberrant CDK5 or its downstream effectors may be a strategy to halt MTC tumorigenesis.

Lindqvist J, Imanishi SY, Torvaldson E, et al.
Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells.
Mol Biol Cell. 2015; 26(11):1971-84 [PubMed] Free Access to Full Article Related Publications
Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in differentiated cells and its destructive activation in Alzheimer's disease. Recently, CDK5 has been implicated in a number of different cancers, but how it is able to stimulate cancer-related signaling pathways remains enigmatic. Our goal was to study the cancer-promoting mechanisms of CDK5 in prostate cancer. We observed that CDK5 is necessary for proliferation of several prostate cancer cell lines. Correspondingly, there was considerable growth promotion when CDK5 was overexpressed. When examining the reasons for the altered proliferation effects, we observed that CDK5 phosphorylates S308 on the androgen receptor (AR), resulting in its stabilization and differential expression of AR target genes including several growth-priming transcription factors. However, the amplified cell growth was found to be separated from AR signaling, further corroborated by CDK5-dependent proliferation of AR null cells. Instead, we found that the key growth-promoting effect was due to specific CDK5-mediated AKT activation. Down-regulation of CDK5 repressed AKT phosphorylation by altering its intracellular localization, immediately followed by prominent cell cycle inhibition. Taken together, these results suggest that CDK5 acts as a crucial signaling hub in prostate cancer cells by controlling androgen responses through AR, maintaining and accelerating cell proliferation through AKT activation, and releasing cell cycle breaks.

Ehrlich SM, Liebl J, Ardelt MA, et al.
Targeting cyclin dependent kinase 5 in hepatocellular carcinoma--A novel therapeutic approach.
J Hepatol. 2015; 63(1):102-13 [PubMed] Related Publications
BACKGROUND & AIMS: For a long time cyclin dependent kinase 5 (Cdk5) was thought to be exclusively important in neuronal cells. However, increasing evidence recently suggests a function of Cdk5 in cancer progression. In this study, we examined the role of Cdk5 and its therapeutic accessibility in hepatocellular carcinoma (HCC), a highly chemoresistant cancer with poor prognosis and paramount clinical importance in order to develop novel targeted therapies for systemic treatment.
METHODS: Expression and activity of Cdk5 was analyzed in a human HCC tissue microarray, human patient samples and HCC cell lines. To characterize Cdk5 functions and signaling pathways in HCC, we applied genetic downregulation and pharmacologic inhibition in various approaches including cell based assays and mouse xenograft models.
RESULTS: Expression and activity of Cdk5 was increased in human HCC tissues as compared to normal liver tissues. Functional ablation of Cdk5 significantly decreased HCC cell proliferation and clonogenic survival. Moreover, genetic and pharmacological inhibition of Cdk5 showed in vivo efficacy in HCC xenograft mouse models. Investigating the mechanisms behind these functional effects revealed that Cdk5 is most active in the nucleus of cells in G2/M phase. Cdk5 regulates DNA damage response by phosphorylating ataxia telangiectasia mutated (ATM) kinase and thereby influencing its downstream cascade. Consequently, combination of Cdk5 inhibition with DNA-damage-inducing chemotherapeutics synergistically inhibited HCC tumor progression in vitro and in vivo.
CONCLUSIONS: In summary, we introduce Cdk5 as a novel drugable target for HCC treatment and suggest the combination of Cdk5 inhibition and DNA damaging agents as a novel therapeutic approach.

Cao L, Zhou J, Zhang J, et al.
Cyclin-dependent kinase 5 decreases in gastric cancer and its nuclear accumulation suppresses gastric tumorigenesis.
Clin Cancer Res. 2015; 21(6):1419-28 [PubMed] Related Publications
PURPOSE: As a cyclin-independent atypical CDK, the role of CDK5 in regulating cell proliferation in gastric cancer remains unknown.
EXPERIMENTAL DESIGN: Expression of CDK5 in gastric tumor and paired adjacent noncancerous tissues from 437 patients was measured by Western blotting, immunohistochemistry, and real-time PCR. The subcellular translocation of CDK5 was monitored during gastric cancer cell proliferation. The role of nuclear CDK5 in gastric cancer tumorigenic proliferation and ex vivo xenografts was explored. Furthermore, by screening for compounds in the PubChem database that disrupt CDK5 association with its nuclear export facilitator, we identified a small molecular (NS-0011) that inhibits gastric cancer cell growth.
RESULTS: CDK5 level was significantly decreased in the majority of gastric tumor tissues, and the reduction of CDK5 correlated with the severity of gastric cancer based on tumor and lymph node metastasis and patient 5-year fatality rate. Nuclear localization of CDK5 was found to be significantly decreased in tumor tissues and gastric cancer cell lines, whereas exogenously expression of nucleus-targeted CDK5 inhibited the proliferation and xenograft implantation of gastric cancer cells. Treatment with the small molecule NS-0011, which increases CDK5 accumulation in the nucleus, suppressed both cancer cell proliferation and xenograft tumorigenesis.
CONCLUSIONS: Our results suggest that low CDK5 expression is associated with poor overall survival in patients with gastric cancer, and nuclear accumulation of CDK5 inhibits the proliferation and tumorigenicity of human gastric cancer cells.

Shan YS, Chen YL, Lai MD, Hsu HP
Nestin predicts a favorable prognosis in early ampullary adenocarcinoma and functions as a promoter of metastasis in advanced cancer.
Oncol Rep. 2015; 33(1):40-8 [PubMed] Free Access to Full Article Related Publications
Nestin exhibits stemness characteristics and is overexpressed in several types of cancers. Downstream signaling of nestin [cyclin-dependent kinase 5 (CDK5) and Ras-related C3 botulinum toxin substrate 1 (Rac1)] functions in cancer to modulate cellular behaviors. We studied the function of nestin in ampullary adenocarcinoma. Immunohistochemistry (IHC), reverse transcription-polymerase chain reaction, and cDNA microarray of nestin in ampullary adenocarcinoma was compared with normal duodenum. CDK5 and Rac1 were assessed by western blotting. We hypothesized that nestin/CDK5/Rac1 signaling behaves different in early and advanced cancer. We found that the presence of nestin mRNA was increased in the early stages of cancer (T2N0 or T3N0) and advanced cancer with lymph node metastasis (T4N1). A total of 102 patients were enrolled in the IHC staining. Weak nestin expression was correlated with favorable characteristics of cancer, decreased incidence of local recurrence and lower risk of recurrence within 12 months after surgery. Patients with weak nestin expression had the most favorable recurrence‑free survival rates. Patients with mild to strong nestin expression exhibited an advanced behavior of cancer and increased possibility of cancer recurrence. The reciprocal expression of nestin and RAC1 were explored using a cDNA microarray analysis in the early stages of ampullary adenocarcinoma. Increased level of CDK5 with simultaneously decreased expression of Rac1 was detected by western blotting of ampullary adenocarcinoma in patients without cancer recurrence. The activation of multiple oncogenic pathways, combined with the stemness characteristics of nestin, formed a complex network in advanced ampullary adenocarcinoma. Our study demonstrated that nestin performs a dual role in ampullary adenocarcinoma. Appropriate amount of nestin enhances CDK5 function to suppress Rac1 and excessive nestin/CDK5 participates in multiple oncogenic pathways to promote cancer invasiveness. Inhibiting nestin in patients who exhibit nestin‑overexpressed ampullary adenocarcinoma may be a method of preventing cancer recurrence.

Jeon S, Kim Y, Chung IW, Kim YS
Clozapine induces chloride channel-4 expression through PKA activation and modulates CDK5 expression in SH-SY5Y and U87 cells.
Prog Neuropsychopharmacol Biol Psychiatry. 2015; 56:168-73 [PubMed] Related Publications
OBJECTIVES: Second-generation antipsychotic drugs, such as clozapine, were reported to enhance neurite outgrowth by nerve growth factor in PC12 cells. The authors previously showed that chloride channel 4 (CLC-4) is responsible for nerve growth factor-induced neurite outgrowth in neuronal cells. In this study, we examined whether clozapine induces CLC-4 in neuroblastoma and glioma cells.
METHODS: The effect of clozapine on CLC-4 expression was examined in neuroblastoma (SH-SY5Y) and glioma (U87) cells. To investigate the signaling pathway responsible for clozapine-induced CLC-4 expression, the phosphorylation of cAMP response element-binding protein (CREB), which binds CRE in the promoter of the human CLC-4 gene, was examined. To identify the target of clozapine induced CLC-4, CLC-4 siRNA was introduced to neuroblastoma and glioma cells for functional knockdown.
RESULTS: We observed that clozapine increased CLC-4 expression in both SH-SY5Y and U87 cells. Clozapine induced CREB phosphorylation, but in the presence of inhibitor of protein kinase A (an upstream kinase of CREB) clozapine-induced CLC-4 expression was suppressed. Finally, we found that CLC-4 knockdown suppressed clozapine-induced cyclin-dependent kinase 5 (CDK5) expression in SH-SY5Y and U-87 cells suggesting CDK5 as potential molecular target of clozapine induced CLC-4 expression.
CONCLUSIONS: The results of the present study suggest that clozapine's therapeutic effect may include the induction of CLC-4 which is dependent on CREB activation via PKA. We also found that functional knockdown of CLC-4 resulted in reduction of CDK5 expression, which may also be implicated in clozapine's therapeutic effect.

Xu S, Li X, Gong Z, et al.
Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration.
Mol Cell Proteomics. 2014; 13(11):2986-3000 [PubMed] Free Access to Full Article Related Publications
Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases.

Murali A, Nalinakumari KR, Thomas S, Kannan S
Association of single nucleotide polymorphisms in cell cycle regulatory genes with oral cancer susceptibility.
Br J Oral Maxillofac Surg. 2014; 52(7):652-8 [PubMed] Related Publications
Alterations in the regulation of the cell cycle are strongly linked to tumorigenesis, so genetic variants in genes critical to control of the cycle are good candidates to have their association with susceptibility to oral cancer assessed. In this hospital-based, case-control study of 445 patients who had been newly-diagnosed with oral cancer and 449 unaffected controls, we used a multigenic approach to examine the associations among a panel of 10 selected polymorphisms in the pathway of the cell cycle that were possibly susceptible to oral cancer. Six of 9 single nucleotide polymorphisms in the cell cycle showed significant risks for oral cancer, the highest risk being evident for p27 (rs34329; Odds ratio 3.05, 95% CI 2.12 to 4.40). A significant risk of oral cancer was also evident for individual polymorphisms of cyclin E (rs1406), cyclin H (rs3093816), cyclin D1-1 (rs647451), cyclin D2 (rs3217901) and Rb1-2 (rs3092904). The risk of oral cancer increased significantly as the number of unfavourable genotypes in the pathway increased, and so the results point to a stronger combined effect of polymorphisms in important cell cycle regulatory genes on predisposition to oral cancer.

Lin E, Chen MC, Huang CY, et al.
All-trans retinoic acid induces DU145 cell cycle arrest through Cdk5 activation.
Cell Physiol Biochem. 2014; 33(6):1620-30 [PubMed] Related Publications
BACKGROUND/AIMS: All-trans retinoic acid (ATRA), the active form of vitamin A, plays an important role in the growth arrest of numerous types of cancer cells. It has been indicated that cyclin-dependent kinase 5 (Cdk5) activity can be affected by ATRA treatment. Our previous results demonstrate the involvement of Cdk5 in the fate of prostate cancer cells. The purpose of this study is to examine whether Cdk5 is involved in ATRA-induced growth arrest of the castration-resistant cancer cell line DU145 through up-regulating Cdk inhibitor protein, p27.
METHODS: DU145 cells were treated with ATRA, and cell proliferation, protein expression, and protein localization of Cdk5/p27 were examined. Cell proliferation and cell cycle distribution were also determined under Cdk5 inhibition induced by inhibitor or knockdown.
RESULTS: ATRA treatment inhibited DU145 cell proliferation and significantly increased p27 expression through Cdk5 up-regulation. Immunocytochemical data showed that a Cdk5 inhibitor reduced ATRA-triggered nuclear distribution of p27 in DU145 cells. The proliferation inhibition and G1 phase accumulation of DU145 cells were significantly increased by ATRA treatment, whereas Cdk5 inhibitor and siRNA could reverse these effects.
CONCLUSIONS: Our results demonstrate that ATRA induced growth inhibition in castration-resistant prostate cancer cells through activating Cdk5 and p27. We hope this finding will increase the knowledge of prostate cancer treatment and can be applied in patients' nutritional control in the future.

Wissing MD, Dadon T, Kim E, et al.
Small-molecule screening of PC3 prostate cancer cells identifies tilorone dihydrochloride to selectively inhibit cell growth based on cyclin-dependent kinase 5 expression.
Oncol Rep. 2014; 32(1):419-24 [PubMed] Free Access to Full Article Related Publications
Cyclin-dependent kinase 5 (CDK5) is a potential target for prostate cancer treatment, the enzyme being essential for prostate tumor growth and formation of metastases. In the present study, we identified agents that target prostate cancer cells based on CDK5 expression. CDK5 activity was suppressed by transfection of PC3 prostate cancer cells with a dominant-negative construct (PC3 CDK5dn). PC3 CDK5dn and PC3 control cells were screened for compounds that selectively target cells based on CDK5 expression, utilizing the Johns Hopkins Drug Library. MTS proliferation, clonogenic and 3D growth assays were performed to validate the selected hits. Screening of 3,360 compounds identified rutilantin, ethacridine lactate and cetalkonium chloride as compounds that selectively target PC3 control cells and a tilorone analog as a selective inhibitor of PC3 CDK5dn cells. A PubMed literature study indicated that tilorone may have clinical use in patients. Validation experiments confirmed that tilorone treatment resulted in decreased PC3 cell growth and invasion; PC3 cells with inactive CDK5 were inhibited more effectively. Future studies are needed to unravel the mechanism of action of tilorone in CDK5 deficient prostate cancer cells and to test combination therapies with tilorone and a CDK5 inhibitor for its potential use in clinical practice.

Zuccotti P, Colombrita C, Moncini S, et al.
hnRNPA2/B1 and nELAV proteins bind to a specific U-rich element in CDK5R1 3'-UTR and oppositely regulate its expression.
Biochim Biophys Acta. 2014; 1839(6):506-16 [PubMed] Related Publications
Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) encodes p35, a specific activator of cyclin-dependent kinase 5 (CDK5). CDK5 and p35 have a fundamental role in neuronal migration and differentiation during CNS development. Both the CDK5R1 3'-UTR's remarkable size and its conservation during evolution strongly indicate an important role in post-transcriptional regulation. We previously validated different regulatory elements in the 3'-UTR of CDK5R1, which affect transcript stability, p35 levels and cellular migration through the binding with nELAV proteins and miR-103/7 miRNAs. Interestingly, a 138 bp-long region, named C2.1, was identified as the most mRNA destabilizing portion within CDK5R1 3'-UTR. This feature was maintained by a shorter region of 73 bp, characterized by two poly-U stretches. UV-CL experiments showed that this region interacts with protein factors. UV-CLIP assays and pull-down experiments followed by mass spectrometry analysis demonstrated that nELAV and hnRNPA2/B1 proteins bind to the same U-rich element. These RNA-binding proteins (RBPs) were shown to oppositely control CDK5R1 mRNA stability and p35 protein content at post-trascriptional level. While nELAV proteins have a positive regulatory effect, hnRNPA2/B1 has a negative action that is responsible for the mRNA destabilizing activity both of the C2.1 region and of the full-length 3'-UTR. In co-expression experiments of hnRNPA2/B1 and nELAV RBPs we observed an overall decrease of p35 content. We also demonstrated that hnRNPA2/B1 can downregulate nELAV protein content but not vice versa. This study, by providing new insights on the combined action of different regulatory factors, contributes to clarify the complex post-transcriptional control of CDK5R1 gene expression.

Pozo K, Castro-Rivera E, Tan C, et al.
The role of Cdk5 in neuroendocrine thyroid cancer.
Cancer Cell. 2013; 24(4):499-511 [PubMed] Free Access to Full Article Related Publications
Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer that originates from calcitonin-secreting parafollicular cells, or C cells. We found that Cdk5 and its cofactors p35 and p25 are highly expressed in human MTC and that Cdk5 activity promotes MTC proliferation. A conditional MTC mouse model was generated and corroborated the role of aberrant Cdk5 activation in MTC. C cell-specific overexpression of p25 caused rapid C cell hyperplasia leading to lethal MTC, which was arrested by repressing p25 overexpression. A comparative phosphoproteomic screen between proliferating and arrested MTC identified the retinoblastoma protein (Rb) as a crucial Cdk5 downstream target. Prevention of Rb phosphorylation at Ser807/Ser811 attenuated MTC proliferation. These findings implicate Cdk5 signaling via Rb as critical to MTC tumorigenesis and progression.

Liang Q, Li L, Zhang J, et al.
CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression.
Sci Rep. 2013; 3:2932 [PubMed] Free Access to Full Article Related Publications
Epithelial-mesenchymal transition is a change of cellular plasticity critical for embryonic development and tumor metastasis. CDK5 is a proline-directed serine/threonine kinase playing important roles in cancer progression. Here we show that CDK5 is commonly overexpressed and significantly correlated with several poor prognostic parameters of breast cancer. We found that CDK5 participated in TGF-β1-induced EMT. In MCF10A, TGF-β1 upregulated the CDK5 and p35 expression, and CDK5 knockdown inhibited TGF-β1-induced EMT. CDK5 overexpression also exhibited a potential synergy in promoting TGF-β1-induced EMT. In mesenchymal breast cancer cells MDA-MB-231 and BT549, CDK5 knockdown suppressed cell motility and tumorigenesis. We further demonstrated that CDK5 modulated cancer cell migration and tumor formation by regulating the phosphorylation of FAK at Ser-732. Therefore, CDK5-FAK pathway, as a downstream step of TGF-β1 signaling, is essential for EMT and motility in breast cancer cells. This study implicates the potential value of CDK5 as a molecular marker for breast cancer.

Hsu FN, Chen MC, Lin KC, et al.
Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.
Am J Physiol Endocrinol Metab. 2013; 305(8):E975-86 [PubMed] Related Publications
Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

Bidkhori G, Narimani Z, Hosseini Ashtiani S, et al.
Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma.
PLoS One. 2013; 8(7):e67552 [PubMed] Free Access to Full Article Related Publications
Our goal of this study was to reconstruct a "genome-scale co-expression network" and find important modules in lung adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation, GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed network was named "genome-scale co-expression network". As the next step, 23 key modules were disclosed through clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP, FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A, PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2, PSMD2, DOK2, FUS and etc.) in the modules.

Mahoney E, Byrd JC, Johnson AJ
Autophagy and ER stress play an essential role in the mechanism of action and drug resistance of the cyclin-dependent kinase inhibitor flavopiridol.
Autophagy. 2013; 9(3):434-5 [PubMed] Free Access to Full Article Related Publications
Chronic lymphocytic leukemia (CLL) is a mature B cell malignancy and is the most prevalent type of leukemia in adults. There is no curative therapy for this disease; however, several new agents have shown very promising results. Autophagy has not been studied in CLL and in this study we first sought to determine if autophagy was functional in CLL with classic inducers, and if this contributes to direct cytotoxicity or protection from cell death. While autophagy is activated with all classic stimuli of this process, only unfolded protein endoplasmic reticulum (ER) stress-mediated autophagy protects from cell death. Interestingly, select therapeutic agents (fludarabine, GS-1101, flavopiridol), which are active in CLL, also induce autophagy. Of interest, only the broad cyclin-dependent kinase inhibitor flavopiridol has improved efficacy when autophagy is antagonized biochemically (chloroquine) or by siRNA. This promoted an investigation which demonstrated unexpectedly that flavopiridol mediates ER stress and downstream activation of MAP3K5/ASK1, which ultimately is responsible for cell death. Similarly, autophagy activated in part via ER stress and also CDK5 inhibition is protective against cell death induced by this process. Collectively, our studies demonstrate that in CLL, autophagy is induced by multiple stimuli but only acts as a mechanism of resistance against ER stress-mediating agents. Similarly, flavopiridol mediates ER stress as a primary mechanism of action in CLL, and autophagy serves as a mechanism of resistance to this agent.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CDK5, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999