FGFR2

Gene Summary

Gene:FGFR2; fibroblast growth factor receptor 2
Aliases: BEK, JWS, BBDS, CEK3, CFD1, ECT1, KGFR, TK14, TK25, BFR-1, CD332, K-SAM
Location:10q26.13
Summary:The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member is a high-affinity receptor for acidic, basic and/or keratinocyte growth factor, depending on the isoform. Mutations in this gene are associated with Crouzon syndrome, Pfeiffer syndrome, Craniosynostosis, Apert syndrome, Jackson-Weiss syndrome, Beare-Stevenson cutis gyrata syndrome, Saethre-Chotzen syndrome, and syndromic craniosynostosis. Multiple alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:fibroblast growth factor receptor 2
Source:NCBIAccessed: 14 March, 2017

Ontology:

What does this gene/protein do?
Show (117)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 14 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Chromosome 10
  • Breast Cancer
  • Vascular Endothelial Growth Factor Receptor-3
  • Single Nucleotide Polymorphism
  • High-Throughput Nucleotide Sequencing
  • Genetic Predisposition
  • Neoplasm Proteins
  • Genome-Wide Association Study
  • Gene Expression Profiling
  • Staging
  • Adenocarcinoma
  • Stomach Cancer
  • Lung Cancer
  • Gene Amplification
  • Stem Cells
  • Survival Rate
  • Estrogen Receptors
  • DNA Mutational Analysis
  • Immunohistochemistry
  • Antineoplastic Agents
  • Genotype
  • Protein Kinase Inhibitors
  • Genetic Variation
  • Odds Ratio
  • Genetic Association Studies
  • beta Catenin
  • Cancer Gene Expression Regulation
  • Biomarkers, Tumor
  • Messenger RNA
  • Wnt Signaling Pathway
  • Cell Proliferation
  • Mutation
  • Case-Control Studies
  • Synovial Sarcoma
  • Alleles
  • Receptor, erbB-2
  • TOR Serine-Threonine Kinases
  • Molecular Targeted Therapy
  • FGFR2
  • Bladder Cancer
  • Epidermal Growth Factor Receptor
  • Receptor, Fibroblast Growth Factor, Type 3
Tag cloud generated 14 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FGFR2 (cancer-related)

Hibi M, Kaneda H, Tanizaki J, et al.
FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.
Cancer Sci. 2016; 107(11):1667-1676 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factor receptor (FGFR) gene alterations are relatively frequent in lung squamous cell carcinoma (LSCC) and are a potential targets for therapy with FGFR inhibitors. However, little is known regarding the clinicopathologic features associated with FGFR alterations. The angiokinase inhibitor nintedanib has shown promising activity in clinical trials for non-small cell lung cancer. We have now applied next-generation sequencing (NGS) to characterize FGFR alterations in LSCC patients as well as examined the antitumor activity of nintedanib in LSCC cell lines positive for FGFR1 copy number gain (CNG). The effects of nintedanib on the proliferation of and FGFR signaling in LSCC cell lines were examined in vitro, and its effects on tumor formation were examined in vivo. A total of 75 clinical LSCC specimens were screened for FGFR alterations by NGS. Nintedanib inhibited the proliferation of FGFR1 CNG-positive LSCC cell lines in association with attenuation of the FGFR1-ERK signaling pathway in vitro and in vivo. FGFR1 CNG (10.7%), FGFR1 mutation (2.7%), FGFR2 mutation (2.7%), FGFR4 mutation (5.3%), and FGFR3 fusion (1.3%) were detected in LSCC specimens by NGS. Clinicopathologic features did not differ between LSCC patients positive or negative for FGFR alterations. However, among the 36 patients with disease recurrence after surgery, prognosis was significantly worse for those harboring FGFR alterations. Screening for FGFR alterations by NGS warrants further study as a means to identify patients with LSCC recurrence after surgery who might benefit from nintedanib therapy.

Czaplinska D, Mieczkowski K, Supernat A, et al.
Interactions between FGFR2 and RSK2-implications for breast cancer prognosis.
Tumour Biol. 2016; 37(10):13721-13731 [PubMed] Free Access to Full Article Related Publications
We have previously demonstrated that fibroblast growth factor receptor 2 (FGFR2) activates ribosomal s6 kinase 2 (RSK2) in mammary epithelial cells and that this pathway promotes in vitro cell growth and migration. Potential clinical significance of FGFR2 and RSK2 association has never been investigated. Herein, we have undertaken an evaluation of a possible relationship between FGFR2/RSK2 interdependence and disease outcome in breast cancer (BCa) patients. The clinical analysis was complemented by an in vitro investigation of an involvement of RSK2 in the regulation of FGFR2 function. Primary tumour samples from 152 stage I-III BCa patients were examined for FGFR2 and RSK2 gene and protein expression. FGFR2 showed a positive correlation with RSK2 at both protein (p = 0.003) and messenger RNA (mRNA) (p = 0.001) levels. Lack of both FGFR2 and activated RSK (RSK-P) significantly correlated with better disease-free survival (DFS) (p = 0.01). Patients with tumours displaying immunoreactivity for either or both FGFR2 and RSK-P had 4.89-fold higher risk of recurrence when compared to the FGFR2/RSK-P-negative subgroup. FGFR2-RSK2 interactions were verified by co-immunoprecipitation and internalization assays in HB2 mammary epithelial cell line (characterized by high endogenous FGFR2 and RSK2 expression). In vitro analyses revealed that FGFR2 and RSK2 formed an indirect complex and that activated RSK exerted a significant impact on fibroblast growth factor 2 (FGF2)-triggered internalization of FGFR2. Our results suggest that the FGFR2-RSK2 signalling pathway is involved in pathophysiology of BCa and evaluation of FGFR2/RSK-P expression may be useful in disease prognostication.

Wang X, Guda C
Integrative exploration of genomic profiles for triple negative breast cancer identifies potential drug targets.
Medicine (Baltimore). 2016; 95(30):e4321 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Triple negative breast cancer (TNBC) is high-risk due to its rapid drug resistance and recurrence, metastasis, and lack of targeted therapy. So far, no molecularly targeted therapeutic agents have been clinically approved for TNBC. It is imperative that we discover new targets for TNBC therapy.
OBJECTIVES: A large volume of cancer genomics data are emerging and advancing breast cancer research. We may integrate different types of TNBC genomic data to discover molecular targets for TNBC therapy.
DATA SOURCES: We used publicly available TNBC tumor tissue genomic data in the Cancer Genome Atlas database in this study.
METHODS: We integratively explored genomic profiles (gene expression, copy number, methylation, microRNA [miRNA], and gene mutation) in TNBC and identified hyperactivated genes that have higher expression, more copy numbers, lower methylation level, or are targets of miRNAs with lower expression in TNBC than in normal samples. We ranked the hyperactivated genes into different levels based on all the genomic evidence and performed functional analyses of the sets of genes identified. More importantly, we proposed potential molecular targets for TNBC therapy based on the hyperactivated genes.
RESULTS: Some of the genes we identified such as FGFR2, MAPK13, TP53, SRC family, MUC family, and BCL2 family have been suggested to be potential targets for TNBC treatment. Others such as CSF1R, EPHB3, TRIB1, and LAD1 could be promising new targets for TNBC treatment. By utilizing this integrative analysis of genomic profiles for TNBC, we hypothesized that some of the targeted treatment strategies for TNBC currently in development are more likely to be promising, such as poly (ADP-ribose) polymerase inhibitors, while the others are more likely to be discouraging, such as angiogenesis inhibitors.
LIMITATIONS: The findings in this study need to be experimentally validated in the future.
CONCLUSION: This is a systematic study that combined 5 different types of genomic data to molecularly characterize TNBC and identify potential targets for TNBC therapy. The integrative analysis of genomic profiles for TNBC could assist in identifying potential new therapeutic targets and predicting the effectiveness of a targeted treatment strategy for TNBC therapy.

Beltran H, Antonarakis ES, Morris MJ, Attard G
Emerging Molecular Biomarkers in Advanced Prostate Cancer: Translation to the Clinic.
Am Soc Clin Oncol Educ Book. 2016; 35:131-41 [PubMed] Related Publications
Recent clinical and preclinical studies focused on understanding the molecular landscape of castration-resistant prostate cancer (CRPC) have provided insights into mechanisms of treatment resistance, disease heterogeneity, and potential therapeutic targets. This work has served as a framework for several ongoing clinical studies focused on bringing novel observations into the clinic in the form of tissue, liquid, and imaging biomarkers. Resistance in CRPC typically is driven through reactivation of androgen receptor (AR) signaling, which can occur through AR-activating point mutations, amplification, splice variants (such as AR-V7), or other bypass mechanisms. Detection of AR aberrations in the circulation negatively impacts response to subsequent AR-directed therapies such as abiraterone and enzalutamide. Other potentially clinically relevant alterations in CRPC include defects in DNA damage repair (at either the somatic or germline level) in up to 20% of patients (with implications for PARP1 inhibitor therapy), PI3K/PTEN/Akt pathway activation, WNT signaling pathway alterations, cell cycle gene alterations, and less common but potentially targetable alterations involving RAF and FGFR2. Imaging biomarkers that include those focused on incorporating overexpressed androgen-regulated genes/proteins, such as prostate-specific membrane antigen (PSMA) and dihydrotestosterone (DHT) in combination with CT, can noninvasively identify patterns of AR-driven distribution of CRPC tumor cells, monitor early metastatic lesions, and potentially capture heterogeneity of response to AR-directed therapies and other therapeutics. This article focuses on the current state of clinical biomarker development and future directions for how they might be implemented into the clinic in the near term to improve risk stratification and treatment selection for patients.

Katoh M
FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review).
Int J Mol Med. 2016; 38(1):3-15 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.

Bhatta B, Thapa R, Shahi S, et al.
A Pilot Study on Screening of BRCA1 Mutations (185delAG, 1294del40) in Nepalese Breast Cancer Patients.
Asian Pac J Cancer Prev. 2016; 17(4):1829-32 [PubMed] Related Publications
BACKGROUND: Breast cancer is the second most common malignancy among Nepalese women, accounting for 60% of the total cancer cases in females. Women diagnosed with germline mutations in BRCA1 like 185delAG, 1294del40 develop breast and/or ovarian cancer with a lifelong likelihood of up to 85% whereas presence of a mutation increases the risk for mutations to occur in other genes. The major objective of this study was to find the prevalence of these mutations in Nepalese cancer patients.
MATERIALS AND METHODS: This prospective study was carried out at two cancer hospitals in the Kathmandu valley over a period of 11 months. Irrespective of age group and stage of canceran appropriate amount of blood was withdrawn from 50 breast cancer patients and 20 controls. DNA was extracted manually and subjected to PCR using primers for 185delAG and 1294del40 mutations. PCR products were then digested with restriction enzyme (DdeII) followed by electrophoresis.
RESULTS: Prevalence of 185delAG in reference breast cancer patients was found to be 4/50 (8%) but no 1294del40 was apparent.
CONCLUSIONS: Several mutations occurring in different exons of BRCA1 as well as mutations in other genes like BRCA2, for example, should also be taken in account.

Wang L, Ding Y, Wei L, et al.
Recurrent Olfactory Neuroblastoma Treated With Cetuximab and Sunitinib: A Case Report.
Medicine (Baltimore). 2016; 95(18):e3536 [PubMed] Free Access to Full Article Related Publications
Olfactory neuroblastoma (ONB) is a rare cancer originating in the olfactory epithelium of the nasal vault. The recurrence rate of ONB is high, as the standard treatment of surgery followed by radiotherapy and/or chemotherapy is usually unsuccessful. The use of targeted therapy based on individual genomic variations after cancer relapse has not been reported. Here, we present the case of a 44-year-old man who was diagnosed with recurrent ONB and treated with a regimen developed using whole exome sequencing. Potential targets were first identified and then matched to appropriate drugs. Gene mutations in the genes encoding EGFR, FGFR2, KDR, and RET were discovered in the patient's tumor tissue by whole exome sequencing and the patient was treated with a combination of the targeted drugs cetuximab and sunitinib. Five days after treatment, enhancement magnetic resonance imaging showed a 65% reduction in tumor size, and the Visual analog scale headache scores went down to 2/10 from 10/10. Repeat imaging at 1 month showed a complete response.This study represents the first demonstration of an effective personalized treatment of ONB by targeted drugs, and sheds light on how precision medicine can be used to treat recurrent ONB that fails to respond to routine tumor resection, radiotherapy, and/or chemotherapy.

Veldore VH, Patil S, Satheesh CT, et al.
Genomic profiling in a homogeneous molecular subtype of non-small cell lung cancer: An effort to explore new drug targets.
Indian J Cancer. 2015 Apr-Jun; 52(2):243-8 [PubMed] Related Publications
BACKGROUND: Patients' who are positive for kinase domain activating mutations in epidermal growth factor receptor (EGFR) gene, constitute 30-40% of non-small cell lung cancer (NSCLC), and are suitable candidates for Tyrosine Kinase Inhibitor based targeted/personalized therapy. In EGFR non-mutated subset, 8-10% that show molecular abnormalities such as EML4-ALK, ROS1-ALK, KIP4-ALK, may also derive the benefit of targeted therapy. However, 40% of NSCLC belong to a grey zone of tumours that are negative for the clinically approved biomarkers for personalized therapy. This pilot study aims to identify and classify molecular subtypes of this group to address the un-met need for new drug targets in this category. Here we screened for known/novel oncogenic driver mutations using a 46 gene Ampliseq Panel V1.0 that includes Ser/Thr/Tyr kinases, transcription factors and tumor suppressors.
METHODS: NSCLC with tumor burden of at least 40% on histopathology were screened for 29 somatic mutations in the EGFR kinase domain by real-time polymerase chain reaction methods. 20 cases which were EGFR non-mutated for TK domain mutations were included in this study. DNA Quality was verified from each of the 20 cases by fluorimeter, pooled and subjected to targeted re-sequencing in the Ion Torrent platform. Torrent Suite software was used for next generation sequencing raw data processing and variant calling.
RESULTS: The clinical relevance and pathological role of all the mutations/variants that include SNPs and Indels was assessed using polyphen-2/SIFT/PROVEAN/mutation assessor structure function prediction programs. There were 10 pathogenic mutations in six different oncogenes for which annotation was available in the COSMIC database; C420R mutation in PIK3CA, Q472H mutation in vascular endothelial growth factor receptor 2 (VEGFR2) (KDR), C630W and C634R in RET, K367M mutation in fibroblast growth factor receptor 2 (FGFR2), G12C in KRAS and 4 pathogenic mutations in TP53 in the DNA binding domain (E285K, R213L, R175H, V173G).
CONCLUSION: Results suggest, a potential role for PIK3CA, VEGFR2, RET and FGFR2 as therapeutic targets in EGFR non-mutated NSCLC that requires further clinical validation.

Rizvi S, Yamada D, Hirsova P, et al.
A Hippo and Fibroblast Growth Factor Receptor Autocrine Pathway in Cholangiocarcinoma.
J Biol Chem. 2016; 291(15):8031-47 [PubMed] Article available free on PMC after 08/04/2017 Related Publications
Herein, we have identified cross-talk between the Hippo and fibroblast growth factor receptor (FGFR) oncogenic signaling pathways in cholangiocarcinoma (CCA). Yes-associated protein (YAP) nuclear localization and up-regulation of canonical target genes was observed in CCA cell lines and a patient-derived xenograft (PDX). Expression of FGFR1, -2, and -4 was identified in human CCA cell lines, driven, in part, by YAP coactivation of TBX5. In turn, FGFR signaling in a cell line with minimal basal YAP expression induced its cellular protein expression and nuclear localization. Treatment of YAP-positive CCA cell lines with BGJ398, a pan-FGFR inhibitor, resulted in a decrease in YAP activation. FGFR activation of YAP appears to be driven largely by FGF5 activation of FGFR2, as siRNA silencing of this ligand or receptor, respectively, inhibited YAP nuclear localization. BGJ398 treatment of YAP-expressing cells induced cell death due to Mcl-1 depletion. In a YAP-associated mouse model of CCA, expression of FGFR 1, 2, and 4 was also significantly increased. Accordingly, BGJ398 treatment was tumor-suppressive in this model and in a YAP-positive PDX model. These preclinical data suggest not only that the YAP and Hippo signaling pathways culminate in an Mcl-1-regulated tumor survival pathway but also that nuclear YAP expression may be a biomarker to employ in FGFR-directed therapy.

Guerini-Rocco E, Piscuoglio S, Ng CK, et al.
Microglandular adenosis associated with triple-negative breast cancer is a neoplastic lesion of triple-negative phenotype harbouring TP53 somatic mutations.
J Pathol. 2016; 238(5):677-88 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Microglandular adenosis (MGA) is a rare proliferative lesion of the breast composed of small glands lacking myoepithelial cells and lined by S100-positive, oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative epithelial cells. There is evidence to suggest that MGA may constitute a non-obligate precursor of triple-negative breast cancer (TNBC). We sought to define the genomic landscape of pure MGA and of MGA, atypical MGA (AMGA) and associated TNBCs, and to determine whether synchronous MGA, AMGA, and TNBCs would be clonally related. Two pure MGAs and eight cases of MGA and/or AMGA associated with in situ or invasive TNBC were collected, microdissected, and subjected to massively parallel sequencing targeting all coding regions of 236 genes recurrently mutated in breast cancer or related to DNA repair. Pure MGAs lacked clonal non-synonymous somatic mutations and displayed limited copy number alterations (CNAs); conversely, all MGAs (n = 7) and AMGAs (n = 3) associated with TNBC harboured at least one somatic non-synonymous mutation (range 3-14 and 1-10, respectively). In all cases where TNBCs were analyzed, identical TP53 mutations and similar patterns of gene CNAs were found in the MGA and/or AMGA and in the associated TNBC. In the MGA/AMGA associated with TNBC lacking TP53 mutations, somatic mutations affecting PI3K pathway-related genes (eg PTEN, PIK3CA, and INPP4B) and tyrosine kinase receptor signalling-related genes (eg ERBB3 and FGFR2) were identified. At diagnosis, MGAs associated with TNBC were found to display subclonal populations, and clonal shifts in the progression from MGA to AMGA and/or to TNBC were observed. Our results demonstrate the heterogeneity of MGAs, and that MGAs associated with TNBC, but not necessarily pure MGAs, are genetically advanced, clonal, and neoplastic lesions harbouring recurrent mutations in TP53 and/or other cancer genes, supporting the notion that a subset of MGAs and AMGAs may constitute non-obligate precursors of TNBCs.

Ruiz-Narváez EA, Haddad SA, Lunetta KL, et al.
Gene-based analysis of the fibroblast growth factor receptor signaling pathway in relation to breast cancer in African American women: the AMBER consortium.
Breast Cancer Res Treat. 2016; 155(2):355-63 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
We conducted gene-based analysis in 26 genes in the FGFR signaling pathway to identify genes carrying genetic variation affecting risk of breast cancer and the specific estrogen receptor (ER) subtypes. Tagging single-nucleotide polymorphisms (SNPs) for each gene were selected and genotyped on a customized Illumina Exome Array. Imputation was carried out using 1000 Genomes haplotypes. The analysis included 3237 SNPs in 3663 breast cancer cases (including 1983 ER-positive, and 1098 ER-negative) and 4687 controls from the African American Breast Cancer Epidemiology and Risk consortium, a collaborative project of four large studies of breast cancer in African American women (Carolina Breast Cancer Study, Black Women's Health Study, Women's Circle of Health Study, and Multiethnic Cohort). We used a multi-locus adaptive joint (AdaJoint) test to determine the association of each gene in the FGFR signaling pathway with overall breast cancer and ER subtypes. The FGF1 gene was significantly associated with risk of ER-negative breast cancer (P = 0.001). The FGFR2 gene was associated with risk of overall breast cancer (P = 0.002) and ER-positive breast cancer (P = 0.002). The FGF1 gene affects risk of ER-negative breast cancer in African American women. We confirmed the association of the FGFR2 gene with risk of overall and ER-positive breast cancer. These results highlight the importance of the FGFR signaling pathway in the pathogenesis of breast cancer, and suggest that different genes in the same pathway may be associated with different ER breast cancer subtypes.

Cui F, Wu D, Wang W, et al.
Variants of FGFR2 and their associations with breast cancer risk: a HUGE systematic review and meta-analysis.
Breast Cancer Res Treat. 2016; 155(2):313-35 [PubMed] Related Publications
Extensive epidemiological studies have demonstrated that there are associations between variants in intron 2 of FGFR2 and the breast cancer risk in various populations; however, the relationships are not yet conclusively established. To comprehensively review the epidemiological studies showing associations between the variants of FGFR2 and the breast cancer risk, and to establish correlations via a meta-analysis. The PubMed and MEDLINE databases were searched for eligible studies. The associations between the variants and breast cancer risk were evaluated using a random-effects model. The heterogeneity among the studies and the potential publication bias were also evaluated. Fifty-three studies with a total of 121,740 cases and 198,549 controls have examined the associations between 23 variants in intron 2 of FGFR2 and the breast cancer risk. The relationships for the 10 most frequently evaluated variants-rs1078806, rs11200014, rs1219648, rs2420946, rs2981578, rs2981579, rs2981582, rs3135718, rs10736303, and rs3750817-were synthesized based on a meta-analysis. Interestingly, we found that all 10 variants were significantly associated with the risk of breast cancer. In studies stratified by ethnicity, we found that the associations were more notable in Caucasians and Asians compared to Africans. Similar pooled results were found in population-based and hospital-based case-control studies and in studies with small and large sample sizes. FGFR2 is a breast cancer susceptibility gene, and various variants of FGFR2 are significantly associated with the breast cancer risk. However, the biological mechanisms underlying the associations need to be elucidated in future studies.

Saichaemchan S, Ariyawutyakorn W, Varella-Garcia M
Fibroblast Growth Factor Receptors: From the Oncogenic Pathway to Targeted Therapy.
Curr Mol Med. 2016; 16(1):40-62 [PubMed] Related Publications
The family of fibroblast growth factor (FGFs) and their receptors (FGFRs) regulates vital roles in many biological processes affecting cell proliferation, migration, differentiation and survival. Deregulation of the FGF/FGFR signaling pathway in cancers has been better understood and the main molecular mechanisms responsible for the activation of this pathway are gene mutations, gene fusions and gene amplification. DNA and RNA-based technologies have been used to detect these abnormalities, especially in FGFR1, FGFR2 and FGFR3 and tests have been developed for their detection, but no assay has been proved ideal for molecular diagnosis. Interestingly, the increase in the molecular biology knowledge has supported and assisted the development of therapeutic drugs targeting the most important components of this pathway. Multi- and selective tyrosine kinase inhibitors (TKIs) as well as monoclonal antibodies anti-FGFR are under investigation in preclinical and clinical trials. In this article, we reviewed those aspects with special emphasis on the pathway genomic alterations related to solid tumors, and the molecular diagnostic assays potentially able to stratify patients for the treatment with FGFR TKIs.

Kasaian K, Wiseman SM, Walker BA, et al.
The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy.
BMC Cancer. 2015; 15:984 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Anaplastic thyroid carcinoma is the most undifferentiated form of thyroid cancer and one of the deadliest of all adult solid malignancies. Here we report the first genomic and transcriptomic profile of anaplastic thyroid cancer including those of several unique cell lines and outline novel potential drivers of malignancy and targets of therapy.
METHODS: We describe whole genomic and transcriptomic profiles of 1 primary anaplastic thyroid tumor and 3 authenticated cell lines. Those profiles augmented by the transcriptomes of 4 additional and unique cell lines were compared to 58 pairs of papillary thyroid carcinoma and matched normal tissue transcriptomes from The Cancer Genome Atlas study.
RESULTS: The most prevalent mutations were those of TP53 and BRAF; repeated alterations of the epigenetic machinery such as frame-shift deletions of HDAC10 and EP300, loss of SMARCA2 and fusions of MECP2, BCL11A and SS18 were observed. Sequence data displayed aneuploidy and large regions of copy loss and gain in all genomes. Common regions of gain were however evident encompassing chromosomes 5p and 20q. We found novel anaplastic gene fusions including MKRN1-BRAF, FGFR2-OGDH and SS18-SLC5A11, all expressed in-frame fusions involving a known proto-oncogene. Comparison of the anaplastic thyroid cancer expression datasets with the papillary thyroid cancer and normal thyroid tissue transcriptomes suggested several known drug targets such as FGFRs, VEGFRs, KIT and RET to have lower expression levels in anaplastic specimens compared with both papillary thyroid cancers and normal tissues, confirming the observed lack of response to therapies targeting these pathways. Further integrative data analysis identified the mTOR signaling pathway as a potential therapeutic target in this disease.
CONCLUSIONS: Anaplastic thyroid carcinoma possessed heterogeneous and unique profiles revealing the significance of detailed molecular profiling of individual tumors and the treatment of each as a unique entity; the cell line sequence data promises to facilitate the more accurate and intentional drug screening studies for anaplastic thyroid cancer.

Ock CY, Son B, Keam B, et al.
Identification of genomic mutations associated with clinical outcomes of induction chemotherapy in patients with head and neck squamous cell carcinoma.
J Cancer Res Clin Oncol. 2016; 142(4):873-83 [PubMed] Related Publications
PURPOSE: We performed deep sequencing of target genes in head and neck squamous cell carcinoma (HNSCC) tumors to identify somatic mutations that are associated with induction chemotherapy (IC) response.
METHODS: Patients who were diagnosed with HNSCC were retrospectively identified. Patients who were treated with IC were divided into two groups: good responders and poor responders by tumor response and progression-free survival. Targeted gene sequencing for 2404 somatic mutations of 44 genes was performed on HNSCC tissues. Mutations with total coverage of <500 were excluded, and the cutoff for altered allele frequency was >10 %.
RESULTS: Of the 71 patients, 45 were treated upfront with IC. Mean total coverage was 1941 per locus, and 42.2 % of tumors had TP53 mutations. Thirty-three mutations in TP53, NOTCH3, FGFR2, FGFR3, ATM, EGFR, MET, PTEN, FBXW7, SYNE1, and SUFU were frequently altered in poor responders. Among the patients who were treated with IC, those with unfavorable genomic profiles had significantly poorer overall survival than those without unfavorable genomic profiles (hazard ratio 6.45, 95 % confidence interval 2.07-20.10, P < 0.001).
CONCLUSIONS: Comprehensive analysis of mutation frequencies identified unfavorable genomic profiles, and the patients without unfavorable genomic profiles can obtain clinical benefits from IC in patients with HNSCC.

Vollbrecht C, Werner R, Walter RF, et al.
Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group.
Br J Cancer. 2015; 113(12):1704-11 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. The typical and atypical carcinoid (TC and AC), the large-cell neuroendocrine carcinoma (LCNEC) and the small-cell lung cancers (SCLC) are subgroups of pulmonary tumours that show neuroendocrine differentiations. With the rising impact of molecular pathology in routine diagnostics the interest for reliable biomarkers, which can help to differentiate these subgroups and may enable a more personalised treatment of patients, grows.
METHODS: A collective of 70 formalin-fixed, paraffin-embedded (FFPE) pulmonary neuroendocrine tumours (17 TCs, 17 ACs, 19 LCNECs and 17 SCLCs) was used to identify biomarkers by high-throughput sequencing. Using the Illumina TruSeq Amplicon-Cancer Panel on the MiSeq instrument, the samples were screened for alterations in 221 mutation hot spots of 48 tumour-relevant genes.
RESULTS: After filtering >26 000 detected variants by applying strict algorithms, a total of 130 mutations were found in 29 genes and 49 patients. Mutations in JAK3, NRAS, RB1 and VHL1 were exclusively found in SCLCs, whereas the FGFR2 mutation was detected in LCNEC only. KIT, PTEN, HNF1A and SMO were altered in ACs. The SMAD4 mutation corresponded to the TC subtype. We prove that the frequency of mutations increased with the malignancy of tumour type. Interestingly, four out of five ATM-mutated patients showed an additional alteration in TP53, which was by far the most frequently altered gene (28 out of 130; 22%). We found correlations between tumour type and IASLC grade for ATM- (P=0.022; P=0.008) and TP53-mutated patients (P<0.001). Both mutated genes were also associated with lymph node invasion and distant metastasis (P⩽0.005). Furthermore, PIK3CA-mutated patients with high-grade tumours showed a reduced overall survival (P=0.040) and the mutation frequency of APC and ATM in high-grade neuroendocrine lung cancer patients was associated with progression-free survival (PFS) (P=0.020).
CONCLUSIONS: The implementation of high-throughput sequencing for the analysis of the neuroendocrine lung tumours has revealed that, even if these tumours encompass several subtypes with varying clinical aggressiveness, they share a number of molecular features. An improved understanding of the biology of neuroendocrine tumours will offer the opportunity for novel approaches in clinical management, resulting in a better prognosis and prediction of therapeutic response.

Wong SQ, Waldeck K, Vergara IA, et al.
UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas.
Cancer Res. 2015; 75(24):5228-34 [PubMed] Related Publications
Merkel cell carcinoma (MCC) is an uncommon, but highly malignant, cutaneous tumor. Merkel cell polyoma virus (MCV) has been implicated in a majority of MCC tumors; however, viral-negative tumors have been reported to be more prevalent in some geographic regions subject to high sun exposure. While the impact of MCV and viral T-antigens on MCC development has been extensively investigated, little is known about the etiology of viral-negative tumors. We performed targeted capture and massively parallel DNA sequencing of 619 cancer genes to compare the gene mutations and copy number alterations in MCV-positive (n = 13) and -negative (n = 21) MCC tumors and cell lines. We found that MCV-positive tumors displayed very low mutation rates, but MCV-negative tumors exhibited a high mutation burden associated with a UV-induced DNA damage signature. All viral-negative tumors harbored mutations in RB1, TP53, and a high frequency of mutations in NOTCH1 and FAT1. Additional mutated or amplified cancer genes of potential clinical importance included PI3K (PIK3CA, AKT1, PIK3CG) and MAPK (HRAS, NF1) pathway members and the receptor tyrosine kinase FGFR2. Furthermore, looking ahead to potential therapeutic strategies encompassing immune checkpoint inhibitors such as anti-PD-L1, we also assessed the status of T-cell-infiltrating lymphocytes (TIL) and PD-L1 in MCC tumors. A subset of viral-negative tumors exhibited high TILs and PD-L1 expression, corresponding with the higher mutation load within these cancers. Taken together, this study provides new insights into the underlying biology of viral-negative MCC and paves the road for further investigation into new treatment opportunities.

Chang YS, Huang HD, Yeh KT, Chang JG
Genetic alterations in endometrial cancer by targeted next-generation sequencing.
Exp Mol Pathol. 2016; 100(1):8-12 [PubMed] Related Publications
Many genetic factors play important roles in the development of endometrial cancer. The aim of this study was to investigate genetic alterations in the Taiwanese population with endometrial cancer. DNA was extracted from 10 cases of fresh-frozen endometrial cancer tissue. The exomes of cancer-related genes were captured using the NimbleGen Comprehensive Cancer Panel (578 cancer-related genes) and sequenced using the Illumina Genomic Sequencing Platform. Our results revealed 120 variants in 99 genes, 21 of which were included in the Oncomine Cancer Research Panel used in the National Cancer Institute Match Trial. The 21 genes comprised 8 tumor suppressor candidates (ATM, MSH2, PIK3R1, PTCH1, PTEN, TET2, TP53, and TSC1) and 13 oncogene candidates (ALK, BCL9, CTNNB1, ERBB2, FGFR2, FLT3, HNF1A, KIT, MTOR, PDGFRA, PPP2R1A, PTPN11, and SF3B1). We identified a high frequency of mutations in PTEN (50%) and genes involved in the endometrial cancer-related molecular pathway, which involves the IL-7 signaling pathway (PIK3R1, n=1; AKT2, n=1; FOXO1, n=1). We report the mutational landscape of endometrial cancer in the Taiwanese population. We believe that this study will shed new light on fundamental aspects for understanding the molecular pathogenesis of endometrial cancer and may aid in the development of new targeted therapies.

Postel-Vinay S, Boursin Y, Massard C, et al.
Seeking the driver in tumours with apparent normal molecular profile on comparative genomic hybridization and targeted gene panel sequencing: what is the added value of whole exome sequencing?
Ann Oncol. 2016; 27(2):344-52 [PubMed] Related Publications
BACKGROUND: Molecular tumour profiling technologies have become increasingly important in the era of precision medicine, but their routine use is limited by their accessibility, cost, and tumour material availability. It is therefore crucial to assess their relative added value to optimize the sequence and combination of such technologies.
PATIENTS AND METHODS: Within the MOSCATO-01 trial, we investigated the added value of whole exome sequencing (WES) in patients that did not present any molecular abnormality on array comparative genomic hybridization (aCGH) and targeted gene panel sequencing (TGPS) using cancer specific panels. The pathogenicity potential and actionability of mutations detected on WES was assessed.
RESULTS: Among 420 patients enrolled between December 2011 and December 2013, 283 (67%) patients were analysed for both TGPS and aCGH. The tumour sample of 25 (8.8%) of them presented a flat (or low-dynamic) aCGH profile and no pathogenic mutation on TGPS. We selected the first eligible 10 samples-corresponding to a heterogeneous cohort of different tumour types-to perform WES. This allowed identifying eight mutations of interest in two patients: FGFR3, PDGFRB, and CREBBP missense single-nucleotide variants (SNVs) in an urothelial carcinoma; FGFR2, FBXW7, TP53, and MLH1 missense SNVs as well as an ATM frameshift mutation in a squamous cell carcinoma of the tongue. The FGFR3 alteration had been previously described as an actionable activating mutation and might have resulted in treatment by an FGFR inhibitor. CREBBP and ATM alterations might also have suggested a therapeutic orientation towards epigenetic modifiers and ataxia-telangectasia and Rad3-related inhibitors, respectively.
CONCLUSION: The therapeutic added value of performing WES on tumour samples that do not harbour any genetic abnormality on TGPS and aCGH might be limited and variable according to the histotype. Alternative techniques, including RNASeq and methylome analysis, might be more informative in selected cases.

Piscuoglio S, Burke KA, Ng CK, et al.
Uterine adenosarcomas are mesenchymal neoplasms.
J Pathol. 2016; 238(3):381-8 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Uterine adenosarcomas (UAs) are biphasic lesions composed of a malignant mesenchymal (ie stromal) component and an epithelial component. UAs are generally low-grade and have a favourable prognosis, but may display sarcomatous overgrowth (SO), which is associated with a worse outcome. We hypothesized that, akin to breast fibroepithelial lesions, UAs are mesenchymal neoplasms in which clonal somatic genetic alterations are restricted to the mesenchymal component. To characterize the somatic genetic alterations in UAs and to test this hypothesis, we subjected 20 UAs to a combination of whole-exome (n = 6), targeted capture (n = 13) massively parallel sequencing (MPS) and/or RNA sequencing (n = 6). Only three genes, FGFR2, KMT2C and DICER1, were recurrently mutated, all in 2/19 cases; however, 26% (5/19) and 21% (4/19) of UAs harboured MDM2/CDK4/HMGA2 and TERT gene amplification, respectively, and two cases harboured fusion genes involving NCOA family members. Using a combination of laser-capture microdissection and in situ techniques, we demonstrated that the somatic genetic alterations detected by MPS were restricted to the mesenchymal component. Furthermore, mitochondrial DNA sequencing of microdissected samples revealed that epithelial and mesenchymal components of UAs were clonally unrelated. In conclusion, here we provide evidence that UAs are genetically heterogeneous lesions and mesenchymal neoplasms.

Ye P, Zhang M, Fan S, et al.
Intra-Tumoral Heterogeneity of HER2, FGFR2, cMET and ATM in Gastric Cancer: Optimizing Personalized Healthcare through Innovative Pathological and Statistical Analysis.
PLoS One. 2015; 10(11):e0143207 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Current drug development efforts on gastric cancer are directed against several molecular targets driving the growth of this neoplasm. Intra-tumoral biomarker heterogeneity however, commonly observed in gastric cancer, could lead to biased selection of patients. MET, ATM, FGFR2, and HER2 were profiled on gastric cancer biopsy samples. An innovative pathological assessment was performed through scoring of individual biopsies against whole biopsies from a single patient to enable heterogeneity evaluation. Following this, false negative risks for each biomarker were estimated in silico. 166 gastric cancer cases with multiple biopsies from single patients were collected from Shanghai Renji Hospital. Following pre-set criteria, 56 ~ 78% cases showed low, 15 ~ 35% showed medium and 0 ~ 11% showed high heterogeneity within the biomarkers profiled. If 3 biopsies were collected from a single patient, the false negative risk for detection of the biomarkers was close to 5% (exception for FGFR2: 12.2%). When 6 biopsies were collected, the false negative risk approached 0%. Our study demonstrates the benefit of multiple biopsy sampling when considering personalized healthcare biomarker strategy, and provides an example to address the challenge of intra-tumoral biomarker heterogeneity using alternative pathological assessment and statistical methods.

Temiz NA, Moriarity BS, Wolf NK, et al.
RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens.
Genome Res. 2016; 26(1):119-29 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Forward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc. Surprisingly, the majority (∼80%) of LM-PCR identified junction fragments do not lead to observable changes in RNA transcripts. However, in CIS regions, direct transcriptional effects of transposon insertions are observed. We developed an automated method to systematically identify T2/Onc-genome RNA fusion sequences in RNA-seq data. RNA fusion-based CISs were identified corresponding to both DNA-based CISs (Cdkn2a, Mycl1, Nf2, Pten, Sema6d, and Rere) and additional regions strongly associated with cancer that were not observed by LM-PCR (Myc, Akt1, Pth, Csf1r, Fgfr2, Wisp1, Map3k5, and Map4k3). In addition to calculating recurrent CISs, we also present complementary methods to identify potential driver events via determination of strongly supported fusions and fusions with large transcript level changes in the absence of multitumor recurrence. These methods independently identify CIS regions and also point to cancer-associated genes like Braf. We anticipate RNA-seq analyses of tumors from forward genetic screens will become an efficient tool to identify causal events.

Han N, Kim MA, Lee HS, Kim WH
Evaluation of Fibroblast Growth Factor Receptor 2 Expression, Heterogeneity and Clinical Significance in Gastric Cancer.
Pathobiology. 2015; 82(6):269-79 [PubMed] Related Publications
BACKGROUND: We aimed to evaluate the protein and mRNA expression of fibroblast growth factor receptor 2 (FGFR2) by immunohistochemistry (IHC) and mRNA in situ hybridization (ISH), respectively, and to assess the heterogeneity of FGFR2 expression in gastric cancer (GC).
METHODS: A tissue microarray containing 362 surgically resected GC tissues and 135 matched metastatic lymph nodes was evaluated using FGFR2b IHC and FGFR2 ISH. FGFR2 fluorescence ISH was also performed in 188 cases.
RESULTS: All FGFR2-amplified cases (5 of 188) showed FGFR2b protein and FGFR2 mRNA overexpression (p < 0.001), and FGFR2 amplification was not identified in FGFR2b IHC- and FGFR2 mRNA ISH-negative cases. Kaplan-Meier survival analysis revealed that FGFR2b protein and FGFR2 mRNA overexpression was significantly associated with a poor overall survival (p < 0.001 and p = 0.012, respectively), and multivariate analyses showed that FGFR2 mRNA overexpression was an independent biomarker of a poor overall survival. Intratumoral heterogeneity of FGFR2b protein and FGFR2 mRNA overexpression was observed in 5 of 9 (55.5%) and 18 of 21 (85.7%) cases, respectively. Discordant FGFR2b and FGFR2 expression results between primary and matched metastatic lymph nodes were observed in 5 of 9 (55.5%) and 4 of 14 (28.6%) cases, respectively.
CONCLUSIONS: Intratumoral heterogeneity and discordant FGFR2b expression in primary tumors and metastatic lymph nodes are common in GC.

Liang YC, Lin WC, Lin YJ, Lin JC
The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells.
Oncotarget. 2015; 6(35):38046-60 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells.

Lee H, Wang K, Johnson A, et al.
Comprehensive genomic profiling of extrahepatic cholangiocarcinoma reveals a long tail of therapeutic targets.
J Clin Pathol. 2016; 69(5):403-8 [PubMed] Related Publications
AIM: We queried whether extrahepatic cholangiocarcinoma featured clinically relevant genomic alterations that could lead to targeted therapy.
METHODS: Comprehensive genomic profiling by hybridisation capture of up to 315 genes was performed on 99 clinically advanced extrahepatic cholangiocarcinoma.
RESULTS: There were 60 male and 39 female patients with a median age of 60.5 years. A total of 400 alterations were identified (mean 4.0; range 0-13) in 84 genes. Eighty-two (83%) of extrahepatic cholangiocarcinoma patients featured at least one clinically relevant genomic alterations including KRAS (43%); ERBB2 (9%), PTEN (7%); ATM and NF1 (6%) and CCND1, FBXW7, GNAS, MDM2 and NRAS (all at 5%). BRAF, BRCA2, CDK4, CDK6, FGFR1, FGFR3, PTCH1, RAF1 and STK11 were each altered in a single patient. No IDH1/2 mutations or FGFR2 gene fusions were identified.
CONCLUSIONS: Comprehensive genomic profiling of extrahepatic cholangiocarcinoma differs significantly from intrahepatic cholangiocarcinoma and pancreatic adenocarcinoma, and reveals diverse opportunities for the use of targeted therapies.

Kuboki Y, Yamashita S, Niwa T, et al.
Comprehensive analyses using next-generation sequencing and immunohistochemistry enable precise treatment in advanced gastric cancer.
Ann Oncol. 2016; 27(1):127-33 [PubMed] Related Publications
BACKGROUND: In advanced gastric cancer (AGC), most clinical trials are designed on the basis of protein expression or gene amplification of specific genes. Recently, next-generation sequencing (NGS) allowed us to comprehensively profile the tumor gene status. This study aimed to elucidate the profiling between gene alterations and protein expression in AGC to aid in future clinical trials on AGC.
PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded tumor samples from 121 stage III/IV gastric cancer patients were examined for protein expression of tyrosine kinase receptors (RTKs; ERBB2, EGFR, c-MET, and FGFR2) using immunohistochemistry (IHC). Furthermore, 409 cancer-related genes were sequenced to detect mutations and copy number variations using NGS.
RESULTS: Most ERBB2 overexpression (IHC 3+) cases (80.0%) had ERBB2 amplification and did not have other RTK amplification or oncogene mutations. However, one-fourth of MET overexpression cases (25.0%) had ERBB2 alterations. EGFR and FGFR2 overexpression cases had ERBB2 alterations or other gene alterations such as KRAS or PIK3CA. On the other hand, most of the four RTK amplification cases (88.2%) were mutually exclusive with each amplification. However, RTK amplification did not simply correlate with protein overexpression, whereas cases with RTK high-level amplification had protein overexpression and rarely showed other co-existing gene alterations.
CONCLUSION: AGC involves a complicated arrangement of protein expression and gene alterations. Comprehensive analyses of NGS and IHC will be necessary to design the optimal therapy for treating the appropriate population of patients in future clinical trials.

Schmidt B, Wei L, DePeralta DK, et al.
Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition.
Int J Cancer. 2016; 138(6):1494-505 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
A recent gene expression classification of hepatocellular carcinoma (HCC) includes a poor survival subclass termed S2 representing about one-third of all HCC in clinical series. S2 cells express E-cadherin and c-myc and secrete AFP. As the expression of fibroblast growth factor receptors (FGFRs) differs between S2 and non-S2 HCC, this study investigated whether molecular subclasses of HCC predict sensitivity to FGFR inhibition. S2 cell lines were significantly more sensitive (p < 0.001) to the FGFR inhibitors BGJ398 and AZD4547. BGJ398 decreased MAPK signaling in S2 but not in non-S2 cell lines. All cell lines expressed FGFR1 and FGFR2, but only S2 cell lines expressed FGFR3 and FGFR4. FGFR4 siRNA decreased proliferation by 44% or more in all five S2 cell lines (p < 0.05 for each cell line), a significantly greater decrease than seen with knockdown of FGFR1-3 with siRNA transfection. FGFR4 knockdown decreased MAPK signaling in S2 cell lines, but little effect was seen with knockdown of FGFR1-3. In conclusion, the S2 molecular subclass of HCC is sensitive to FGFR inhibition. FGFR4-MAPK signaling plays an important role in driving proliferation of a molecular subclass of HCC. This classification system may help to identify those patients who are most likely to benefit from inhibition of this pathway.

Nayak S, Goel MM, Makker A, et al.
Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma.
PLoS One. 2015; 10(10):e0138801 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.

Yulyana Y, Tovmasyan A, Ho IA, et al.
Redox-Active Mn Porphyrin-based Potent SOD Mimic, MnTnBuOE-2-PyP(5+), Enhances Carbenoxolone-Mediated TRAIL-Induced Apoptosis in Glioblastoma Multiforme.
Stem Cell Rev. 2016; 12(1):140-55 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
Glioblastoma multiforme is the most malignant tumor of the brain and is challenging to treat due to its highly invasive nature and heterogeneity. Malignant brain tumor displays high metabolic activity which perturbs its redox environment and in turn translates to high oxidative stress. Thus, pushing the oxidative stress level to achieve the maximum tolerable threshold that induces cell death is a potential strategy for cancer therapy. Previously, we have shown that gap junction inhibitor, carbenoxolone (CBX), is capable of enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in glioma cells. Since CBX is known to induce oxidative stress, we hypothesized that the addition of another potent mediator of oxidative stress, powerful SOD mimic MnTnBuOE-2-PyP(5+) (MnBuOE), could further enhance TRAIL-driven therapeutic efficacy in glioma cells. Our results showed that combining TRAIL + CBX with MnBuOE significantly enhances cell death of glioma cell lines and this enhancement could be further potentiated by CBX pretreatment. MnBuOE-driven cytotoxicity is due to its ability to take advantage of oxidative stress imposed by CBX + TRAIL system, and enhance it in the presence of endogenous reductants, ascorbate and thiol, thereby producing cytotoxic H2O2, and in turn inducing death of glioma cells but not normal astrocytes. Most importantly, combination treatment significantly reduces viability of TRAIL-resistant Asian patient-derived glioma cells, thus demonstrating the potential clinical use of our therapeutic system. It was reported that H2O2 is involved in membrane depolarization-based sensitization of cancer cells toward TRAIL. MnBuOE is entering Clinical Trials as a normal brain radioprotector in glioma patients at Duke University increasing Clinical relevance of our studies.

Jiang Y, Sun S, Wei W, et al.
Association of FGFR3 and FGFR4 gene polymorphisms with breast cancer in Chinese women of Heilongjiang province.
Oncotarget. 2015; 6(32):34023-9 [PubMed] Article available free on PMC after 15/03/2017 Related Publications
BACKGROUND: The fibroblast growth factor (FGF) receptor pathway is activated in many tumors. FGFR2 has been identified as a breast cancer susceptibility gene. Common variation in other FGF receptors might also affect breast cancer risk. We carried out a case-control study to investigate associations of variants in FGFR3 and FGFR4 with breast cancer in women from Heilongjiang Province.
METHODS: SNP rs2234909 and rs3135848 in FGFR3 and rs1966265 and rs351855 in FGFR4 were successfully genotyped in 747 breast cancer patients and 716 healthy controls using the SNaPshot method. The associations between SNPs and breast cancer were examined by logistic regression. The associations between SNPs and disease characteristics were examined by chi-square tests or one-way ANOVA as needed.
RESULTS: The minor alleles of rs1966265 and rs351855 in FGFR4 were strongly associated with breast cancer in the population, with odds ratios of 1.335 (95%CI = 1.154-1.545) and 1.364 (95%CI = 1.177-1.580), respectively. However, no significant associations were detected between other SNPs and breast cancer. Analyses of the disease characteristics showed that SNP rs351855 was associated with lymph-node-positive breast cancer with a dose-dependent effect of the minor allele (P = 0.008).
CONCLUSIONS: SNPs rs1966265 and rs351855 in FGFR4 were associated with breast cancer in a northern Chinese population.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FGFR2, Cancer Genetics Web: http://www.cancer-genetics.org/FGFR2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 March, 2017     Cancer Genetics Web, Established 1999