Gene Summary

Gene:GZMB; granzyme B
Summary:This gene encodes a member of the granzyme subfamily of proteins, part of the peptidase S1 family of serine proteases. The encoded preproprotein is secreted by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) and proteolytically processed to generate the active protease, which induces target cell apoptosis. This protein also processes cytokines and degrades extracellular matrix proteins, and these roles are implicated in chronic inflammation and wound healing. Expression of this gene may be elevated in human patients with cardiac fibrosis. [provided by RefSeq, Sep 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:granzyme B
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (13)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cytotoxicity, Immunologic
  • In Situ Hybridization
  • Tumor Virus Infections
  • Membrane Glycoproteins
  • Interferon-gamma
  • Up-Regulation
  • Granzymes
  • Poly(A)-Binding Proteins
  • Cervical Cancer
  • Proteins
  • Splenic Neoplasms
  • Apoptosis
  • Neoplasm Proteins
  • Serine Endopeptidases
  • Colorectal Cancer
  • Tumor Microenvironment
  • Gene Expression
  • Breast Cancer
  • Cancer DNA
  • T-Lymphocytes, Cytotoxic
  • Pore Forming Cytotoxic Proteins
  • Transfection
  • Gene Expression Profiling
  • Membrane Proteins
  • Natural Killer Cells
  • Subunit Vaccines
  • CD8-Positive T-Lymphocytes
  • RNA-Binding Proteins
  • Immunohistochemistry
  • Transforming Growth Factor beta
  • Chromosome 14
  • Messenger RNA
  • Waldenstrom's Macroglobulinemia
  • Cell Proliferation
  • T-Lymphocytes
  • Vincristine
  • Perforin
  • Cancer Gene Expression Regulation
  • Receptors, Antigen, T-Cell, alpha-beta
  • Phenotype
  • Solubility
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GZMB (cancer-related)

Holmes B, Lee J, Landon KA, et al.
Mechanistic Target of Rapamycin (mTOR) Inhibition Synergizes with Reduced Internal Ribosome Entry Site (IRES)-mediated Translation of Cyclin D1 and c-MYC mRNAs to Treat Glioblastoma.
J Biol Chem. 2016; 291(27):14146-59 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Our previous work has demonstrated an intrinsic mRNA-specific protein synthesis salvage pathway operative in glioblastoma (GBM) tumor cells that is resistant to mechanistic target of rapamycin (mTOR) inhibitors. The activation of this internal ribosome entry site (IRES)-dependent mRNA translation initiation pathway results in continued translation of critical transcripts involved in cell cycle progression in the face of global eIF-4E-mediated translation inhibition. Recently we identified compound 11 (C11), a small molecule capable of inhibiting c-MYC IRES translation as a consequence of blocking the interaction of a requisite c-MYC IRES trans-acting factor, heterogeneous nuclear ribonucleoprotein A1, with its IRES. Here we demonstrate that C11 also blocks cyclin D1 IRES-dependent initiation and demonstrates synergistic anti-GBM properties when combined with the mechanistic target of rapamycin kinase inhibitor PP242. The structure-activity relationship of C11 was investigated and resulted in the identification of IRES-J007, which displayed improved IRES-dependent initiation blockade and synergistic anti-GBM effects with PP242. Mechanistic studies with C11 and IRES-J007 revealed binding of the inhibitors within the UP1 fragment of heterogeneous nuclear ribonucleoprotein A1, and docking analysis suggested a small pocket within close proximity to RRM2 as the potential binding site. We further demonstrate that co-therapy with IRES-J007 and PP242 significantly reduces tumor growth of GBM xenografts in mice and that combined inhibitor treatments markedly reduce the mRNA translational state of cyclin D1 and c-MYC transcripts in these tumors. These data support the combined use of IRES-J007 and PP242 to achieve synergistic antitumor responses in GBM.

D'Eliseo D, Di Rocco G, Loria R, et al.
Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells.
J Exp Clin Cancer Res. 2016; 35:24 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
BACKGROUND: Granzyme B (GrB) is a serine protease, traditionally known as expressed by cytotoxic lymphocytes to induce target cell apoptosis. However, it is emerging that GrB, being also produced by a variety of normal and neoplastic cells and potentially acting on multiple targets, might represent a powerful regulator of a wide range of fundamental biological processes. We have previously shown that GrB is expressed in urothelial carcinoma tissues and its expression is associated to both pathological tumor spreading and EMT. We have also shown that docosahexaenoic acid (DHA), a dietary ω-3 polyunsaturated fatty acid with anti-tumor activity, while inhibiting urothelial and pancreatic carcinoma cell invasion also inhibited their GrB expression in vitro. In this study, we characterized a panel of colorectal carcinoma (CRC) cells, with different invasive capabilities, for GrB expression and for the contribution of GrB to their EMT and invasive phenotype. In addition, we investigated the effect of DHA on CRC cell-associated GrB expression, EMT and invasion.
METHODS: The expression levels of GrB and EMT-related markers were evaluated by Western blotting. GrB knockdown was performed by Stealth RNAi small interfering RNA silencing and ectopic GrB expression by transfection of human GrB vector. Cell invasion was determined by the BioCoat Matrigel invasion chamber test.
RESULTS: GrB was produced in 57.1% CRC cell lines and 100% CRC-derived Cancer Stem Cells. Although GrB was constitutive expressed in both invasive and noninvasive CRC cells, GrB depletion in invasive CRC cells downmodulated their invasion in vitro, suggesting a contribution of GrB to CRC invasiveness. GrB loss or gain of function downmodulated or upmodulated EMT, respectively, according to the analysis of cancer cell expression of three EMT biomarkers (Snail1, E-cadherin, N-cadherin). Moreover, TGF-β1-driven EMT was associated to the enhancement of GrB expression in CRC cell lines, and GrB depletion led to downmodulation of TGF-β1-driven EMT. In addition, DHA inhibited GrB expression, EMT and invasion in CRC cells in vitro.
CONCLUSIONS: These findings present a novel role for GrB as upmodulator of EMT in CRC cells. Moreover, these results support the use of DHA, a dietary compound without toxic effects, as adjuvant in CRC therapy.

Sun H, Liu D
IL-15/sIL-15Rα gene transfer suppresses Lewis lung cancer growth in the lungs, liver and kidneys.
Cancer Gene Ther. 2016 Feb-Mar; 23(2-3):54-60 [PubMed] Related Publications
Nearly 40% of people with lung cancer have tumor growth in other organs at the time of diagnosis. Current treatment strategies for patients with late-stage lung cancer are primarily palliative and only showed modest efficacy. The current study takes advantage of the hydrodynamic gene delivery technique to evaluate the antitumor activity of interleukin (IL)-15/sIL-15Rα on lung tumors growing in the lungs, liver and kidneys. We demonstrate that hydrodynamic tail vein injection of 2 μg of AG209 DP muIL-15sRα+IL-15 plasmid resulted in serum IL-15/sIL-15Rα reaching a peak level of ~10 μg ml(-1) 1 day after the injection and gradually declined to ~5 ng ml(-1) within 3 days. Quantitative PCR analysis revealed that overexpression of IL-15/sIL-15Rα induced the activation of natural killer and T cells, evidenced by increased mRNA levels of marker genes including granzyme B, perforin, Ifn-γ, T-bet and Cd8 in the lungs, liver and kidneys. Importantly, transfer of the Il-15/sIl-15Rα gene alone, or in combination with gemcitabine chemotherapy, significantly inhibited the tumor growth in these three organs and prolonged median survival time of treated mice by 1.7- and 3.3-fold, respectively. The therapeutic benefits are principally blockade and elimination of tumor growth in the liver and kidneys. Taken together, these results suggest that IL-15/sIL-15Rα-based gene therapy could be an effective approach to treat late-stage lung cancer with metastases in other organs.

Vella S, Penna I, Longo L, et al.
Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA.
Sci Rep. 2015; 5:18144 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
High Risk Neuroblastoma (HR-NB) is a pediatric cancer characterized by high malignancy and remarkable cell heterogeneity within the tumour nodules. In a recent study, we demonstrated that in vitro and in vivo over-expression of the non-coding RNA NDM29 (neuroblastoma differentiation marker 29) induces NB cell differentiation, dramatically reducing their malignancy. Among gene expression changes, differentiated phenotype induced by NDM29 is characterized by decrease of the expression of ABC transporters responsible for anticancer drug resistance. Thus, the pharmacological induction of NDM29, in principle, might represent a possible novel strategy to increase cytotoxic drug responses. In this work, we identify a small molecule able to induce the expression of NDM29 in NB cells, conferring to malignant cells increased susceptibility to cisplatin cytotoxic effects. We demonstrate that the pharmacological induction of NDM29 expression in vivo enhances the antitumoral effects of chemotherapy specifically on tumour initiating/cancer stem cells sub-population, usually refractory to therapies and responsible for tumour relapse. In summary, we suggest a novel therapeutical approach possibly useful to treat very aggressive NB cases with poor prognosis. This novel pharmacological strategy aims to promote differentiation of "stem-like" cells to render them more susceptible to the killing action of cytotoxic anticancer drugs.

Tanaka Y, Aoyagi K, Minashi K, et al.
Discovery of a Good Responder Subtype of Esophageal Squamous Cell Carcinoma with Cytotoxic T-Lymphocyte Signatures Activated by Chemoradiotherapy.
PLoS One. 2015; 10(12):e0143804 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Definitive chemoradiotherapy (CRT) is a less invasive therapy for esophageal squamous cell carcinoma (ESCC). Five-year survival rate of locally advanced ESCC patients by definitive CRT were 37%. We previously reported that tumor-specific cytotoxic T-lymphocyte (CTL) activation signatures were preferentially found in long-term survivors. However, it is unknown whether the CTL activation is actually driven by CRT. We compared gene expression profiles among pre- and post-treatment biopsy specimens of 30 ESCC patients and 121 pre-treatment ESCC biopsy specimens. In the complete response (CR) cases, 999 overexpressed genes including at least 234 tumor-specific CTL-activation associated genes such as IFNG, PRF1, and GZMB, were found in post-treatment biopsy specimens. Clustering analysis using expression profiles of these 234 genes allowed us to distinguish the immune-activated cases, designating them as I-type, from other cases. However, despite the better CR rate in the I-type, overall survival was not significantly better in both these 30 cases and another 121 cases. Further comparative study identified a series of epithelial to mesenchymal transition-related genes overexpressed in the early relapse cases. Importantly, the clinical outcome of CDH2-negative cases in the I-type was significantly better than that of the CDH2-positive cases in the I-type. Furthermore, NK cells, which were activated by neutrophils-producing S100A8/S100A9, and CTLs were suggested to cooperatively enhance the effect of CRT in the CDH2-negative I-type. These results suggested that CTL gene activation may provide a prognostic advantage in ESCCs with epithelial characteristics.

Loskog A
Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles.
Viruses. 2015; 7(11):5780-91 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

Tseng JS, Wang CL, Yang TY, et al.
Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.
Lung Cancer. 2015; 90(3):472-6 [PubMed] Related Publications
INTRODUCTION: Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations.
METHODS: We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations.
RESULTS: From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both P<0.001). Among patients harboring EGFR mutations, smokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, P<0.001). Among subgroup patients harboring the L858R mutation, smokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001).
CONCLUSIONS: Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis.

Thounaojam MC, Dudimah DF, Pellom ST, et al.
Bortezomib enhances expression of effector molecules in anti-tumor CD8+ T lymphocytes by promoting Notch-nuclear factor-κB crosstalk.
Oncotarget. 2015; 6(32):32439-55 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
The immunosuppressive tumor microenvironment usurps host antitumor immunity by multiple mechanisms including interference with the Notch system, which is important for various metazoan cell fate decisions and hematopoietic cell differentiation and function. We observed that treatment with the proteasome inhibitor bortezomib in mice bearing various solid tumors resulted in an upregulated expression of various Notch signaling components in lymphoid tissues, thereby increasing CD8+T-lymphocyte IFNγ secretion and expression of effector molecules, perforin and granzyme B, as well as the T-box transcription factor eomesodermin. Bortezomib also neutralized TGFβ-mediated suppression of IFNγ and granzyme B expression in activated CD8+T-cells. Of note, bortezomib reversed tumor-induced downregulation of Notch receptors, Notch1 and Notch2, as well as increased the levels of cleaved Notch intracellular domain (NICD) and downstream targets Hes1 and Hey1 in tumor-draining CD8+T-cells. Moreover, bortezomib promoted CD8+T-cell nuclear factor-κB (NFκB) activity by increasing the total and phosphorylated levels of the IκB kinase and IκBα as well as the cytoplasmic and nuclear levels of phosphorylated p65. Even when we blocked NFκB activity by Bay-11-7082, or NICD cleavage by γ-secretase inhibitor, bortezomib significantly increased expression of Notch Hes1 and Hey1 genes as well as perforin, granzyme B and eomesodermin in activated CD8+T-cells. Data suggest that bortezomib can rescue tumor-induced dysfunction of CD8+T-cells by its intrinsic stimulatory effects promoting NICD-NFκB crosstalk. These findings provide novel insights on using bortezomib not only as an agent to sensitize tumors to cell death but also to provide lymphocyte-stimulatory effects, thereby overcoming immunosuppressive actions of tumor on anti-tumor T-cell functions.

Wang D, Xu J, Shi G, Yin G
Molecular markers' progress of breast cancer treatment efficacy.
J Cancer Res Ther. 2015; 11 Suppl 1:C11-5 [PubMed] Related Publications
Breast cancer is a famous malignant tumor which is caused by varieties of mutation in multiple genes. In order to detect breast cancer in an earlier time and take appropriate treatment which includes  predicting treatment efficacy, we need a more accurate method of discovering the occurrence of breast cancer. With the development of molecular biology and biological detection technologies continue to emerge, molecular markers of breast cancer have gaining more and more widespread attention, and combining with molecular markers of breast cancer in clinical characteristic of individual treatment for breast cancer has become possible. In this paper, we will focus on the advances about molecular markers associated with treatment efficacy in recent years.

Gui QF, Lu HF, Zhang CX, et al.
Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model.
Genet Mol Res. 2015; 14(2):5642-51 [PubMed] Related Publications
The intestinal microflora affects inflammation and immunity, not only locally at the mucosal level but also systemically, raising the question of whether the microflora affects inflammatory processes that contribute to cancer and its therapy. Prebiotics have also been found to play an antitumor role that is not limited to the gut. We investigated the antitumor roles of the intestinal microbiota using the Lewis lung cancer mouse model. In mice treated with cisplatin combined with ABX (an antibiotic cocktail of vancomycin, ampicillin, and neomycin), which can destroy the host commensal microflora, the tumor size was larger than in mice on a single treatment of cisplatin. Moreover, the survival rate of mice treated with cisplatin combined with ABX was significantly reduced. In contrast, mice treated with cisplatin combined with Lactobacillus bacteria had smaller tumors and an improved survival rate. Further study on gene expression indicated that ABX can partially impair the function of cisplatin by upregulating the expression of VEGFA and downregulating the expression of BAX and CDKN1B. The expression of IFN-γ, GZMB, and PRF1 in the CD8(+) T cells of these mice was reduced by ABX, indicating an immuno-enhancement role of commensal microbiota. Conversely, Lactobacillus co-treatment mice showed an enhanced antitumor response with upregulated IFN-γ, GZMB, and PRF1 expression. We conclude that the commensal microbiota contributes to the anti-lung cancer response and probiotics co-treatment can enhance the antigrowth and proapoptotic effects of cisplatin.

Zhang H, Kheradpour A, Rowsell EH, et al.
Cytotoxic Molecule-positive Epstein-Barr Virus-associated Peripheral T-cell Lymphoma in a 20-Month-old Child: A Case Report and Review of the Literature.
J Pediatr Hematol Oncol. 2015; 37(8):e475-80 [PubMed] Related Publications
Peripheral T-cell lymphoma (PTCL) is rare in children. Expression of cytotoxic molecules (CM) in nodal PTCL has unique clinicopathologic features, including an Epstein-Barr virus (EBV) association. However, CM+, EBV-associated PTCL is extremely rare in the childhood, with only 1 study having been reported to date, including both pediatric and adult patients. We report a case of CM+ PTCL in a 20-month-old boy with left neck lymphadenopathy as well as multiple visceral lesions. A biopsied lymph node was diffusely infiltrated by atypical lymphoid cells with a CD4/CD8, granzyme B+, perforin+, and TIA-1+ phenotype, and EBV positivity by in situ hybridization. Rearrangements of the TCR γ-chain and β-chain genes were demonstrated by polymerase chain reaction. Ancillary genetic studies detected trisomy 2, trisomy 10, a structurally abnormal 6p, and additional copies of the IRF4 gene. Multiple bone marrow biopsies failed to show any evidence of tumor, histiocytic hyperplasia, or hemophagocytosis. This lesion was therefore diagnosed as "CM+, EBV-associated high-grade peripheral T-cell lymphoma." After 5 cycles of chemotherapy, the patient was in remission 8 months following initial diagnosis. To our knowledge, this represents the youngest child with this rare tumor in the published literature, and showing an unusually favorable initial response to therapy.

Beyer U, Krönung SK, Leha A, et al.
Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death.
Cell Death Differ. 2016; 23(1):64-75 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression.

Chiu CT, Hsuan SW, Lin HH, et al.
Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.
J Food Sci. 2015; 80(3):H649-58 [PubMed] Related Publications
Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent.

Zumwalt TJ, Arnold M, Goel A, Boland CR
Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB+ CD8+ T-cell infiltration.
Oncotarget. 2015; 6(5):2981-91 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Transcriptional expression of CXCR3 and CCR5 cognate chemokines correlate with CD8+ T-cell infiltration and prolonged survival in colorectal cancer (CRC). These findings were derived mainly from paraffin embedded tissues; thus little is known about the secretion pattern of CD8+ T-cell targeting chemokines from CRCs. Therefore, we developed and introduced a novel platform that assesses the immune mediators that are secreted from live excised tissues. Transcriptional profiling and unsupervised hierarchical clustering of 43 CRCs based on expression of genes that represent the adaptive immune response were used to predict tumors that are strong secretors of T-cell targeting chemokines. Secretion of these mediators were corroborated using flow cytometric analysis of T-cell lineage markers: CD4, CD8, IFN-γ, and GzmB. We demonstrate that stronger secretion of CXCL10 (CXCR3 ligand) and CCL5 (CCR5 ligand) and infiltration of GzmB+CD8+ cytotoxic T-lymphocytes (CTLs) and IFN-γ+CD4+ helper T-cells can be predicted by transcriptional profiling, and that CRCs with stronger T-cell immunity were proportionally skewed towards early TNM stages and lacked distant organ metastasis. Our study represents the first functional analysis of secreted immune mediators from CRCs beyond immunohistochemistry and real-time PCR, and observed active physiological interactions between the tumor cells and the immune cells in the tumor microenvironment.

Harris RM, Williams TD, Waring RH, Hodges NJ
Molecular basis of carcinogenicity of tungsten alloy particles.
Toxicol Appl Pharmacol. 2015; 283(3):223-33 [PubMed] Related Publications
The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.

Schmidt F, Kunze M, Loock AC, Dobbelstein M
Screening analysis of ubiquitin ligases reveals G2E3 as a potential target for chemosensitizing cancer cells.
Oncotarget. 2015; 6(2):617-32 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Cisplatin is widely used against various tumors, but resistance is commonly encountered. By inducing DNA crosslinks, cisplatin triggers DNA damage response (DDR) and cell death. However, the molecular determinants of how cells respond to cisplatin are incompletely understood. Since ubiquitination plays a major role in DDR, we performed a high-content siRNA screen targeting 327 human ubiquitin ligases and 92 deubiquitinating enzymes in U2OS cells, interrogating the response to cisplatin. We quantified γH2AX by immunofluorescence and image analysis as a read-out for DNA damage. Among known mediators of DDR, the screen identified the ubiquitin ligase G2E3 as a new player in the response to cisplatin. G2E3 depletion led to decreased γH2AX levels and decreased phosphorylation of the checkpoint kinase 1 (Chk1) upon cisplatin. Moreover, loss of G2E3 triggered apoptosis and decreased proliferation of cancer cells. Treating cells with the nucleoside analogue gemcitabine led to increased accumulation of single-stranded DNA upon G2E3 depletion, pointing to a defect in replication. Furthermore, we show that endogenous G2E3 levels in cancer cells were down-regulated upon chemotherapeutic treatment. Taken together, our results suggest that G2E3 is a molecular determinant of the DDR and cell survival, and that its loss sensitizes tumor cells towards DNA-damaging treatment.

Della Peruta M, Badar A, Rosales C, et al.
Preferential targeting of disseminated liver tumors using a recombinant adeno-associated viral vector.
Hum Gene Ther. 2015; 26(2):94-103 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
A novel selectively targeting gene delivery approach has been developed for advanced hepatocellular carcinoma (HCC), a leading cause of cancer mortality whose prognosis remains poor. We combine the strong liver tropism of serotype-8 capsid-pseudotyped adeno-associated viral vectors (AAV8) with a liver-specific promoter (HLP) and microRNA-122a (miR-122a)-mediated posttranscriptional regulation. Systemic administration of our AAV8 construct resulted in preferential transduction of the liver and encouragingly of HCC at heterotopic sites, a finding that could be exploited to target disseminated disease. Tumor selectivity was enhanced by inclusion of miR-122a-binding sequences (ssAAV8-HLP-TK-122aT4) in the expression cassette, resulting in abrogation of transgene expression in normal murine liver but not in HCC. Systemic administration of our tumor-selective vector encoding herpes simplex virus-thymidine kinase (TK) suicide gene resulted in a sevenfold reduction in HCC growth in a syngeneic murine model without toxicity. In summary, we have developed a systemically deliverable gene transfer approach that enables high-level expression of therapeutic genes in HCC but not normal tissues, thus improving the prospects of safe and effective treatment for advanced HCC.

Rahbar R, Lin A, Ghazarian M, et al.
B7-H4 expression by nonhematopoietic cells in the tumor microenvironment promotes antitumor immunity.
Cancer Immunol Res. 2015; 3(2):184-95 [PubMed] Related Publications
The B7 family plays a critical role in both positive and negative regulation of immune responses by engaging a variety of receptors on lymphocytes. Importantly, blocking coinhibitory molecules using antibodies specific for CTLA-4 and PD-1 enhances tumor immunity in a subset of patients. Therefore, it is critical to understand the role of different B7 family members since they may be suitable therapeutic targets. B7-H4 is another member that inhibits T-cell function, and it is also upregulated on a variety of tumors and has been proposed to promote tumor growth. Here, we investigate the role of B7-H4 in tumor development and show that B7-H4 expression inhibits tumor growth in two mouse models. Furthermore, we show that B7-H4 expression is required for antitumor immune responses in a mouse model of mammary tumorigenesis. We found that the expression levels of B7-H4 correlate with MHC class I expression in both mouse and human samples. We show that IFNγ upregulates B7-H4 expression on mouse embryo fibroblasts and that the upregulation of B7-H4 on tumors is dependent on T cells. Notably, patients with breast cancer with increased B7-H4 expression show a prolonged time to recurrence. These studies demonstrate a positive role for B7-H4 in promoting antitumor immunity.

Mrizak D, Martin N, Barjon C, et al.
Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells.
J Natl Cancer Inst. 2015; 107(1):363 [PubMed] Related Publications
BACKGROUND: Regulatory T cells (Treg) and tumor-exosomes are thought to play a role in preventing the rejection of malignant cells in patients bearing nasopharyngeal carcinoma (NPC).
METHODS: Treg recruitment by exosomes derived from NPC cell lines (C15/C17-Exo), exosomes isolated from NPC patients' plasma (Patient-Exo), and CCL20 were tested in vitro using Boyden chamber assays and in vivo using a xenograft SCID mouse model (n = 5), both in the presence and absence of anti-CCL20 monoclonal antibodies (mAb). Impact of these NPC exosomes (NPC-Exo) on Treg phenotype and function was determined using adapted assays (FACS, Q-PCR, ELISA, and MLR). Experiments were performed in comparison with exosomes derived from plasma of healthy donors (HD-Exo). The Student's t test was used for group comparisons. All statistical tests were two-sided.
RESULTS: CCL20 allowed the intratumoral recruitment of human Treg. NPC-Exo also facilitated Treg recruitment (3.30 ± 0.34 fold increase, P < .001), which was statistically significantly inhibited (P < .001) by an anti-CCL20 blocking mAb. NPC-Exo also recruited conventional CD4(+)CD25(-) T cells and mediated their conversion into inhibitory CD4(+)CD25(high) cells. Moreover, NPC-Exo enhanced (P = .0048) the expansion of human Treg, inducing the generation of Tim3(Low) Treg with increased expression of CD25 and FOXP3. Finally, NPC-Exo induced an overexpression of cell markers associated with Treg phenotype, properties and recruitment capacity. For example, GZMB mean fold change was 21.45 ± 1.75 (P < .001). These results were consistent with a stronger suppression of responder cells' proliferation and the secretion of immunosuppressive cytokines (IL10, TGFB1).
CONCLUSION: Interactions between NPC-Exo and Treg represent a newly defined mechanism that may be involved in regulating peripheral tolerance by tumors and in supporting immune evasion in human NPC.

Mhaidat NM, Al-azzam SI, Alzoubi KH, et al.
Granzyme B gene polymorphisms, colorectal cancer risk, and metastasis.
J Cancer Res Ther. 2014 Jul-Sep; 10(3):587-90 [PubMed] Related Publications
CONTEXT: The human granzyme B protein (GrB), which is encoded by granzyme B gene (GZMB), plays a major role in eliminating cancer cells. Polymorphisms of GZMB gene such as Q55R, P94A, and Y247H have been shown to affect GrB activity and the subsequent cancer risk.
AIMS: In this study, we examined possible association between GZMB gene polymorphisms and susceptibility to colorectal cancer (CRC). In addition, the contribution of the examined polymorphisms to colorectal cancer metastasis to lymph node and distant organ was investigated.
MATERIALS AND METHODS: A total of 50 venous blood samples collected from CRC patients were analyzed to identify the Q55R, P94A, and Y247H polymorphisms. As a control group, 20 healthy subjects were enrolled in the study. The Q55R, P94A, and Y247H polymorphisms were genotyped by polymerase chain reaction and sequencing method.
STATISTICAL ANALYSIS: Data analysis was carried out using the statistical package SPSS version 17 to compute all descriptive statistics. Chi-square and Fisher exact tests (if the expected value in any cell is less than 5) were used to evaluate the genotype distribution and allele frequencies of the studied polymorphism.
RESULTS: The results revealed that the distribution of Q55R, P94A, and Y247H are not significantly different in CRC patients compared to the controls. In addition, no association between Q55R, P94A, and Y247H polymorphisms and its metastasis to lymph node and distant organ was detected.
CONCLUSIONS: These results suggest that GZMB Q55R, P94A, and Y247H polymorphisms are not significantly associated with colon cancer incidence, or metastasis to lymph node and distant organ. However, this study was limited by its relatively small sample size; thus, to confirm current findings, a bigger multicenter design study is warranted.

Zhang W, Zhang C, Li W, et al.
CD8+ T-cell immunosurveillance constrains lymphoid premetastatic myeloid cell accumulation.
Eur J Immunol. 2015; 45(1):71-81 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Increasing evidence suggests that premetastatic niches, consisting mainly of myeloid cells, provide microenvironment critical for cancer cell recruitment and survival to facilitate metastasis. While CD8(+) T cells exert immunosurveillance in primary human tumors, whether they can exert similar effects on myeloid cells in the premetastatic environment is unknown. Here, we show that CD8(+) T cells are capable of constraining premetastatic myeloid cell accumulation by inducing myeloid cell apoptosis in C57BL/6 mice. Ag-specific CD8(+) T-cell cytotoxicity against myeloid cells in premetastatic lymph nodes is compromised by Stat3. We demonstrate here that Stat3 ablation in myeloid cells leads to CD8(+) T-cell activation and increased levels of IFN-γ and granzyme B in the premetastatic environment. Furthermore, Stat3 negatively regulates soluble Ag cross-presentation by myeloid cells to CD8(+) T cells in the premetastatic niche. Importantly, in tumor-free lymph nodes of melanoma patients, infiltration of activated CD8(+) T cells inversely correlates with STAT3 activity, which is associated with a decrease in number of myeloid cells. Our study suggested a novel role for CD8(+) T cells in constraining myeloid cell activity through direct killing in the premetastatic environment, and the therapeutic potential by targeting Stat3 in myeloid cells to improve CD8(+) T-cell immunosurveillance against metastasis.

Mahalingam J, Lin CY, Chiang JM, et al.
CD4⁺ T cells expressing latency-associated peptide and Foxp3 are an activated subgroup of regulatory T cells enriched in patients with colorectal cancer.
PLoS One. 2014; 9(9):e108554 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Latency-associated peptide (LAP) - expressing regulatory T cells (Tregs) are important for immunological self-tolerance and immune homeostasis. In order to investigate the role of LAP in human CD4⁺Foxp3⁺ Tregs, we designed a cross-sectional study that involved 42 colorectal cancer (CRC) patients. The phenotypes, cytokine-release patterns, and suppressive ability of Tregs isolated from peripheral blood and tumor tissues were analyzed. We found that the population of LAP-positive CD4⁺Foxp3⁺ Tregs significantly increased in peripheral blood and cancer tissues of CRC patients as compared to that in the peripheral blood and tissues of healthy subjects. Both LAP⁺ and LAP⁻ Tregs had a similar effector/memory phenotype. However, LAP⁺ Tregs expressed more effector molecules, including tumor necrosis factor receptor II, granzyme B, perforin, Ki67, and CCR5, than their LAP⁻ negative counterparts. The in vitro immunosuppressive activity of LAP⁺ Tregs, exerted via a transforming growth factor-β-mediated mechanism, was more potent than that of LAP⁻ Tregs. Furthermore, the enrichment of LAP⁺ Treg population in peripheral blood mononuclear cells (PBMCs) of CRC patients correlated with cancer metastases. In conclusion, we found that LAP⁺ Foxp3⁺ CD4⁺ Treg cells represented an activated subgroup of Tregs having more potent regulatory activity in CRC patients. The increased frequency of LAP⁺ Tregs in PBMCs of CRC patients suggests their potential role in controlling immune response to cancer and presents LAP as a marker of tumor-specific Tregs in CRC patients.

Landmann H, Proia DA, He S, et al.
UDP glucuronosyltransferase 1A expression levels determine the response of colorectal cancer cells to the heat shock protein 90 inhibitor ganetespib.
Cell Death Dis. 2014; 5:e1411 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
HSP90 inhibition represents a promising route to cancer therapy, taking advantage of cancer cell-inherent proteotoxic stress. The HSP90-inhibitor ganetespib showed benefit in advanced clinical trials. This raises the need to identify the molecular determinants of treatment response. We tested the efficacy of ganetespib on a series of colorectal cancer (CRC)-derived cell lines and correlated their sensitivities with comprehensive gene expression analysis. Notably, the drug concentration required for 50% growth inhibition (IC50) varied up to 70-fold (from 36 to 2500 nM) between different cell lines. Correlating cell line-specific IC50s with the corresponding gene expression patterns revealed a strong association between ganetespib resistance (IC50>500 nM) and high expression of the UDP glucuronosyltransferase 1A (UGT1A) gene cluster. Moreover, CRC tumor samples showed a comparable distribution of UGT1A expression levels. The members of the UGT1A gene family are known as drug-conjugating liver enzymes involved in drug excretion, but their function in tumor cells is hardly understood. Chemically unrelated HSP90 inhibitors, for example, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), did not show correlation of drug sensitivities with UGT1A levels, whereas the ganetespib-related compound NVP-AUY922 did. When the most ganetespib-resistant cell line, HT29, was treated with ganetespib, the levels of HSP90 clients were unaffected. However, HT29 cells became sensitized to the drug, and HSP90 client proteins were destabilized by ganetespib upon siRNA-mediated UGT1A knockdown. Conversely, the most ganetespib-sensitive cell lines HCT116 and SW480 became more tolerant toward ganetespib upon UGT1A overexpression. Mechanistically, ganetespib was rapidly glucuronidated and excreted in resistant but not in sensitive CRC lines. We conclude that CRC cell-expressed UGT1A inactivates ganetespib and other resorcinolic Hsp90 inhibitors by glucuronidation, which renders the drugs unable to inhibit Hsp90 and thereby abrogates their biological activity. UGT1A levels in tumor tissues may be a suitable predictive biomarker to stratify CRC patients for ganetespib treatment.

Pearson JD, Zhang J, Wu Z, et al.
Expression of granzyme B sensitizes ALK+ ALCL tumour cells to apoptosis-inducing drugs.
Mol Cancer. 2014; 13:199 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
BACKGROUND: The serine protease Granzyme B (GzB) is primarily expressed by cytotoxic T lymphocytes and natural killer cells, and functions in allowing these cells to induce apoptosis in virally-infected or transformed cells. Cancers of both lymphoid and non-lymphoid origin also express GzB, and in some cases this expression has been linked to pathogenesis or sensitizing tumour cells to cell death. For example, GzB expression in urothelial carcinoma was implicated in promoting tumour cell invasion, whereas its expression in nasal-type NK/T lymphomas was found to correlate with increased apoptosis. GzB expression is also a hallmark of the non-Hodgkin lymphoma, anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL). Given the fact that ALK+ ALCL exhibits high levels of apoptosis and is typically responsive to conventional chemotherapy, we examined whether GzB expression might play a role in sensitizing ALK+ ALCL tumour cells to apoptosis.
METHODS: ALK+ ALCL cell lines stably expressing GzB or non-targeting (control) shRNA were generated and apoptosis was examined by anti-PARP western blotting and terminal deoxynucleotidyl transferase dUTP nick end labelling. Both spontaneous apoptosis and apoptosis in response to treatment with staurosporine or doxorubicin were investigated. In order to assess whether additional granzymes might be important in promoting cell death in ALK+ ALCL, we examined whether other human granzymes were expressed in ALK+ ALCL cell lines using reverse-transcriptase PCR and western blotting.
RESULTS: Expression of several GzB shRNAs in multiple ALK+ ALCL cell lines resulted in a significant decrease in GzB levels and activity. While spontaneous apoptosis was similar in ALK+ ALCL cell lines expressing either GzB or control shRNA, GzB shRNA-expressing cells were less sensitive to staurosporine or doxorubicin-induced apoptosis as evidenced by reduced PARP cleavage and decreased DNA fragmentation. Furthermore, we found that GzB is the only granzyme that is expressed at significant levels in ALK+ ALCL cell lines.
CONCLUSIONS: Our findings are the first to demonstrate that GzB expression sensitizes ALK+ ALCL cell lines to drug-induced apoptosis. This suggests that GzB expression may be a factor contributing to the favourable response of this lymphoma to treatment.

Tanase CP, Neagu AI, Necula LG, et al.
Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics.
World J Gastroenterol. 2014; 20(31):10790-801 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.

Ertych N, Stolz A, Stenzinger A, et al.
Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells.
Nat Cell Biol. 2014; 16(8):779-91 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Chromosomal instability (CIN) is defined as the perpetual missegregation of whole chromosomes during mitosis and represents a hallmark of human cancer. However, the mechanisms influencing CIN and its consequences on tumour growth are largely unknown. We identified an increase in microtubule plus-end assembly rates as a mechanism influencing CIN in colorectal cancer cells. This phenotype is induced by overexpression of the oncogene AURKA or by loss of the tumour suppressor gene CHK2, a genetic constitution found in 73% of human colorectal cancers. Increased microtubule assembly rates are associated with transient abnormalities in mitotic spindle geometry promoting the generation of lagging chromosomes and influencing CIN. Reconstitution of proper microtubule assembly rates by chemical or genetic means suppresses CIN and thereby, unexpectedly, accelerates tumour growth in vitro and in vivo. Thus, we identify a fundamental mechanism influencing CIN in cancer cells and reveal its adverse consequence on tumour growth.

El-Serafi I, Abedi-Valugerdi M, Potácová Z, et al.
Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.
PLoS One. 2014; 9(1):e86619 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
BACKGROUND: Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation.
METHODS: We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes.
RESULTS: Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment.
CONCLUSION: This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

Chang HC, Lewis D, Tung CY, et al.
Soypeptide lunasin in cytokine immunotherapy for lymphoma.
Cancer Immunol Immunother. 2014; 63(3):283-95 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Immunostimulatory cytokines can enhance anti-tumor immunity and are part of the therapeutic armamentarium for cancer treatment. We have previously reported that post-transplant lymphoma patients have an acquired deficiency of signal transducer and activator of transcription 4, which results in defective IFNγ production during clinical immunotherapy. With the goal of further improving cytokine-based immunotherapy, we examined the effects of a soybean peptide called lunasin that synergistically works with cytokines on natural killer (NK) cells. Peripheral blood mononuclear cells of healthy donors and post-transplant lymphoma patients were stimulated with or without lunasin in the presence of IL-12 or IL-2. NK activation was evaluated, and its tumoricidal activity was assessed using in vitro and in vivo tumor models. Chromatin immunoprecipitation assay was performed to evaluate the histone modification of gene loci that are regulated by lunasin and cytokine. Adding lunasin to IL-12- or IL-2-stimulated NK cells demonstrated synergistic effects in the induction of IFNG and GZMB involved in cytotoxicity. The combination of lunasin and cytokines (IL-12 plus IL-2) was capable of restoring IFNγ production by NK cells from post-transplant lymphoma patients. In addition, NK cells stimulated with lunasin plus cytokines displayed higher tumoricidal activity than those stimulated with cytokines alone using in vitro and in vivo tumor models. The underlying mechanism responsible for the effects of lunasin on NK cells is likely due to epigenetic modulation on target gene loci. Lunasin represents a different class of immune modulating agent that may augment the therapeutic responses mediated by cytokine-based immunotherapy.

Shamim Z, Spellman S, Haagenson M, et al.
Polymorphism in the interleukin-7 receptor-alpha and outcome after allogeneic hematopoietic cell transplantation with matched unrelated donor.
Scand J Immunol. 2013; 78(2):214-20 [PubMed] Article available free on PMC after 01/07/2017 Related Publications
Interleukin-7 (IL-7) is essential for T cell development in the thymus and maintenance of peripheral T cells. The α-chain of the IL-7R is polymorphic with the existence of SNPs that give rise to non-synonymous amino acid substitutions. We previously found an association between donor genotypes and increased treatment-related mortality (TRM) (rs1494555G) and acute graft versus host disease (aGvHD) (rs1494555G and rs1494558T) after hematopoietic cell transplantation (HCT). Some studies have confirmed an association between rs6897932C and multiple sclerosis. In this study, we evaluated the prognostic significance of IL-7Rα SNP genotypes in 590-recipient/donor pairs that received HLA-matched unrelated donor HCT for haematological malignancies. Consistent with the primary studies, the rs1494555GG and rs1494558TT genotypes of the donor were associated with aGvHD and chronic GvHD in the univariate analysis. The Tallele of rs6897932 was suggestive of an association with increased frequency of relapse by univariate analysis (P = 0.017) and multivariate analysis (P = 0.015). In conclusion, this study provides further evidence of a role of the IL-7 pathway and IL-7Rα SNPs in HCT.

Gupta B, Iancu EM, Gannon PO, et al.
Simultaneous coexpression of memory-related and effector-related genes by individual human CD8 T cells depends on antigen specificity and differentiation.
J Immunother. 2012; 35(6):488-501 [PubMed] Related Publications
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GZMB, Cancer Genetics Web: http://www.cancer-genetics.org/GZMB.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999