HYAL2

Gene Summary

Gene:HYAL2; hyaluronidase 2
Aliases: LUCA2
Location:3p21.31
Summary:This gene encodes a weak acid-active hyaluronidase. The encoded protein is similar in structure to other more active hyaluronidases. Hyaluronidases degrade hyaluronan, one of the major glycosaminoglycans of the extracellular matrix. Hyaluronan and fragments of hyaluronan are thought to be involved in cell proliferation, migration and differentiation. Although it was previously thought to be a lysosomal hyaluronidase that is active at a pH below 4, the encoded protein is likely a GPI-anchored cell surface protein. This hyaluronidase serves as a receptor for the oncogenic virus Jaagsiekte sheep retrovirus. The gene is one of several related genes in a region of chromosome 3p21.3 associated with tumor suppression. This gene encodes two alternatively spliced transcript variants which differ only in the 5' UTR.[provided by RefSeq, Mar 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:hyaluronidase-2
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (59)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 02 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression Profiling
  • Xenopus laevis
  • Alternative Splicing
  • Virus Internalization
  • FISH
  • Lung Cancer
  • Non-Small Cell Lung Cancer
  • GPI-Linked Proteins
  • Staging
  • Chromosome 3
  • Biomarkers, Tumor
  • Up-Regulation
  • Protein Isoforms
  • Multigene Family
  • Triple Negative Breast Cancer
  • Cell Adhesion Molecules
  • Hyaluronoglucosaminidase
  • Cancer Gene Expression Regulation
  • Tumor Suppressor Gene
  • Case-Control Studies
  • Glucuronosyltransferase
  • Semaphorins
  • Adenocarcinoma
  • Neoplasm Proteins
  • Signal Transduction
  • Messenger RNA
  • Tumor Suppressor Proteins
  • Bladder Cancer
  • Hyaluronan Synthases
  • Species Specificity
  • Young Adult
  • DNA Methylation
  • Epigenetics
  • Breast Cancer
  • Disease Progression
  • Squamous Cell Carcinoma
  • Hyaluronic Acid
  • Stromal Cells
  • RTPCR
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HYAL2 (cancer-related)

Edjekouane L, Benhadjeba S, Jangal M, et al.
Proximal and distal regulation of the HYAL1 gene cluster by the estrogen receptor α in breast cancer cells.
Oncotarget. 2016; 7(47):77276-77290 [PubMed] Free Access to Full Article Related Publications
Chromosomal and genome abnormalities at the 3p21.3 locus are frequent events linked to epithelial cancers, including ovarian and breast cancers. Genes encoded in the 3p21.3 cluster include HYAL1, HYAL2 and HYAL3 members of hyaluronidases involved in the breakdown of hyaluronan, an abundant component of the vertebrate extracellular matrix. However, the transcriptional regulation of HYAL genes is poorly defined. Here, we identified the estrogen receptor ERα as a negative regulator of HYAL1 expression in breast cancer cells. Integrative data mining using METABRIC dataset revealed a significant inverse correlation between ERα and HYAL1 gene expression in human breast tumors. ChIP-Seq analysis identified several ERα binding sites within the 3p21.3 locus, supporting the role of estrogen as an upstream signal that diversely regulates the expression of 3p21.3 genes at both proximal and distal locations. Of these, HYAL1 was repressed by estrogen through ERα binding to a consensus estrogen response element (ERE) located in the proximal promoter of HYAL1 and flanked by an Sp1 binding site, required to achieve optimal estrogen repression. The repressive chromatin mark H3K27me3 was increased at the proximal HYAL1 ERE but not at other EREs contained in the cluster, providing a mechanism to selectively downregulate HYAL1. The HYAL1 repression was also specific to ERα and not to ERβ, whose expression did not correlate with HYAL1 in human breast tumors. This study identifies HYAL1 as an ERα target gene and provides a functional framework for the direct effect of estrogen on 3p21.3 genes in breast cancer cells.

van der Heijden AG, Mengual L, Lozano JJ, et al.
A five-gene expression signature to predict progression in T1G3 bladder cancer.
Eur J Cancer. 2016; 64:127-36 [PubMed] Related Publications
OBJECTIVE: The aim of this study was to analyze tumour gene expression profiles of progressive and non-progressive T1G3 bladder cancer (BC) patients to develop a gene expression signature to predict tumour progression.
METHODS: Retrospective, multicenter study of 96 T1G3 BC patients without carcinoma in situ (CIS) who underwent a transurethral resection. Formalin-fixed paraffin-embedded tissue samples were collected. Global gene expression patterns were analyzed in 21 selected samples from progressive and non-progressive T1G3 BC patients using Illumina microarrays. Expression levels of 94 genes selected based on microarray data and based on literature were studied by quantitative polymerase chain reaction (qPCR) in an independent series of 75 progressive and non-progressive T1G3 BC patients. Univariate logistic regression was used to identify individual predictors. A variable selection method was used to develop a multiplex biomarker model. Discrimination of the model was measured by area under the receiver-operating characteristic curve. Interaction networks between the genes of the model were built by GeneMANIA Cytoscape plugin.
RESULTS: A total of 1294 genes were found differentially expressed between progressive and non-progressive patients. Differential expression of 15 genes was validated by qPCR in an additional set of samples. A five-gene expression signature (ANXA10, DAB2, HYAL2, SPOCD1, and MAP4K1) discriminated progressive from non-progressive T1G3 BC patients with a sensitivity of 79% and a specificity of 86% (AUC = 0.83). Direct interactions between the five genes of the model were not found.
CONCLUSIONS: Progressive and non-progressive T1G3 bladder tumours have shown different gene expression patterns. To identify T1G3 BC patients with a high risk of progression, a five-gene expression signature has been developed.

Mareschal S, Dubois S, Viailly PJ, et al.
Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma.
Genes Chromosomes Cancer. 2016; 55(3):251-67 [PubMed] Related Publications
Despite the many efforts already spent to enumerate somatic mutations in diffuse large B-cell lymphoma (DLBCL), previous whole-genome and whole-exome studies conducted on patients of mixed outcomes failed at characterizing the 30% of patients who will relapse or resist current immunochemotherapies. To address this issue, we performed whole-exome sequencing of normal/tumoral DNA pairs in 14 relapsed/refractory (R/R) patients subclassified by full-transcriptome arrays (six activated B-cell like, three germinal center B-cell like, and five primary mediastinal B-cell lymphomas), from the LNH-03 LYSA clinical trial program. Aside from well-known DLBCL features, gene and pathway level recurrence analyses proposed several interesting leads including TBL1XR1 and activating mutations in IRF4 or in the insulin regulation pathway. Sequencing-based copy number analysis defined 23 short recurrently altered regions involving genes such as REL, CDKN2A, HYAL2, and TP53. Moreover, it highlighted mutations in genes such as GNA13, CARD11, MFHAS1, and PCLO as associated with secondary variant allele amplification events. The five primary mediastinal B-cell lymphomas (PMBL), while unexpected in a R/R cohort, showed a significantly higher mutation rate (P = 0.003) and provided many insights on this classical Hodgkin lymphoma related subtype. Novel genes such as XPO1, MFHAS1, and ITPKB were found particularly mutated, along with various cytokine-based signaling pathways. Among these analyses, somatic events in the NF-κB pathway were found preponderant in the three DLBCL subtypes, confirming its major implication in DLBCL aggressiveness and pinpointing several new candidate genes.

Pfütze K, Benner A, Hoffmeister M, et al.
Methylation status at HYAL2 predicts overall and progression-free survival of colon cancer patients under 5-FU chemotherapy.
Genomics. 2015; 106(6):348-54 [PubMed] Related Publications
DNA methylation variations in gene promoter regions are well documented tumor-specific alterations in human malignancies including colon cancer, which may influence tumor behavior and clinical outcome. As a subset of colon cancer patients does not benefit from adjuvant chemotherapy, predictive biomarkers are desirable. Here, we describe that DNA methylation levels at CpG loci of hyaluronoglucosaminidase 2 (HYLA2) could be used to identify stage II and III colon cancer patients who are most likely to benefit from 5-flourouracil (5-FU) chemotherapy with respect to overall survival and progression-free survival.

Maierthaler M, Kriegsmann M, Peng C, et al.
S100P and HYAL2 as prognostic markers for patients with triple-negative breast cancer.
Exp Mol Pathol. 2015; 99(1):180-7 [PubMed] Related Publications
Triple-negative breast cancer (TNBC) is a group of very aggressive breast tumours, characterised by lack of expression of oestrogen receptor (ER), progesterone receptor (PR) and erb-b2 receptor tyrosine kinase 2 (ERBB2/HER2). Nevertheless, TNBCs show different clinical characteristics and are very diverse regarding prognostic outcome. So far, only a few prognostic markers for TNBC have been reported that could be helpful for therapeutic stratification. Here we have analysed the expression of S100P and HYAL2 using immunohistochemistry (IHC) in a TNBC cohort of 98 patients with a follow-up for recurrence and death. TNBC patients with high expression of both proteins showed significantly shorter progression-free survival (PFS) (mean PFS=35.9months, P=0.001) compared to TNBC patients with high expression levels of only one of the proteins (mean PFS=69.4months) and to TNBC patients with low expression of both proteins (mean PFS=83.3months). Moreover, multivariate Cox-regression model showed the combined expression of S100P and HYAL2 as independent prognostic factor for PFS (P=0.001). The expression of S100P and HYAL2 indicated similar prognostic effect to the overall survival (OS) of TNBC patients. In addition, high expression levels of both S100P and HYAL2 showed significant association with different clinicopathological characteristics, such as more recurrence events (P=0.004), and higher occurrence of metastasis (P=0.002). Our study proposes S100P and HYAL2 as potential prognostic markers for TNBC.

Nykopp TK, Pasonen-Seppänen S, Tammi MI, et al.
Decreased hyaluronidase 1 expression is associated with early disease recurrence in human endometrial cancer.
Gynecol Oncol. 2015; 137(1):152-9 [PubMed] Related Publications
OBJECTIVE: Hyaluronidases (HYAL1 and HYAL2) are key enzymes in the degradation of hyaluronan, and their expression has been altered in various cancer types. We previously showed that hyaluronan accumulation in endometrial carcinomas was correlated with decreased mRNA expression of the HYAL genes. In this study, we analyzed HYAL1 and HYAL2 protein expressions in normal and precancerous endometrial tissues and in endometrial carcinomas. We also investigated whether the protein levels were associated with clinicopathological factors, invasion, and disease recurrence.
METHODS: A total of 343 tissue specimens from normal, atrophic, hypertrophic, and neoplastic endometria were analyzed immunohistochemically for HYAL1 and HYAL2 expressions. The results were correlated with clinicopathological factors, the expression of the epithelial-mesenchymal transition marker, E-cadherin, and disease recurrence.
RESULTS: Reduced HYAL1 expression was associated with the progression of endometrial carcinomas towards higher grades and also with large tumor sizes, lymph node metastasis, and lymphovascular invasion. Reduced expression of both HYAL1 and HYAL2 was associated with deep myometrial invasion. HYAL2 expression was primarily constant in neoplastic tissues, but its expression was altered in different phases of the endometrial cycle. In addition, a reduction in HYAL1 expression was associated with the depletion of E-cadherin. In a multivariate analysis, reduced HYAL1 expression was an independent prognostic factor for early disease recurrence (HR 5.13, 95% CI: 1.131-23.270, p=0.034).
CONCLUSIONS: This study showed that reduced HYAL1 expression was associated with endometrial carcinoma aggressiveness, which further supported the role of hyaluronan degradation in cancer progression.

Yang R, Pfütze K, Zucknick M, et al.
DNA methylation array analyses identified breast cancer-associated HYAL2 methylation in peripheral blood.
Int J Cancer. 2015; 136(8):1845-55 [PubMed] Related Publications
Breast cancer (BC) is the leading cause of cancer-related mortality in women worldwide. Changes in DNA methylation in peripheral blood could be associated with malignancy at early stage. However, the BC-associated DNA methylation signatures in peripheral blood were largely unknown. Here, we performed a genome-wide methylation screening and identified a BC-associated differentially methylated CpG site cg27091787 in the hyaluronoglucosaminidase 2 gene (HYAL2) (discovery round with 72 BC case and 24 controls: p = 2.61 × 10(-9) adjusted for cell-type proportions). The substantially decreased methylation of cg27091787 in BC cases was confirmed in two validation rounds (first validation round with 338 BC case and 507 controls: p < 0.0001; second validation round with 189 BC case and 189 controls: p < 0.0001). In addition to cg27091787, the decreased methylation of a 650-bp CpG island shore of HYAL2 was also associated with increased risk of BC. Moreover, the expression and methylation of HYAL2 were inversely correlated with a p-value of 0.006. To note, the BC-associated decreased HYAL2 methylation was replicated in the T-cell fraction (p = 0.034). The cg27091787 methylation level enabled a powerful discrimination of early-stage BC cases (stages 0 and I) from healthy controls [area under curve (AUC) = 0.89], and was robust for the detection of BC in younger women as well (age < 50, AUC = 0.87). Our study reveals a strong association between decreased HYAL2 methylation in peripheral blood and BC, and provides a promising blood-based marker for the detection of early BC.

Siiskonen H, Poukka M, Tyynelä-Korhonen K, et al.
Inverse expression of hyaluronidase 2 and hyaluronan synthases 1-3 is associated with reduced hyaluronan content in malignant cutaneous melanoma.
BMC Cancer. 2013; 13:181 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hyaluronan is an extracellular matrix glycosaminoglycan involved in invasion, proliferation and metastasis of various types of carcinomas. In many cancers, aberrant hyaluronan expression implicates disease progression and metastatic potential. Melanoma is an aggressive skin cancer. The role of hyaluronan in melanoma progression including benign nevi and lymph node metastases has not been investigated earlier, nor the details of its synthesis and degradation.
METHODS: The melanocytic and dysplastic nevi, in situ melanomas, superficially and deeply invasive melanomas and their lymph node metastases were analysed immunohistochemically for the amount of hyaluronan, its cell surface receptor CD44, hyaluronan synthases 1-3 and hyaluronidases 1-2.
RESULTS: Hyaluronan content of tumoral cells in deeply invasive melanomas and metastatic lesions was clearly reduced compared to superficial melanomas or benign lesions. Furthermore, hyaluronan content in the stromal cells of benign nevi was higher than in the premalignant or malignant tumors. The immunopositivity of hyaluronidase 2 was significantly increased in the premalignant and malignant lesions indicating its specific role in the degradation of hyaluronan during tumor progression. Similarly, the expression of hyaluronan synthases 1-2 and CD44 receptor was decreased in the metastases compared to the primary melanomas.
CONCLUSIONS: These findings suggest that the reciprocal relationship between the degrading and synthesizing enzymes account for the alterations in hyaluronan content during the growth of melanoma. These results provide new information about hyaluronan metabolism in benign, premalignant and malignant melanocytic tumors of the skin.

Lin ZF, Shen XY, Lu FZ, et al.
Reveals new lung adenocarcinoma cancer genes based on gene expression.
Eur Rev Med Pharmacol Sci. 2012; 16(9):1249-56 [PubMed] Related Publications
BACKGROUND: Lung adenocarcinoma (LAC) is the most common type of lung cancer, accounting for 30-35% of all cases.
AIM: In this study we aim to predict potential genes and confirm pathways which are associated with LAC.
MATERIALS AND METHODS: By using the meta-analysis method, GSE10072 and GSE 2514 datasets were merged to find potential genes and pathways which are associated with LAC.
RESULTS: Our analysis indicated identified differentially expressed genes enriched in multicellular organismal metabolic process, gland development, and urogenital system development. Further, we predicted genes including EGF-like domain might be the potential target genes for further study, such as NGX6, MUC17, and Nel. In addition, a number of genes that associated with axon guidance, focal adhesion, and complement and coagulation cascades pathway might be also involved in LAC in a direct or indirectly manner.
CONCLUSIONS: Our analysis indicated identified differentially expressed genes enriched in multicellular organismal metabolic process, gland development, and urogenital system development We anticipate numerous advances in LAC research in the coming years based on our meta-analysis.

da Costa Prando E, Cavalli LR, Rainho CA
Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines.
Epigenetics. 2011; 6(12):1413-24 [PubMed] Free Access to Full Article Related Publications
Epigenetic mechanisms are frequently deregulated in cancer cells and can lead to the silencing of genes with tumor suppressor activities. The isoform A of the Ras-association domain family member 1 (RASSF1A) gene is one of the most frequently silenced transcripts in human tumors, however, few studies have simultaneously investigated epigenetic abnormalities associated with the 3p21.3 tumor suppressor gene cluster flanking RASSF1 (i.e., SEMA3B, HYAL3, HYAL2, HYAL1, TUSC2, RASSF1, ZMYND10, NPRL2, TMEM115, and CACNA2D2). This study aimed to investigate the role of epigenetic changes to these genes in seventeen breast cancer cell lines and in three non-tumorigenic epithelial breast cell lines (184A1, 184B5, and MCF 10A) and to evaluate the effect on gene expression of treatment with the demethylating agent 5-Aza-2'-deoxycytidine and/or Trichostatin A (TSA), a histone deacetylase inhibitor. We report that, although the RASSF1A isoform was determined to be epigenetically silenced in 15 of the 17 breast cancer cell lines, all the cell lines expressed the RASSF1C isoform. Five breast cancer cell lines overexpressed RASSF1C, when compared to the normal epithelial cell line 184A1. Furthermore, the genes HYAL1 and CACNA2D2 were significantly overexpressed after the treatments. After the combinated treatment, RASSF1A re-expression was accompanied by an increase in expression levels of the flanking genes. The Spearman's correlation coefficient indicated a positive co-regulation of the following gene pairs: RASSF1 and TUSC2 (r=0.64, p=0.002), RASSF1 and ZMYND10 (r=0.58, p=0.07), RASSF1 and NPRL2 (r=0.48, p=0.03), ZMYND10 and NPRL2 (r=0.71; p=0,0004), and NPRL2 and TMEM115 (r=0.66, p=0.001). Interestingly, the genes TUSC2, NPRL2 and TMEM115 were found to be unmethylated in each of the untreated cell lines. Chromatin immunoprecipitation using antibodies against the acetylated and trimethylated lysine 9 of histone H3 demonstrated low levels of histone methylation in these genes, which are located closest to RASSF1. These results provide evidence that epigenetic repression is involved in the down-regulation of multiple genes at 3p21.3 in breast cancer cells.

Nykopp TK, Rilla K, Tammi MI, et al.
Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma.
BMC Cancer. 2010; 10:512 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), and correlated them with hyaluronan content and HAS1-3 immunoreactivity.
METHODS: A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10), post-menopausal proliferative endometrium (n = 5), complex atypical hyperplasia (n = 4), grade 1 (n = 8) and grade 2 + 3 (n = 8) endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry.
RESULTS: The mRNA levels of HAS1-3 were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, HAS3 mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003). The median of HYAL1 mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006), and post-menopausal endometrium (p = 0.002), respectively. HYAL2 mRNA was also reduced in cancer (p = 0.02) and correlated with HYAL1 (r = 0.8, p = 0.0001). There was an inverse correlation between HYAL1 mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001).
CONCLUSION: The results indicated that HYAL1 and HYAL2 were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for HASs were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan.

Jiang F, Todd NW, Li R, et al.
A panel of sputum-based genomic marker for early detection of lung cancer.
Cancer Prev Res (Phila). 2010; 3(12):1571-8 [PubMed] Related Publications
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC will improve its outcome. We previously identified genetic signatures whose genomic copy number aberrations were associated with early stage NSCLC. Here, we aimed to develop a panel of genes that could be detected in sputum for NSCLC early detection. We first optimized a panel of genes by using an in situ minichip for measuring changes of the signatures in sputum of a case-control cohort of 49 NSCLC patients, 49 patients with chronic obstructive pulmonary disease (COPD), and 49 healthy smokers. We then validated the genes in an independent cohort of 69 NSCLC patients and 65 noncancer subjects. The results were compared with those of sputum cytology. Fifteen genes showed significant differences of their copy number changes in sputum between NSCLC and both COPD and healthy subjects. A logistic regression model with the best prediction was built on the basis of 6 genes, ENO1, FHIT, HYAL2, SKP2, p16, and 14-3-3zeta. The composite of the 6 genes produced 86.7% sensitivity and 93.9% specificity in distinguishing stage I NSCLC patients from the noncancer individuals. Furthermore, the genes had higher sensitivity (86.9%) in identification of squamous cell carcinoma (SCC) than in adenocarcinoma of the lungs (80.8%; P < 0.05). Validation of the genes in the independent cohort confirmed their diagnostic power that also showed higher accuracy for lung SCCs than for sputum cytology. The gene panel could provide sputum-based markers that have the potential to improve early detection of lung SCCs.

Chang JY, He RY, Lin HP, et al.
Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase.
Exp Biol Med (Maywood). 2010; 235(7):796-804 [PubMed] Related Publications
The family of WW domain-containing proteins contains over 2000 members. The small WW domain module is responsible, in part, for protein/protein binding interactions and signaling. Many of these proteins are located at the membrane/cytoskeleton area, where they act as adaptors to receive signals from the cell surface. In this review, we provide molecular insights regarding recent novel findings on signaling from the cell surface toward WW domain-containing oxidoreductase, known as WWOX, FOR or WOX1. More specifically, transforming growth factor beta 1 utilizes cell surface hyaluronidase Hyal-2 (hyaluronoglucosaminidase 2) as a cognate receptor for signaling with WWOX and Smad4 to control gene transcription, growth and death. Complement C1q alone, bypassing the activation of classical pathway, signals a novel event of apoptosis by inducing microvillus formation and WWOX activation. Deficiency in these signaling events appears to favorably support cancer growth.

Nykopp TK, Rilla K, Sironen R, et al.
Expression of hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in serous ovarian carcinomas: inverse correlation between HYAL1 and hyaluronan content.
BMC Cancer. 2009; 9:143 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hyaluronan, a tumor promoting extracellular matrix polysaccharide, is elevated in malignant epithelial ovarian tumors, and associates with an unfavorable prognosis. To explore possible contributors to the accumulation of hyaluronan, we examined the expression of hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), correlated with hyaluronidase enzyme activity hyaluronan content and HAS1-3 immunoreactivity.
METHODS: Normal ovaries (n = 5) and 34 serous epithelial ovarian tumors, divided into 4 groups: malignant grades 1+2 (n = 10); malignant grade 3 (n = 10); borderline (n = 4) and benign epithelial tumors (n = 10), were analyzed for mRNA by real-time RT-PCR and compared to hyaluronidase activity, hyaluronan staining, and HAS1-3 immunoreactivity in tissue sections of the same specimens.
RESULTS: The levels of HAS2 and HAS3 mRNA (HAS1 was low or absent), were not consistently increased in the carcinomas, and were not significantly correlated with HAS protein or hyaluronan accumulation in individual samples. Instead, the median of HYAL1 mRNA level was 69% lower in grade 3 serous ovarian cancers compared to normal ovaries (P = 0.01). The expression of HYAL1, but not HYAL2, significantly correlated with the enzymatic activity of tissue hyaluronidases (r = 0.5; P = 0.006). An inverse correlation was noted between HYAL1 mRNA and the intensity of hyaluronan staining of the corresponding tissue sections (r = -0.4; P = 0.025).
CONCLUSION: The results indicate that in serous epithelial ovarian malignancies HAS expression is not consistently elevated but HYAL1 expression is significantly reduced and correlates with the accumulation of hyaluronan. (233 words).

Hsu LJ, Schultz L, Hong Q, et al.
Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1.
J Biol Chem. 2009; 284(23):16049-59 [PubMed] Free Access to Full Article Related Publications
Transforming growth factor beta (TGF-beta) initiates multiple signal pathways and activates many downstream kinases. Here, we determined that TGF-beta1 bound cell surface hyaluronidase Hyal-2 on microvilli in type II TGF-beta receptor-deficient HCT116 cells, as determined by immunoelectron microscopy. This binding resulted in recruitment of proapoptotic WOX1 (also named WWOX or FOR) and formation of Hyal-2.WOX1 complexes for relocation to the nuclei. TGF-beta1 strengthened the binding of the catalytic domain of Hyal-2 with the N-terminal Tyr-33-phosphorylated WW domain of WOX1, as determined by time lapse fluorescence resonance energy transfer analysis in live cells, co-immunoprecipitation, and yeast two-hybrid domain/domain mapping. In promoter activation assay, ectopic WOX1 or Hyal-2 alone increased the promoter activity driven by Smad. In combination, WOX1 and Hyal-2 dramatically enhanced the promoter activation (8-9-fold increases), which subsequently led to cell death (>95% of promoter-activated cells). TGF-beta1 supports L929 fibroblast growth. In contrast, transiently overexpressed WOX1 and Hyal-2 sensitized L929 to TGF-beta1-induced apoptosis. Together, TGF-beta1 invokes a novel signaling by engaging cell surface Hyal-2 and recruiting WOX1 for regulating the activation of Smad-driven promoter, thereby controlling cell growth and death.

Jiang F, Todd NW, Qiu Q, et al.
Combined genetic analysis of sputum and computed tomography for noninvasive diagnosis of non-small-cell lung cancer.
Lung Cancer. 2009; 66(1):58-63 [PubMed] Free Access to Full Article Related Publications
CT plays an important role in diagnosis of lung cancer, however has been limited by uncertain detection rate for early stage of non-small-cell lung cancer (NSCLC), particularly central tumors. Genetic analysis of sputum has proven to be useful in diagnosis of NSCLC. We proposed to evaluate efficacy of combing CT and genetic analysis of sputum for noninvasive diagnosis of stage I NSCLC. Genomic copy changes of a panel of lung cancer-related genes, HYAL2, FHIT, p16, and SP-A were analyzed by a mini-chip in sputum from 33 patients with stage I NSCLC and 49 cancer-free controls. The genetic and CT diagnoses were compared with surgical-pathologic stage. CT had higher sensitivity (85%) in detection of lung cancer compared with the mini-chip (70%) (p<0.05), while there was no significant difference in specificity between the two tests (89% vs. 92%, p=0.09). Similarly, CT showed considerably higher sensitivity (93%) in identifying peripheral tumors than did the mini-chip (64%) (p<0.05), whereas there was no difference in specificity between them (98% vs. 96%, p=0.28). However, in detecting central tumors, CT had lower specificity (90%) compared with the mini-chip (98%) (p<0.05), although its sensitivity (79%) was higher than that of the mini-chip (73%) (p=0.05). Combining both tests offered higher sensitivity (91%) than did any single one (85%, 70%, all <0.05), while still keeping 92% sensitivity. In particular, this combined approach yielded higher sensitivity, specificity, and accuracy for diagnosing central cancers compared with CT alone (all p<0.05). The integration of the genetic assay with CT led to improvements in noninvasive diagnosis of stage I NSCLCs, especially central tumors.

Ohnuma S, Miura K, Horii A, et al.
Cancer-associated splicing variants of the CDCA1 and MSMB genes expressed in cancer cell lines and surgically resected gastric cancer tissues.
Surgery. 2009; 145(1):57-68 [PubMed] Related Publications
BACKGROUND: Alternative splicing is a molecular mechanism by which different combinations of exons can be alternatively spliced to produce different mRNA isoforms. Recently, several databases have been published to predict the alternative splicing of mRNA; cancer-specific alternative splicing has also been predicted with these databases. Those variants may be potentially useful targets for cancer therapy, however, the accuracy and veracity of these databases have yet to be confirmed.
METHODS: In this study, we analyzed 17 genes by reverse transcriptase-polymerase chain reaction (RT-PCR) that were predicted to have cancer-specific alternative splicing by using the splicing database, the Alternative Splicing Annotation Project (ASAP) by Lee et al, between 38 cancer cell lines from various organs and 9 corresponding normal tissues. By designing 2 types of primer sets for RT-PCR including (1) primers flanking the alternatively spliced exons and (2) primers spanning the exon/exon junctions, cancer-associated splicing variants were investigated.
RESULTS: The alternatively splicing events were detected in 15 of 17 genes (88%); 35 of 43 variants (81%) were detected successfully with RT-PCR. Among these variants, M-RIP, HYAL2, CDCA1, and MSMB genes showed differential expressions between cancer cell lines and corresponding normal tissues. Furthermore, RT-PCR with surgically resected gastric cancer tissues (diffuse type, 6; intestinal type, 4) confirmed that 2 variants of CDCA1 were upregulated in cancer tissues, whereas both variants of MSMB were expressed predominantly in normal tissues.
CONCLUSION: Alternative splicing variants, especially in CDCA1, were detected in this study and may be potentially useful as diagnostic markers and/or novel targets for anticancer therapy.

Wang F, Grigorieva EV, Li J, et al.
HYAL1 and HYAL2 inhibit tumour growth in vivo but not in vitro.
PLoS One. 2008; 3(8):e3031 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: We identified two 3p21.3 regions (LUCA and AP20) as most frequently affected in lung, breast and other carcinomas and reported their fine physical and gene maps. It is becoming increasingly clear that each of these two regions contains several TSGs. Until now TSGs which were isolated from AP20 and LUCA regions (e.g.G21/NPRL2, RASSF1A, RASSF1C, SEMA3B, SEMA3F, RBSP3) were shown to inhibit tumour cell growth both in vitro and in vivo.
METHODOLOGY/PRINCIPAL FINDINGS: The effect of expression HYAL1 and HYAL2 was studied by colony formation inhibition, growth curve and cell proliferation tests in vitro and tumour growth assay in vivo. Very modest growth inhibition was detected in vitro in U2020 lung and KRC/Y renal carcinoma cell lines. In the in vivo experiment stably transfected KRC/Y cells expressing HYAL1 or HYAL2 were inoculated into SCID mice (10 and 12 mice respectively). Tumours grew in eight mice inoculated with HYAL1. Ectopic HYAL1 was deleted in all of them. HYAL2 was inoculated into 12 mice and only four tumours were obtained. In 3 of them the gene was deleted. In one tumour it was present but not expressed. As expected for tumour suppressor genes HYAL1 and HYAL2 were down-expressed in 15 fresh lung squamous cell carcinomas (100%) and clear cell RCC tumours (60-67%).
CONCLUSIONS/SIGNIFICANCE: The results suggest that the expression of either gene has led to inhibition of tumour growth in vivo without noticeable effect on growth in vitro. HYAL1 and HYAL2 thus differ in this aspect from other tumour suppressors like P53 or RASSF1A that inhibit growth both in vitro and in vivo. Targeting the microenvironment of cancer cells is one of the most promising venues of cancer therapeutics. As major hyaluronidases in human cells, HYAL1 and HYAL2 may control intercellular interactions and microenvironment of tumour cells providing excellent targets for cancer treatment.

Hesson LB, Cooper WN, Latif F
Evaluation of the 3p21.3 tumour-suppressor gene cluster.
Oncogene. 2007; 26(52):7283-301 [PubMed] Related Publications
Deletions of the 3p21.3 region are a frequent and early event in the formation of lung, breast, kidney and other cancers. Intense investigation of allelic losses and the discovery of overlapping homozygous deletions in lung and breast tumour-cell lines have defined a minimal critical 120 kb deletion region containing eight genes and likely to harbor one or more tumour-suppressor genes (TSGs). The candidate genes are HYAL2, FUS1, Ras-associated factor 1 (RASSF1), BLU/ZMYND10, NPR2L, 101F6, PL6 and CACNA2D2. Recent research indicates that several of these genes can suppress the growth of lung and other tumour cells. Furthermore, some genes (RASSF1A and BLU/ZMYND10) are very frequently inactivated by non-classical mechanisms such as promoter hypermethylation resulting in loss of expression. These data indicate that the 120 kb critical deletion region at 3p21.3 may represent a TSG cluster with preferential inactivation of particular genes depending on tumour type. The eight genes within this region and their potential role in cancer will be the focus of this review.

Klein G, Imreh S, Zabarovsky ER
Why do we not all die of cancer at an early age?
Adv Cancer Res. 2007; 98:1-16 [PubMed] Related Publications
Traditionally, surveillance against cancer was thought of as mainly immunological. With the exception of tumors with a clear viral involvement, such as immunoblastomas (Epstein-Barr virus, EBV), cervical, anogenital, and skin carcinomas (HPV), and Kaposi's sarcoma (HHV-8) where the immune system is confronted with virally encoded, nonself targets, tumors with no viral involvement provide poor targets. Attempts to influence them by immunological means are akin to the breaking of tolerance. Robust nonimmunological surveillance mechanisms include DNA repair-based checkpoint functions, and the triggering of growth arrest and/or apoptosis pathways by DNA damage or by illegitimate oncogene activation (intracellular surveillance). There is emerging evidence for epigenetic surveillance, reflected in the stringency of imprinting. A fourth mechanism, intercellular surveillance, or microenvironmental control, is rapidly gaining momentum. It can be mediated by contactual controls or by differentiation-inducing signals. Somatic hybridization experiments have shown that tumorigenicity is usually suppressed in somatic hybrids between normal and malignant cells, as long as a fairly complete chromosome complement is maintained. Individual normal cell-derived chromosomes may have a similar suppressive effect. For example, genetic and molecular dissection of human 3p that shows frequent deletions in many human tumors has identified multiple tumor suppressor genes, which can inhibit both in vitro growth and in vivo tumorigenicity. In addition, five genes were found with an "asymmetric activity," capable of suppressing tumorigenicity, without affecting in vitro growth. These genes, LTF, L1MD1, HYAL1, HYAL2, and VHL, are of particular interest because they may be involved in microenvironmental control.

Li R, Todd NW, Qiu Q, et al.
Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer.
Clin Cancer Res. 2007; 13(2 Pt 1):482-7 [PubMed] Related Publications
PURPOSE: Analysis of molecular genetic markers in biological fluids has been proposed as a powerful tool for cancer diagnosis. We have characterized in detail the genetic signatures in primary non-small cell lung cancer, which provided potential diagnostic biomarkers for lung cancer. The aim of this study was to determine whether the genetic changes can be used as markers in sputum specimen for the early detection of lung cancer.
EXPERIMENTAL DESIGN: Genetic aberrations in the genes HYAL2, FHIT, and SFTPC were evaluated in paired tumors and sputum samples from 38 patients with stage I non-small cell lung cancer and in sputum samples from 36 cancer-free smokers and 28 healthy nonsmokers by using fluorescence in situ hybridization.
RESULTS: HYAL2 and FHIT were deleted in 84% and 79% tumors and in 45% and 40% paired sputum, respectively. SFTPC was deleted exclusively in tumor tissues (71%). There was concordance of HYAL2 or FHIT deletions in matched sputum and tumor tissues from lung cancer patients (r = 0.82, P = 0.04; r = 0.84, P = 0.03), suggesting that the genetic changes in sputum might indicate the presence of the same genetic aberrations in lung tumors. Furthermore, abnormal cells were found in 76% sputum by detecting combined HYAL2 and FHIT deletions whereas in 47% sputum by cytology, of the cancer cases, implying that detecting the combination of HYAL2 and FHIT deletions had higher sensitivity than that of sputum cytology for lung cancer diagnosis. In addition, HYAL2 and FHIT deletions in sputum were associated with smoking history of cancer patients and smokers (both P < 0.05).
CONCLUSIONS: Tobacco-related HYAL2 and FHIT deletions in sputum may constitute diagnostic markers for early-stage lung cancer.

Liu SL, Miller AD
Oncogenic transformation by the jaagsiekte sheep retrovirus envelope protein.
Oncogene. 2007; 26(6):789-801 [PubMed] Related Publications
Retroviruses have played profound roles in our understanding of the genetic and molecular basis of cancer. Jaagsiekte sheep retrovirus (JSRV) is a simple retrovirus that causes contagious lung tumors in sheep, known as ovine pulmonary adenocarcinoma (OPA). Intriguingly, OPA resembles pulmonary adenocarcinoma in humans, and may provide a model for this frequent human cancer. Distinct from the classical mechanisms of retroviral oncogenesis by insertional activation of or virus capture of host oncogenes, the native envelope (Env) structural protein of JSRV is itself the active oncogene. A major pathway for Env transformation involves interaction of the Env cytoplasmic tail with as yet unidentified cellular adaptor(s), leading to the activation of PI3K/Akt and MAPK signaling cascades. Another potential mechanism involves the cell-entry receptor for JSRV, Hyaluronidase 2 (Hyal2), and the RON receptor tyrosine kinase, but the exact roles of these proteins in JSRV Env transformation remain to be better understood. Recently, a mouse model of lung cancer induced by JSRV Env has been developed, and the tumors in mice resemble those seen in sheep infected with JSRV and in humans. In this review, we summarize recent progress in our understanding the molecular mechanisms of oncogenic transformation by JSRV Env protein, and discuss the relevance to human lung cancer.

Udabage L, Brownlee GR, Nilsson SK, Brown TJ
The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer.
Exp Cell Res. 2005; 310(1):205-17 [PubMed] Related Publications
Within tumors there appears to be an intricate balance between hyaluronan (HA) synthesis and degradation where the invading edges display increased HA metabolism. The metabolism of HA has not been characterized in breast cancer cell lines; therefore, this study quantitatively identifies and characterizes the enzymes responsible for the synthesis and degradation of HA while correlating gene expression to cancer cell invasiveness and HA receptor status. In ten well-established breast cancer cell lines, the expression of the genes for each hyaluronan synthase (HAS) and hyaluronidase (Hyal) isoform was quantitated using real-time and reverse transcriptase polymerase chain reaction (PCR). The synthesis and degradation rates of hyaluronan were determined by ELISA, while quantitation of HA receptors, CD44 and RHAMM was performed by comparative Western blotting. The molecular weight of HA synthesized by each HAS isoform and the degradation products of each hyaluronidase were characterized by size exclusion chromatography. It was demonstrated that highly invasive cell lines preferentially expressed the HAS2 and Hyal-2 isoforms, while less invasive cells expressed HAS3 and Hyal-3. There was a correlation between elevated levels of HA synthesis, CD44 expression and cancer cell migration thereby highlighting the pivotal role that HA metabolism plays in the aggressive breast cancer phenotype.

Yi Lo PH, Chung Leung AC, Xiong W, et al.
Expression of candidate chromosome 3p21.3 tumor suppressor genes and down-regulation of BLU in some esophageal squamous cell carcinomas.
Cancer Lett. 2006; 234(2):184-92 [PubMed] Related Publications
The expression of six chromosome 3p21.3 candidate tumor suppressor genes (BLU, FUS2, HYAL2, NPRL2, RASSF1A, and SEMA3B) in esophageal squamous cell carcinoma (ESCC) has been investigated. Reduced expression of BLU was detected in some ESCC cell lines and tumor tissues and the difference was quantitated by real-time quantitative polymerase chain reaction. Methylation specific-PCR revealed the down-regulation of BLU by epigenetic inactivation. However, exogenous expression of BLU did not functionally suppress tumorigenicity in nude mice. These results suggest that over-expression of BLU alone is not sufficient to inhibit tumorigenicity. Further studies on BLU interacting proteins are required to elucidate the possible role of BLU in the development of ESCC.

Wootton SK, Halbert CL, Miller AD
Sheep retrovirus structural protein induces lung tumours.
Nature. 2005; 434(7035):904-7 [PubMed] Free Access to Full Article Related Publications
Jaagsiekte sheep retrovirus (JSRV) causes a contagious lung cancer in sheep and goats, with significant animal health and economic consequences. The host range of JSRV is in part limited by species-specific differences in the virus entry receptor, hyaluronidase 2 (Hyal2), which is not functional as a receptor in mice but is functional in humans. Sheep are immunotolerant of JSRV because of the expression of closely related endogenous retroviruses, which are not present in humans and most other species, and this may facilitate oncogenesis. Here we show that expression of the JSRV envelope (Env) protein alone in lungs of mice, by using a replication-incompetent adeno-associated virus vector, results in tumours with a bronchiolo-alveolar localization like those seen in sheep. Whereas lethal disease was observed in immunodeficient mice, tumour development was almost entirely blocked in immunocompetent mice. Our results provide a rare example of an oncogenic viral structural protein, show that interaction of the viral Env protein with the virus entry receptor Hyal2 is not required for tumorigenesis, and indicate that immune recognition of Env can protect against JSRV tumorigenesis.

Bertrand P, Courel MN, Maingonnat C, et al.
Expression of HYAL2 mRNA, hyaluronan and hyaluronidase in B-cell non-Hodgkin lymphoma: relationship with tumor aggressiveness.
Int J Cancer. 2005; 113(2):207-12 [PubMed] Related Publications
Hyaluronidases and their substrate, hyaluronan (HA), were mainly explored in solid tumors but rarely in hematologic malignancies. While HA involvement was demonstrated in invasion and metastasis in most cases of solid tumors, the role of hyaluronidases in cancer progression remains controversial. One of the hyaluronidases, HYAL2, is suspected to be involved in the first step of HA degradation. In this work, HYAL2 mRNA, HA and total hyaluronidases expression were examined in lymphoma tissue extracts and correlated to the lymphoma subtype. Real-time RT-PCR was performed to evaluate HYAL2 mRNA. HA and hyaluronidase were assayed by enzyme-linked sorbent assay. Our results showed that HYAL2 mRNA expression was correlated to lymphoma diagnosis (p = 6 x 10(-3)) and was significantly lower in high-grade lymphoma, i.e., diffuse large B-cell diffuse lymphomas (DLBCLs). Several forms of hyaluronidase were detected by zymography and total hyaluronidase activity detected in tissue extracts was not significantly different according to tumor grade. HA levels also correlated to lymphoma subtype (p = 1 x 10(-5)) and were higher in DLBCLs. Moreover, HYAL2 mRNA and HA expressions were inversely correlated (p = 0.035). HYAL2 gene is localized on chromosome 3p21, which contains candidates tumor suppressor genes. Our results suggest that HYAL2 may have a prognostic significance in lymphomas and an antioncogenic activity. Conversely, HA overexpression in high-grade lymphomas is in favor of its involvement in tumor development and could provide a useful target for lymphoma therapy using HA-binding peptides.

Chow LS, Lo KW, Kwong J, et al.
RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma.
Int J Cancer. 2004; 109(6):839-47 [PubMed] Related Publications
Deletion on the short arm of chromosome 3 is one of the most important genetic abnormalities in the tumorigenesis of nasopharyngeal carcinoma (NPC). Both physical mapping and functional studies have targeted an NPC-related tumor suppressor gene(s) to chromosome 3p21.3. We have reported recently that RASSF1A gene, located on a 120-kb minimal deletion region on 3p21.3, was frequently inactivated by promoter hypermethylation in NPC. We further confirmed that RASSF1A is the critical target tumor suppressor from 3p21.3, with the evidence that loss of expression and aberrant methylation of the other 8 candidate genes/transcripts (HYAL2, FUS1, RASSF1C, BLU, NPRL2, 101F6, PL6 and CACNA2D2) in this 120-kb region were rare in NPC samples. The contribution of RASSF1A in NPC tumorigenesis was investigated by restoring its expression in a RASSF1A deficient cell line, C666-1. Transient transfection of wild-type RASSF1A resulted in marked growth inhibition in NPC cells. Isolated stable clones expressing wild-type RASSF1A demonstrated retarded cell proliferation in vitro. Soft-agar assay also showed decreased number and sizes of colony formed in these clones. In vivo nude mice assay demonstrated the dramatic reduction of tumorigenic potential in the RASSF1A-transfected clones. Our results provide strong evidence to support RASSF1A as a target tumor suppressor gene on 3p21.3 in NPC.

Junker N, Latini S, Petersen LN, Kristjansen PE
Expression and regulation patterns of hyaluronidases in small cell lung cancer and glioma lines.
Oncol Rep. 2003 May-Jun; 10(3):609-16 [PubMed] Related Publications
Hyaluronan and hyaluronidases have been proposed to be involved in tumor angiogenesis and invasion. Three hyaluronidases, HYAL1, HYAL2 and HYAL3, are located at the chromosomal region 3p21. In most small cell lung cancer (SCLC) lines the 3p21 region is part of a homozygote or heterozygote deletion. Gliomas are known to exist in a hyaluronan rich environment and express high levels of the hyaluronan receptor CD44. In a panel of SCLC and glioma cell lines the expression of HYAL1, HYAL2 and HYAL3 mRNA was examined. It was observed that the cell lines differed in their ability to splice out a retained intron in the 5' UTR of HYAL1 mRNA. A correlation seems to exist between the ability to splice out the retained 5' end intron of HYAL1 mRNA and the general hyaluronidase activity. In one cell line a substantial part of the hyaluronidase activity was abolished by immunoprecipitation of Hyal1, which strongly indicates that Hyal1 is the principal hyaluornidase in the examined cell lines. During severe hypoxia a significant reduction in both hyaluronidase mRNA and protein activity was found. These results support the theory of involvement of hyaluronidase in the angiogenic and invasive front of tumors.

Danilkovitch-Miagkova A, Duh FM, Kuzmin I, et al.
Hyaluronidase 2 negatively regulates RON receptor tyrosine kinase and mediates transformation of epithelial cells by jaagsiekte sheep retrovirus.
Proc Natl Acad Sci U S A. 2003; 100(8):4580-5 [PubMed] Free Access to Full Article Related Publications
The candidate tumor-suppressor gene hyaluronidase 2 (HYAL2) encodes a glycosylphosphatidylinositol-anchored cell-surface protein that serves as an entry receptor for jaagsiekte sheep retrovirus, a virus that causes contagious lung cancer in sheep that is morphologically similar to human bronchioloalveolar carcinoma. The viral envelope (Env) protein alone can transform cultured cells, and we hypothesized that Env could bind and sequester the HYAL2 receptor and thus liberate a potential oncogenic factor bound and negatively controlled by HYAL2. Here we show that the HYAL2 receptor protein is associated with the RON receptor tyrosine kinase (also called MST1R or Stk in the mouse), rendering it functionally silent. In human cells expressing a jaagsiekte sheep retrovirus Env transgene, the Env protein physically associates with HYAL2. RON liberated from the association with HYAL2 becomes functionally active and consequently activates the Akt and mitogen-activated protein kinase pathways leading to oncogenic transformation of immortalized human bronchial epithelial cells. We find activated RON in a subset of human bronchioloalveolar carcinoma tumors, suggesting RON involvement in this type of human lung cancer.

Miller AD
Identification of Hyal2 as the cell-surface receptor for jaagsiekte sheep retrovirus and ovine nasal adenocarcinoma virus.
Curr Top Microbiol Immunol. 2003; 275:179-99 [PubMed] Related Publications
Jaagsiekte sheep retrovirus (JSRV) and ovine nasal adenocarcinoma virus (ONAV) replicate in the airway and cause epithelial cell tumors through the activity of their envelope (Env) proteins. Identification of the receptor(s) that mediate cell entry by these viruses is crucial to understanding the oncogenic activity of Env and for the development of gene therapy vectors based on these viruses that are capable of targeting airway cells. To identify the viral receptor(s) and to further study the biology of JSRV and ONAV, we developed retroviral vectors containing Moloney murine leukemia virus components and the Env proteins of JSRV or ONAV. We used a new technique involving positional cloning by phenotypic mapping in radiation hybrid cells to identify and clone the human receptor for JSRV, Hyal2, which also serves as the receptor for ONAV. Hyal2 is a glycosylphosphatidylinositol-anchored cell-surface protein that has low hyaluronidase activity and is a member of a large family that includes sperm hyaluronidase (Spam) and serum hyaluronidase (Hyal1). Hyal2 is located in a region of human chromosome 3p21.3 that is often deleted in lung cancer, suggesting that it may be a tumor suppressor. However, its role in JSRV or ONAV tumorigenesis, if any, is still unclear. JSRV vectors are capable of transducing various human cells, and are being further evaluated for gene therapy purposes.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HYAL2, Cancer Genetics Web: http://www.cancer-genetics.org/HYAL2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999