Gene Summary

Gene:JAG2; jagged 2
Aliases: HJ2, SER2
Summary:The Notch signaling pathway is an intercellular signaling mechanism that is essential for proper embryonic development. Members of the Notch gene family encode transmembrane receptors that are critical for various cell fate decisions. The protein encoded by this gene is one of several ligands that activate Notch and related receptors. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein jagged-2
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (23)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Western Blotting
  • Lung Cancer
  • Transfection
  • siRNA
  • Notch Receptors
  • Neoplasm Invasiveness
  • Ligands
  • MicroRNAs
  • Vimentin
  • Syndecan-1
  • Stromal Cells
  • Young Adult
  • Breast Cancer
  • Amyloid Precursor Protein Secretases
  • Wnt Proteins
  • Cancer Stem Cells
  • Stomach Cancer
  • Mutation
  • Receptor, Notch3
  • Epithelial-Mesenchymal Transition
  • Single Nucleotide Polymorphism
  • Intercellular Signaling Peptides and Proteins
  • Neoplasm Metastasis
  • Tongue Neoplasms
  • Jagged-2 Protein
  • Calcium-Binding Proteins
  • Cancer Gene Expression Regulation
  • Biomarkers, Tumor
  • Membrane Proteins
  • Microarray Analysis
  • Signal Transduction
  • Transcriptional Activation
  • Multiple Myeloma
  • Chromosome 14
  • NOTCH2
  • Transcription Factor HES-1
  • Immunohistochemistry
  • NOTCH1 Receptor
  • Gene Expression Profiling
  • Cell Proliferation
  • Jagged-1 Protein
  • Messenger RNA
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: JAG2 (cancer-related)

Lin X, Sun B, Zhu D, et al.
Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma.
Cancer Sci. 2016; 107(8):1079-91 [PubMed] Free Access to Full Article Related Publications
Sphere formation in conditioned serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem-like cells, also known as tumor-initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem-like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4(high) B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial-mesenchymal transition (EMT)-associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE-cadherin and the overexpression of E-cadherin was observed in human melanoma A375 and MUM-2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ-secretase inhibitor, DAPT. Mechanistically, the re-overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE-cadherin expression and a decrease in E-cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.

Liu ZY, Wu T, Li Q, et al.
Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma.
Medicine (Baltimore). 2016; 95(20):e3715 [PubMed] Free Access to Full Article Related Publications
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.

Narayanappa R, Rout P, Aithal MG, Chand AK
Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.
Tumour Biol. 2016; 37(5):6935-42 [PubMed] Related Publications
Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis.

Kim JS, Kurie JM, Ahn YH
BMP4 depletion by miR-200 inhibits tumorigenesis and metastasis of lung adenocarcinoma cells.
Mol Cancer. 2015; 14:173 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNA-200 (miR-200) suppresses the epithelial-mesenchymal transition of various cancer cells, including lung adenocarcinoma cells. We found that bone morphogenetic protein 4 (BMP4) was decreased in miR-200-overexpressing cells and epithelial-like lung cancer cells. In this study, we investigated the mechanism and role of BMP4 depletion by miR-200 in murine lung adenocarcinoma cells.
METHODS: BMP4 expression levels in murine lung cancer cells were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Promoter and 3'-untranslated region (UTR) luciferase reporter assays were performed to discover the mechanism of regulation of BMP4 by miR-200. Murine lung cancer cells were transfected with Bmp4 shRNAs, which were then injected into syngeneic mice to measure their tumorigenic and metastatic potential and cultured on Matrigel to study the influence of BMP4 on 3-D acinus formation.
RESULTS: miR-200 down-regulated BMP4 via direct targeting of the GATA4 and GATA6 transcription factors that stimulate Bmp4 transcription. BMP4 up-regulated JAG2, an upstream factor of miR-200; therefore, JAG2, miR-200, and BMP4 form a regulatory loop. Bmp4 knockdown suppressed cancer cell growth, migration, and invasion and inhibited tumorigenesis and metastasis of lung cancer cells when injected into syngeneic mice. In addition, BMP4 was required for normal acinus formation in Matrigel 3-D culture of murine lung cancer cells, which may be mediated by MYH10, a downstream target of BMP4.
CONCLUSION: BMP4 functions as a pro-tumorigenic factor in a murine lung cancer model, and its transcription is regulated by miR-200 and GATA4/6. Thus, we propose that BMP4 and its antagonists may be suitable therapeutic targets for the treatment of lung cancer.

Ekumi KM, Paculova H, Lenasi T, et al.
Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex.
Nucleic Acids Res. 2015; 43(5):2575-89 [PubMed] Free Access to Full Article Related Publications
The Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined. Here, we show that most mutations prevent formation of the Cdk12/CycK complex, rendering the kinase inactive. By examining the mutations within the Cdk12/CycK structure, we find that they likely provoke structural rearrangements detrimental to Cdk12 activation. Our mRNA expression analysis of the patient samples containing the CDK12 mutations reveals coordinated downregulation of genes critical to the homologous recombination DNA repair pathway. Moreover, we establish that the Cdk12/CycK complex occupies these genes and promotes phosphorylation of RNA polymerase II at Ser2. Accordingly, we demonstrate that the mutant Cdk12 proteins fail to stimulate the faithful DNA double strand break repair via homologous recombination. Together, we provide the molecular basis of how mutated CDK12 ceases to function in ovarian carcinoma. We propose that CDK12 is a tumor suppressor of which the loss-of-function mutations may elicit defects in multiple DNA repair pathways, leading to genomic instability underlying the genesis of the cancer.

Wang F, Remke M, Bhat K, et al.
A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma.
Oncotarget. 2015; 6(5):2709-24 [PubMed] Free Access to Full Article Related Publications
Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target.

Rajan N, Elliott RJ, Smith A, et al.
The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate notch signalling.
Oncotarget. 2014; 5(23):12126-40 [PubMed] Free Access to Full Article Related Publications
CYLD, an ubiquitin hydrolase, has an expanding repertoire of regulatory roles in cell signalling and is dysregulated in a number of cancers. To dissect CYLD function we used a proteomics approach to identify CYLD interacting proteins and identified MIB2, an ubiquitin ligase enzyme involved in Notch signalling, as a protein which interacts with CYLD. Coexpression of CYLD and MIB2 resulted in stabilisation of MIB2 protein levels and was associated with reduced levels of JAG2, a ligand implicated in Notch signalling. Conversely, gene silencing of CYLD using siRNA, resulted in increased JAG2 expression and upregulation of Notch signalling. We investigated Notch pathway activity in skin tumours from patients with germline mutations in CYLD and found that JAG2 protein levels and Notch target genes were upregulated. In particular, RUNX1 was overexpressed in CYLD defective tumour cells. Finally, primary cell cultures of CYLD defective tumours demonstrated reduced viability when exposed to γ-secretase inhibitors that pharmacologically target Notch signalling. Taken together these data indicate an oncogenic dependency on Notch signalling and suggest potential novel therapeutic approaches for patients with CYLD defective tumours.

Balakrishnan K, Burger JA, Fu M, et al.
Regulation of Mcl-1 expression in context to bone marrow stromal microenvironment in chronic lymphocytic leukemia.
Neoplasia. 2014; 16(12):1036-46 [PubMed] Free Access to Full Article Related Publications
A growing body of evidence suggests that the resistance of CLL cells to apoptosis is partly mediated through the interactions between leukemia cells and adjacent stromal cells residing in the lymphatic tissue or bone marrow microenvironment. Mcl-1, an anti-apoptotic protein that is associated with failure to treatment is up-regulated in CLL lymphocytes after interaction with microenvironment. However, the regulation of its expression in context to microenvironment is unclear. We evaluated and compared changes in Mcl-1 in CLL B-cells in suspension culture and when co-cultured on stromal cells. The blockade of apoptosis in co-cultured CLL cells is associated with diminution in caspase-3 and PARP cleavage and is not dependent on cytogenetic profile or prognostic factors of the disease. Stroma-derived resistance to apoptosis is associated with a cascade of transcriptional events such as increase in levels of total RNA Pol II and its phosphorylation at Ser2 and Ser5, increase in the rate of global RNA synthesis, and amplification of Mcl-1 transcript levels. The latter is associated with increase in Mcl-1 protein level without an impact on the levels of Bcl-2 and Bcl-xL. Post-translational modifications of protein kinases show increased phosphorylation of Akt at Ser473, Erk at Thr202/Tyr204 and Gsk-3β at Ser9 and augmentation of total Mcl-1 accumulation along with phosphorylation at Ser159/Thr163 sites. Collectively, stroma-induced apoptosis resistance is mediated through signaling proteins that regulate transcriptional and translational expression and post-translational modification of Mcl-1 in CLL cells in context to bone marrow stromal microenvironment.

Fiaschetti G, Schroeder C, Castelletti D, et al.
NOTCH ligands JAG1 and JAG2 as critical pro-survival factors in childhood medulloblastoma.
Acta Neuropathol Commun. 2014; 2:39 [PubMed] Free Access to Full Article Related Publications
Medulloblastoma (MB), the most common pediatric malignant brain cancer, typically arises as pathological result of deregulated developmental pathways, including the NOTCH signaling cascade. Unlike the evidence supporting a role for NOTCH receptors in MB development, the pathological functions of NOTCH ligands remain largely unexplored. By examining the expression in large cohorts of MB primary tumors, and in established in vitro MB models, this research study demonstrates that MB cells bear abnormal levels of distinct NOTCH ligands. We explored the potential association between NOTCH ligands and the clinical outcome of MB patients, and investigated the rational of inhibiting NOTCH signaling by targeting specific ligands to ultimately provide therapeutic benefits in MB. The research revealed a significant over-expression of ligand JAG1 in the vast majority of MBs, and proved that JAG1 mediates pro-proliferative signals via activation of NOTCH2 receptor and induction of HES1 expression, thus representing an attractive therapeutic target. Furthermore, we could identify a clinically relevant association between ligand JAG2 and the oncogene MYC, specific for MYC-driven Group 3 MB cases. We describe for the first time a mechanistic link between the oncogene MYC and NOTCH pathway in MB, by identifying JAG2 as MYC target, and by showing that MB cells acquire induced expression of JAG2 through MYC-induced transcriptional activation. Finally, the positive correlation of MYC and JAG2 also with aggressive anaplastic tumors and highly metastatic MB stages suggested that high JAG2 expression may be useful as additional marker to identify aggressive MBs.

Sun W, Gaykalova DA, Ochs MF, et al.
Activation of the NOTCH pathway in head and neck cancer.
Cancer Res. 2014; 74(4):1091-104 [PubMed] Free Access to Full Article Related Publications
NOTCH1 mutations have been reported to occur in 10% to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation, and mutation analyses. Copy number increases were identified in NOTCH pathway genes, including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4 of the 37 tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptor mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently.

Saito N, Fu J, Zheng S, et al.
A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells.
Stem Cells. 2014; 32(1):301-12 [PubMed] Free Access to Full Article Related Publications
Genomic, transcriptional, and proteomic analyses of brain tumors reveal subtypes that differ in pathway activity, progression, and response to therapy. However, a number of small molecule inhibitors under development vary in strength of subset and pathway-specificity, with molecularly targeted experimental agents tending toward stronger specificity. The Notch signaling pathway is an evolutionarily conserved pathway that plays an important role in multiple cellular and developmental processes. We investigated the effects of Notch pathway inhibition in glioma tumor-initiating cell (GIC, hereafter GIC) populations using γ secretase inhibitors. Drug cytotoxicity testing of 16 GICs showed differential growth responses to the inhibitors, stratifying GICs into responders and nonresponders. Responder GICs had an enriched proneural gene signature in comparison to nonresponders. Also gene set enrichment analysis revealed 17 genes set representing active Notch signaling components NOTCH1, NOTCH3, HES1, MAML1, DLL-3, JAG2, and so on, enriched in responder group. Analysis of The Cancer Genome Atlas expression dataset identified a group (43.9%) of tumors with proneural signature showing high Notch pathway activation suggesting γ secretase inhibitors might be of potential value to treat that particular group of proneural glioblastoma (GBM). Inhibition of Notch pathway by γ secretase inhibitor treatment attenuated proliferation and self-renewal of responder GICs and induces both neuronal and astrocytic differentiation. In vivo evaluation demonstrated prolongation of median survival in an intracranial mouse model. Our results suggest that proneural GBM characterized by high Notch pathway activation may exhibit greater sensitivity to γ secretase inhibitor treatment, holding a promise to improve the efficiency of current glioma therapy.

Cama A, Verginelli F, Lotti LV, et al.
Integrative genetic, epigenetic and pathological analysis of paraganglioma reveals complex dysregulation of NOTCH signaling.
Acta Neuropathol. 2013; 126(4):575-94 [PubMed] Free Access to Full Article Related Publications
Head and neck paragangliomas, rare neoplasms of the paraganglia composed of nests of neurosecretory and glial cells embedded in vascular stroma, provide a remarkable example of organoid tumor architecture. To identify genes and pathways commonly deregulated in head and neck paraganglioma, we integrated high-density genome-wide copy number variation (CNV) analysis with microRNA and immunomorphological studies. Gene-centric CNV analysis of 24 cases identified a list of 104 genes most significantly targeted by tumor-associated alterations. The "NOTCH signaling pathway" was the most significantly enriched term in the list (P = 0.002 after Bonferroni or Benjamini correction). Expression of the relevant NOTCH pathway proteins in sustentacular (glial), chief (neuroendocrine) and endothelial cells was confirmed by immunohistochemistry in 47 head and neck paraganglioma cases. There were no relationships between level and pattern of NOTCH1/JAG2 protein expression and germline mutation status in the SDH genes, implicated in paraganglioma predisposition, or the presence/absence of immunostaining for SDHB, a surrogate marker of SDH mutations. Interestingly, NOTCH upregulation was observed also in cases with no evidence of CNVs at NOTCH signaling genes, suggesting altered epigenetic modulation of this pathway. To address this issue we performed microarray-based microRNA expression analyses. Notably 5 microRNAs (miR-200a,b,c and miR-34b,c), including those most downregulated in the tumors, correlated to NOTCH signaling and directly targeted NOTCH1 in in vitro experiments using SH-SY5Y neuroblastoma cells. Furthermore, lentiviral transduction of miR-200s and miR-34s in patient-derived primary tympano-jugular paraganglioma cell cultures was associated with NOTCH1 downregulation and increased levels of markers of cell toxicity and cell death. Taken together, our results provide an integrated view of common molecular alterations associated with head and neck paraganglioma and reveal an essential role of NOTCH pathway deregulation in this tumor type.

Ory V, Tassi E, Cavalli LR, et al.
The nuclear coactivator amplified in breast cancer 1 maintains tumor-initiating cells during development of ductal carcinoma in situ.
Oncogene. 2014; 33(23):3033-42 [PubMed] Free Access to Full Article Related Publications
The key molecular events required for the formation of ductal carcinoma in situ (DCIS) and its progression to invasive breast carcinoma have not been defined. Here, we show that the nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is expressed at low levels in normal breast but is highly expressed in DCIS lesions. This is of significance since reduction of AIB1 in human MCFDCIS cells restored a more normal three-dimensional mammary acinar structure. Reduction of AIB1 in MCFDCIS cells, both before DCIS development or in existing MCFDCIS lesions in vivo, inhibited tumor growth and led to smaller, necrotic lesions. AIB1 reduction in MCFDCIS cells was correlated with significant reduction in the CD24-/CD44+ breast cancer-initiating cell (BCIC) population, and a decrease in myoepithelial progenitor cells in the DCIS lesions in vitro and in vivo. The loss of AIB1 in MCFDCIS cells was also accompanied by a loss of expression of NOTCH 2, 3 and 4, JAG2, HES1, GATA3, human epidermal growth factor receptor 2 (HER2) and HER3 in vivo. These signaling molecules have been associated with differentiation of breast epithelial progenitor cells. These data indicate that AIB1 has a central role in the initiation and maintenance of DCIS and that reduction of AIB1 causes loss of BCIC, loss of components of the NOTCH, HER2 and HER3 signaling pathways and fewer DCIS myoepithelial progenitor cells in vivo. We propose that increased expression of AIB1, through the maintenance of BCIC, facilitates formation of DCIS, a necessary step before development of invasive disease.

Jonusiene V, Sasnauskiene A, Lachej N, et al.
Down-regulated expression of Notch signaling molecules in human endometrial cancer.
Med Oncol. 2013; 30(1):438 [PubMed] Related Publications
Notch signaling pathway is a highly conserved developmental pathway, which plays an important role in the regulation of cellular proliferation, differentiation and apoptosis. Deregulation of Notch pathway has been connected with the carcinogenesis in a variety of cancers. In this study, we investigated the expression of Notch receptors (NOTCH1, NOTCH2, NOTCH3 and NOTCH4), ligands (JAG1, JAG2 and DLL1) and target gene HES1. Fifty paired samples of endometrial cancer and adjacent nontumor endometrial tissue from endometrial cancer patients were analyzed by quantitative PCR. The mRNA levels of all investigated molecules were lower in endometrial cancer compared to adjacent nontumor tissue. The expression of NOTCH1, NOTCH4 and DLL1 in IB stage adenocarcinoma was significantly lower (P < 0.05) than the expression in IA stage adenocarcinoma. Significant correlations were found between mRNA expression levels of Notch target gene HES1 and several Notch signaling molecules: NOTCH1, NOTCH3, DLL1 (P < 0.001) and NOTCH2, JAG2 (P < 0.05). This supports the notion that Notch pathway can function as tumor suppressor in human endometrial cancer.

Kang H, An HJ, Song JY, et al.
Notch3 and Jagged2 contribute to gastric cancer development and to glandular differentiation associated with MUC2 and MUC5AC expression.
Histopathology. 2012; 61(4):576-86 [PubMed] Related Publications
AIMS: Notch signalling plays diverse roles in malignant tumours as well as in normal tissue development. In this study we investigated the expression of Notch signalling pathway genes and their clinicopathological significance in gastric carcinomas.
METHODS AND RESULTS: Notch1, Notch3, Jagged1, Jagged2 and Hes1 expression were analysed by quantitative real-time polymerase chain reaction (qRT-PCR) (n = 81) and immunohistochemistry (n = 103) in gastric carcinomas. MUC2 and MUC5AC expression were also assessed, using immunohistochemistry only. With qRT-PCR, Notch1, Notch3, Jagged1 and Jagged2 expression were increased significantly in tumour compared to normal tissue (P < 0.001, P = 0.002, P = 0.008 and P < 0.001, respectively). Overexpression of Notch3 and Jagged2 was associated with intestinal-type carcinomas (P = 0.024) and better histological differentiation (P = 0.047), respectively. Immunohistochemistry showed a reverse correlation between MUC2 and Notch3 or Jagged1 (P = 0.033 and P = 0.005, respectively) and between MUC5AC and Jagged1 or Hes1 (P = 0.004 and P = 0.002, respectively). Notch3 and Jagged2 gene overexpression related to a favourable outcome on univariate (P = 0.046 and P = 0.042, respectively) and multivariate (P = 0.045, Notch3) analysis.
CONCLUSION: The expression of Notch3 and Jagged2 is associated not only with gastric cancer development but also with the intestinal/glandular differentiation of gastric carcinoma cells, suggesting a role as a possible favourable prognostic indicator.

Wu Y, Chen C, Sun X, et al.
Cyclin-dependent kinase 7/9 inhibitor SNS-032 abrogates FIP1-like-1 platelet-derived growth factor receptor α and bcr-abl oncogene addiction in malignant hematologic cells.
Clin Cancer Res. 2012; 18(7):1966-78 [PubMed] Related Publications
PURPOSE: The "gate-keeper" mutations T674I platelet-derived growth factor receptor α (PDGFRα) in hypereosinophilic syndrome (HES) and T315I Bcr-Abl in chronic myeloid leukemia (CML) are resistant to imatinib and the second-generation small-molecule tyrosine kinase inhibitors (TKI). However, to combat acquired resistance to imatinib, an alternative approach is to decrease the expression of the addicted gene to efficiently kill resistant malignant hematologic cells. The purpose of this study was to evaluate the strategy of shutting down the transcription and expression of FIP1-like-1 (FIP1L1)-PDGFRα and Bcr-Abl with SNS-032, an inhibitor of cyclin-dependent kinase 7 (CDK7) and CDK9 in phase I clinical trials.
EXPERIMENTAL DESIGN: The effects of SNS-032 on PDGFRα and Bcr-Abl signaling pathways, apoptosis, and cell cycling were analyzed in TKI-resistant cells of HES and CML. The in vivo antitumor activity of SNS-032 was assessed with xenografted BaF3-T674I FIP1L1-PDGFRα and KBM5-T315I Bcr-Abl cells in nude mouse models.
RESULTS: SNS-032 inhibited the phosphorylation on Ser5 and Ser2 of RNA polymerase II. SNS-032 decreased both the mRNA and protein levels of FIP1L1-PDGFRα and Bcr-Abl and inhibited the proliferation of malignant cells expressing FIP1L1-PDGFRα or Bcr-Abl. It also decreased the phosphorylation of downstream molecules. It induced apoptosis by triggering both the mitochondrial pathway and the death receptor pathway.
CONCLUSIONS: This CDK7/9 inhibitor potently inhibits FIP1L1-PDGFRα-positive HES cells and Bcr-Abl-positive CML cells regardless of their sensitivity to imatinib. SNS-032 may have potential in treating hematologic malignancy by abrogating oncogene addiction.

Chiron D, Maïga S, Descamps G, et al.
Critical role of the NOTCH ligand JAG2 in self-renewal of myeloma cells.
Blood Cells Mol Dis. 2012; 48(4):247-53 [PubMed] Related Publications
The purpose of this study was to identify the pathways associated with the ability of CD138(+) human myeloma cells to form colonies in a serum-free semi-solid human collagen-based assay. Only 26% (7 of 27) of human myeloma cell lines were able to spontaneously form colonies. This spontaneous clonogenic growth correlated with the expression of the NOTCH ligand JAG2 (p<0.001). Blocking JAG-NOTCH interactions with NOTCH-Fc chimeric molecules impaired self-colony formation, indicating a role for JAG-NOTCH pathway in colony formation. In two cell lines, silencing of JAG2 blocked both colony formation and in vivo tumor formation in immunocompromised mice. RT-PCR and flow cytometry analysis revealed that JAG2 is often expressed by CD138(+) primary cells. Our results indicate that spontaneous clonogenic growth of myeloma cells requires the expression of JAG2.

Shaw JA, Page K, Blighe K, et al.
Genomic analysis of circulating cell-free DNA infers breast cancer dormancy.
Genome Res. 2012; 22(2):220-31 [PubMed] Free Access to Full Article Related Publications
Biomarkers in breast cancer to monitor minimal residual disease have remained elusive. We hypothesized that genomic analysis of circulating free DNA (cfDNA) isolated from plasma may form the basis for a means of detecting and monitoring breast cancer. We profiled 251 genomes using Affymetrix SNP 6.0 arrays to determine copy number variations (CNVs) and loss of heterozygosity (LOH), comparing 138 cfDNA samples with matched primary tumor and normal leukocyte DNA in 65 breast cancer patients and eight healthy female controls. Concordance of SNP genotype calls in paired cfDNA and leukocyte DNA samples distinguished between breast cancer patients and healthy female controls (P < 0.0001) and between preoperative patients and patients on follow-up who had surgery and treatment (P = 0.0016). Principal component analyses of cfDNA SNP/copy number results also separated presurgical breast cancer patients from the healthy controls, suggesting specific CNVs in cfDNA have clinical significance. We identified focal high-level DNA amplification in paired tumor and cfDNA clustered in a number of chromosome arms, some of which harbor genes with oncogenic potential, including USP17L2 (DUB3), BRF1, MTA1, and JAG2. Remarkably, in 50 patients on follow-up, specific CNVs were detected in cfDNA, mirroring the primary tumor, up to 12 yr after diagnosis despite no other evidence of disease. These data demonstrate the potential of SNP/CNV analysis of cfDNA to distinguish between patients with breast cancer and healthy controls during routine follow-up. The genomic profiles of cfDNA infer dormancy/minimal residual disease in the majority of patients on follow-up.

Tao Y, Liu S, Briones V, et al.
Treatment of breast cancer cells with DNA demethylating agents leads to a release of Pol II stalling at genes with DNA-hypermethylated regions upstream of TSS.
Nucleic Acids Res. 2011; 39(22):9508-20 [PubMed] Free Access to Full Article Related Publications
Inactivation of tumor suppressor genes plays an important role in tumorigenesis, and epigenetic modifications such as DNA methylation are frequently associated with transcriptional repression. Here, we show that gene silencing at selected genes with signs of DNA hypermethylation in breast cancer cells involves Pol II stalling. We studied several repressed genes with DNA hypermethylation within a region 1-kb upstream of the transcriptional start site that were upregulated after treatment with DNA demethylating agents, such as Azacytidine and several natural products. All those selected genes had stalled Pol II at their transcriptional start site and showed enhanced ser2 phosphorylated Pol II and elevated transcripts after drug treatment indicating successful elongation. In addition, a decrease of the epigenetic regulator LSH in a breast cancer cell line by siRNA treatment reduced DNA methylation and overcame Pol II stalling, whereas overexpression of LSH in a normal breast epithelial cell line increased DNA methylation and resulted in repression. Decrease of LSH was associated with reduced DNMT3b binding to promoter sequences, and depletion of DNMT3b by siRNA could release Pol II suggesting that DNMT3b is functionally involved. The release of paused Pol II was accompanied by a dynamic switch from repressive to active chromatin marks. Thus release of Pol II stalling can act as a mechanism for gene reactivation at specific target genes after DNA demethylating treatment in cancer cells.

Serão NV, Delfino KR, Southey BR, et al.
Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival.
BMC Med Genomics. 2011; 4:49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival.
METHODS: A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers.
RESULTS: A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events.Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death.
CONCLUSIONS: Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.

Yang Y, Ahn YH, Gibbons DL, et al.
The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice.
J Clin Invest. 2011; 121(4):1373-85 [PubMed] Free Access to Full Article Related Publications
Epithelial tumor cells transit to a mesenchymal state in response to extracellular cues, in a process known as epithelial-to-mesenchymal transition (EMT). The precise nature of these cues has not been fully defined, an important issue given that EMT is an early event in tumor metastasis. Here, we have found that a population of metastasis-prone mouse lung adenocarcinoma cells expresses Notch and Notch ligands and that the Notch ligand Jagged2 promotes metastasis. Mechanistically, Jagged2 was found to promote metastasis by increasing the expression of GATA-binding (Gata) factors, which suppressed expression of the microRNA-200 (miR-200) family of microRNAs that target the transcriptional repressors that drive EMT and thereby induced EMT. Reciprocally, miR-200 inhibited expression of Gata3, which reversed EMT and abrogated metastasis, suggesting that Gata3 and miR-200 are mutually inhibitory and have opposing effects on EMT and metastasis. Consistent with this, high levels of Gata3 expression correlated with EMT in primary tumors from 2 cohorts of lung adenocarcinoma patients. These findings reveal what we believe to be a novel Jagged2/miR-200-dependent pathway that mediates lung adenocarcinoma EMT and metastasis in mice and may have implications for the treatment of human epithelial tumors.

Pietras A, von Stedingk K, Lindgren D, et al.
JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation.
Mol Cancer Res. 2011; 9(5):626-36 [PubMed] Related Publications
Several studies have revealed links between hypoxia and activation of Notch in solid tumors. While most reports have focused on intracellular domain of the Notch1 receptor (icN1) stabilization by direct interaction with HIF proteins, little attention has been given to Notch ligand regulation during hypoxia. Here we show that the Notch ligand JAG2 is transcriptionally activated by hypoxia in a HIF-1α dependent manner. Hypoxic JAG2 induction resulted in elevated Notch activity in tumor cells, as was measured by increased icN1 levels and induction of the Notch target gene HEY1. In primary tumor material, JAG2 expression correlated with vascular development and angiogenesis gene signatures. In line with this, coculture experiments of endothelial cells with hypoxic breast cancer cells displayed a reduction in number of capillary-like tubes formed upon JAG2 siRNA treatment of the breast cancer cells. Together these results suggest that a hypoxic induction of JAG2 in tumor cells mediates a hypoxia-regulated cross-talk between tumor and endothelial cells.

Jung SG, Kwon YD, Song JA, et al.
Prognostic significance of Notch 3 gene expression in ovarian serous carcinoma.
Cancer Sci. 2010; 101(9):1977-83 [PubMed] Related Publications
The Notch signaling pathway is an important cell signaling system, which regulates cell differentiation, proliferation, and apoptosis, and is aberrantly activated in a wide range of cancer, including ovarian cancers. However, it remains unclear as to whether Notch signaling plays a role in the progression and prognosis of ovarian cancer. We examined the mRNA and protein expression of Notch 3, Jagged 1, and Jagged 2 in 98 ovarian epithelial tumors via real-time PCR and in 175 tumors with immunohistochemical analysis, and then correlated their expression levels with clinicopathological parameters and patient survival. In this study, we detected high levels of Notch3 mRNA and protein expression especially in serous ovarian carcinomas compared to their benign counterparts, accompanied by a positive correlation with the expressions of Jagged 1 and Jagged 2. High levels of Notch 3 mRNA expression (>2-fold than that of benign tumor) were noted in 63% of the serous carcinomas (mean level: 17-fold, P = 0.032). Additionally, Notch 3 protein overexpression was significantly associated with advanced stage (P = 0.0008), lymph node (P = 0.001), and distant metastasis (P = 0.003). Notably, high Notch 3 mRNA and protein expressions were correlated with chemoresistance (P = 0.033) and poor overall survival (P = 0.027, P = 0.042) in these patients. Our results indicate that the Notch 3 signaling pathway is involved in the tumor progression of ovarian serous carcinoma, and higher Notch 3 expression may be an independent poor prognostic factor in this subset of tumors.

Schneider FT, Schänzer A, Czupalla CJ, et al.
Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.
Am J Pathol. 2010; 177(1):404-14 [PubMed] Free Access to Full Article Related Publications
Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

Siar CH, Nakano K, Han PP, et al.
Differential expression of Notch receptors and their ligands in desmoplastic ameloblastoma.
J Oral Pathol Med. 2010; 39(7):552-8 [PubMed] Related Publications
BACKGROUND: In mammals, the Notch gene family encodes four receptors (Notch1-4), and all of them are important for cell fate decisions. Notch signaling pathway plays an essential role in tooth development. The ameloblastoma, a benign odontogenic epithelial neoplasm, histologically recapitulates the enamel organ at bell stage. Notch has been detected in the plexiform and follicular ameloblastoma. Its activity in the desmoplastic ameloblastoma is unknown.
METHOD: Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1) were examined immunohistochemically in 10 cases of desmoplastic ameloblastoma.
RESULTS: Ameloblastoma tumor epithelium demonstrated positive expression for Notch1 (n = 5/10), Notch3 (n = 8/10), Notch4 (n = 10/10), Jagged1 (n = 6/10) and Delta1 (n = 5/10), but no reactivity for Notch2 (n = 10/10) and Jagged2 (10/10). Expression patterns were distinct with some overlap. Positive activity was detected largely in the cell membrane and cytoplasm of peripheral and central neoplastic epithelial cells, and sometimes in the nucleus. Staining score was highest for Notch4. Stromal components namely endothelial cells and fibroblasts showed overexpression for Notch4 but were mildly or non-reactive for the other Notch members and their ligands.
CONCLUSIONS: These findings suggest that Notch receptors and their ligands may play differing roles during the development of the desmoplastic ameloblastoma with Notch4 probably playing a greater role in the acquisition of tissue-specific cellular characteristics in the desmoplastic ameloblastoma.

Aste-Amézaga M, Zhang N, Lineberger JE, et al.
Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.
PLoS One. 2010; 5(2):e9094 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.
PRINCIPAL FINDINGS: Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50) values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.
CONCLUSIONS/SIGNIFICANCE: Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.

Yustein JT, Liu YC, Gao P, et al.
Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model.
Proc Natl Acad Sci U S A. 2010; 107(8):3534-9 [PubMed] Free Access to Full Article Related Publications
Ectopic Myc expression plays a key role in human tumorigenesis, and Myc dose-dependent tumorigenesis has been well established in transgenic mice, but the Myc target genes that are dependent on Myc levels have not been well characterized. In this regard, we used the human P493-6 B cells, which have a preneoplastic state dependent on the Epstein-Barr viral EBNA2 protein and a neoplastic state with ectopic inducible Myc, to identify putative ectopic Myc target genes. Among the ectopic targets, JAG2 that encodes a Notch receptor ligand Jagged2, was directly induced by Myc. Inhibition of Notch signaling through RNAi targeting JAG2 or the gamma-secretase Notch inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine t-butyl ester (DAPT) preferentially inhibited the neoplastic state in vitro. Furthermore, P493-6 tumorigenesis was inhibited by DAPT in vivo. Ectopic expression of JAG2 did not enhance aerobic cell proliferation, but increased proliferation of hypoxic cells in vitro and significantly increased in vivo tumorigenesis. Furthermore, the expression of Jagged2 in P493-6 tumors often overlapped with regions of hypoxia. These observations suggest that Notch signaling downstream of Myc enables cells to adapt in the tumor hypoxic microenvironment.

Katoh Y, Katoh M
Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.
Curr Mol Med. 2009; 9(7):873-86 [PubMed] Related Publications
Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.

Ghoshal P, Nganga AJ, Moran-Giuati J, et al.
Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma.
Cancer Res. 2009; 69(10):4380-7 [PubMed] Related Publications
Multiple myeloma (MM) is a clonal B-cell neoplasm that accounts for 10% of all malignant hematologic neoplasms and that affects terminally differentiated B cells (i.e., plasma cells). It is now well recognized that the cytokine interleukin-6 (IL-6) is a major cytokine that promotes the proliferation of malignant plasma cells in MM. The IL-6 gene can be regulated by the NOTCH genes products. We have previously shown that the NOTCH ligand, JAG2, is overexpressed in MM. To investigate the mechanism(s) leading to JAG2 overexpression in MM, we assessed potential epigenetic modifications of the JAG2 promoter. We showed that the JAG2 promoter region is aberrantly acetylated in MM cell lines and patient samples. The acetylation state of histones is regulated by the recruitment of histone deacetylases (HDAC). HDACs are typically recruited to promoter regions through interaction with nuclear corepressors such as SMRT. SMRT levels were therefore investigated. Interestingly, MM cell lines and patient samples presented significantly reduced SMRT levels. The experiments suggest a correlation between constitutive acetylation of the JAG2 core promoter in the MM cell lines and reduced levels of the SMRT corepressor that recruits HDAC to promoter regions. Finally, SMRT function restoration induced JAG2 down-regulation as well as MM cell apoptosis.

Choi K, Ahn YH, Gibbons DL, et al.
Distinct biological roles for the notch ligands Jagged-1 and Jagged-2.
J Biol Chem. 2009; 284(26):17766-74 [PubMed] Free Access to Full Article Related Publications
Notch signaling is activated in a subset of non-small cell lung cancer cells because of overexpression of Notch3, but the role of Notch ligands has not been fully defined. On the basis of gene expression profiling of a panel of non-small cell lung cancer cell lines, we found that the predominant Notch ligands were JAG1, JAG2, DLL1, and DLL3. Given that Notch ligands reportedly have overlapping receptor binding specificities, we postulated that they have redundant biological roles. Arguing against this hypothesis, we found that JAG1 and JAG2 were differentially regulated; JAG1 expression was dependent upon epidermal growth factor receptor (EGFR) activation in HCC827 cells, which require EGFR for survival, whereas JAG2 expression was EGFR-independent in these cells. Furthermore, HCC827 cells underwent apoptosis following depletion of JAG1 but not JAG2, whereas co-culture experiments revealed that depletion of JAG2, but not JAG1, enhanced the ability of HCC827 cells to chemoattract THP-1 human monocytes. JAG2-depleted HCC827 cells expressed high levels of inflammation-related genes, including interleukin 1 (IL1) and a broad range of IL1-regulated cytokines, which was attenuated by inhibition of IL1 receptor (IL1R). Our findings suggest that JAG1 and JAG2 have distinct biological roles including a previously undiscovered role for JAG2 in regulating the expression of cytokines that can promote antitumor immunity.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. JAG2, Cancer Genetics Web: http://www.cancer-genetics.org/JAG2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999