NOTCH4

Gene Summary

Gene:NOTCH4; notch 4
Aliases: INT3
Location:6p21.32
Summary:This gene encodes a member of the NOTCH family of proteins. Members of this Type I transmembrane protein family share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple different domain types. Notch signaling is an evolutionarily conserved intercellular signaling pathway that regulates interactions between physically adjacent cells through binding of Notch family receptors to their cognate ligands. The encoded preproprotein is proteolytically processed in the trans-Golgi network to generate two polypeptide chains that heterodimerize to form the mature cell-surface receptor. This receptor may play a role in vascular, renal and hepatic development. Mutations in this gene may be associated with schizophrenia. Alternative splicing results in multiple transcript variants, at least one of which encodes an isoform that is proteolytically processed. [provided by RefSeq, Jan 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:neurogenic locus notch homolog protein 4
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (32)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NOTCH4 (cancer-related)

Long LM, Zhan JK, Wang HQ, et al.
The Clinical Significance of miR-34a in Pancreatic Ductal Carcinoma and Associated Molecular and Cellular Mechanisms.
Pathobiology. 2017; 84(1):38-48 [PubMed] Related Publications
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) exhibits poor prognosis and resistance to chemotherapy. This study was to identify the biomarkers associated with the progression, poor prognosis and chemoresistance of PDAC.
METHODS: miR-34a and miR-150 levels in the plasma and tissues from PDAC patients were measured by real-time PCR. Xenograft PDAC tumor models were established in mice by inoculation of CD133+ stem cells isolated from PDAC tumors. Protein expression was measured by Western blot.
RESULTS: The plasma miR-34a and miR-150 levels were significantly lower in PDAC patients than in patients with benign pancreatic lesions and in healthy subjects. The miR-34a and miR-150 levels in the tumor tissues were significantly lower than in pancreatic tissues with benign lesions. The protein levels of CD133, Notch1, Notch2 and Notch4 receptors in PDAC tumor tissues were significantly higher than in pancreatic tissues with benign lesions. miR-34a injection significantly inhibited the tumor growth of PDAC tumors and sensitized the anticancer effects of 5-fluorouracil (5-FU). miR-34a significantly inhibited Notch1, Notch2 and Notch4 expression in xenograft tumor tissues in vivo and BxPC-3 cells in vitro. miR-34a and miR-150 significantly induced apoptosis and inhibited proliferation, invasion and migration in BxPC-3 cells. miR-34a, but not miR-150, significantly sensitized the anticancer effect of 5-FU in BxPC-3 cells in vitro.
CONCLUSION: A loss of expression of miR-34a, but not of miR-150, is associated with disease progression and poor prognosis in PDAC patients, and may be involved in the chemoresistance of PDAC cells.

Lin X, Sun B, Zhu D, et al.
Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma.
Cancer Sci. 2016; 107(8):1079-91 [PubMed] Free Access to Full Article Related Publications
Sphere formation in conditioned serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem-like cells, also known as tumor-initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem-like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4(high) B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial-mesenchymal transition (EMT)-associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE-cadherin and the overexpression of E-cadherin was observed in human melanoma A375 and MUM-2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ-secretase inhibitor, DAPT. Mechanistically, the re-overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE-cadherin expression and a decrease in E-cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.

Mk H, Prince S, Mohan AM, et al.
Association of Notch4 with metastasis in human oral squamous cell carcinoma.
Life Sci. 2016; 156:38-46 [PubMed] Related Publications
AIMS: Despite the development of several therapeutic strategies in the past decades, clinicians have failed to improve the survival rate of oral squamous cell carcinoma patients due to the highly metastatic nature of the disease and its high recurrence rate. However, there is accumulating evidence that aberrant Notch4 expression has a critical role in tumorigenesis but its prognostic value and function in OSCC remains uncertain. This study therefore investigates (1) the expression of Notch4 and its downstream target, myelin associated glycoprotein (MAG) in tissue samples representative of different stages of OSCC with varied clinicopathological features and (2) the possible involvement of Notch4 in the proliferation and migration of OSCC cells.
MAIN METHODS: Sixty patients reported positive for OSCC were obtained along with the clinicopathological parameters and we performed immunohistochemistry, western blotting and RT-PCR for Notch4 and MAG expression. Further, the metastatic role of Notch4 was analyzed in the HSC-3 cell line by cell proliferation and migration assays.
KEY FINDINGS: Our findings reveal that Notch4 and MAG expression are significantly upregulated in specifically late stages of OSCC tumor sections and perineural invasion (PNI) positive cases. In addition, depletion of Notch4 by siRNA inhibited the proliferative and migratory ability of the highly metastatic HSC-3 OSCC cells.
SIGNIFICANCE: Our study indicates that the aberrant activation of Notch4 promotes OSCC metastasis through perineural spread and ascertains its value as a significant prognostic marker and potential therapeutic target to treat this highly aggressive malignancy.

Liu ZY, Wu T, Li Q, et al.
Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma.
Medicine (Baltimore). 2016; 95(20):e3715 [PubMed] Free Access to Full Article Related Publications
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.

Zhou X, Teng L, Wang M
Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.
Tumour Biol. 2016; 37(5):6979-85 [PubMed] Related Publications
Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug target of ovarian cancer.

Narayanappa R, Rout P, Aithal MG, Chand AK
Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.
Tumour Biol. 2016; 37(5):6935-42 [PubMed] Related Publications
Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis.

Gao J, Xiong Y, Wang Y, et al.
Hepatitis B virus X protein activates Notch signaling by its effects on Notch1 and Notch4 in human hepatocellular carcinoma.
Int J Oncol. 2016; 48(1):329-37 [PubMed] Related Publications
Deregulated expression of Notch receptors and abnormal activity of Notch signaling have been observed in a growing number of malignant tumors, however, the expression and activity of Notch in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) and their relationship with HBV X protein (HBx) are still not fully elucidated. To address this, we examined the overall expression of Notch receptors in HBV-associated HCC tissues, analyzed their relationship with HBx, and further investigated the role of Notch signaling in HBx stable transfected HepG2 cells (HepG2X). The results showed that Notch signaling could be activated by HBx in HepG2 cells. The expression of cytoplasmic Notch1 or nuclear Notch4 was correlated with the expression of HBx in HBV-associated HCC tissues. The expression of cytoplasmic Notch1 or nuclear Notch4 could also be upregulated by HBx in HepG2X cells. The upregulation of Notch1 by HBx was through p38 MAPK pathway. Moreover, HBx was found to directly interact with Notch1, whereas, not with Notch4 in HepG2X cells. Suppression of Notch signaling by γ-secretase inhibitor (GSI) decreased cell growth, blocked cell cycle progression and induced cell apoptosis in HepG2X cells. The present study indicates that HBx activates Notch signaling by its effects on Notch1 and Notch4, and therefore, recruits Notch signaling as a downstream pathway contributing to its carcinogenic role in HBV-associated HCC.

Zhang JF, Chen Y, Qiu XX, et al.
The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: an immunohistochemical study.
Tumour Biol. 2016; 37(3):3797-805 [PubMed] Related Publications
Delta-like ligand-4 (DLL4)-Notch signaling is known to play a pivotal role in the regulation of tumor angiogenesis. We had previously found that DLL4 was overexpressed, while Notch1 receptor, which binds to DLL4 during angiogenesis, was absent in the majority of human primary glioblastomas. Thus, DLL4-Notch signaling pathway in the regulation of tumor angiogenesis in primary glioblastoma remains unknown. Tumor tissues from 70 patients with primary glioblastoma were analyzed by immunohistochemistry for expression of components of DLL4-Notch signaling, vascular endothelial growth factor (VEGF), and microvessel density (MVD). Immunohistochemistry results showed that the positive staining of DLL4 and Notch4 was primarily distributed in tumor vascular endothelial cells but rarely detected in tumor cells. However, VEGF, hairy/enhancer of split-1 (HES1; a target gene of Notch signaling), and Notch1-3 expression was seen in both tumor vascular endothelial cells and tumor cells. Univariate analysis showed that the expression levels of VEGF and DLL4, HES1, and Notch4 in tumor endothelial cells were significantly associated with MVD in primary glioblastoma (P < 0.001). Binary logistic regression analysis showed that high expression levels of DLL4, HES1, and Notch4 in tumor endothelial cells were associated with a decrease of MVD in primary glioblastoma, while MVD increased with elevated VEGF expression in contrast. In addition, DLL4, Notch4, and HES1 expression were positively correlated in tumor vascular endothelial cells (P < 0.05). We conclude that the vascular DLL4-Notch4 signaling and VEGF signaling complementing each other plays an important role in the progression of tumor angiogenesis in primary glioblastoma. Graphical abstract A, positive staining of DLL4 in human kidney; B, positive staining of VEGF in human breast cancer; C, positive staining of CD34 in human lung cancer; D, positive staining of HES1 in human breast cancer; E-H, positive staining of Notch1-4: E-F in human lung cancer; G-H in human kidney.

Qiu W, Tang SM, Lee S, et al.
Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
Gastroenterology. 2016; 150(1):218-228.e12 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Activin, a member of the transforming growth factor-β (TGFB) family, might be involved in pancreatic tumorigenesis, similar to other members of the TGFB family. Human pancreatic ductal adenocarcinomas contain somatic mutations in the activin A receptor type IB (ACVR1B) gene, indicating that ACVR1B could be a suppressor of pancreatic tumorigenesis.
METHODS: We disrupted Acvr1b specifically in pancreata of mice (Acvr1b(flox/flox);Pdx1-Cre mice) and crossed them with LSL-KRAS(G12D) mice, which express an activated form of KRAS and develop spontaneous pancreatic tumors. The resulting Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice were monitored; pancreatic tissues were collected and analyzed by histology and immunohistochemical analyses. We also analyzed p16(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice and Cre-negative littermates (controls). Genomic DNA, total RNA, and protein were isolated from mouse tissues and primary pancreatic tumor cell lines and analyzed by reverse-transcription polymerase chain reaction, sequencing, and immunoblot analyses. Human intraductal papillary mucinous neoplasm (IPMN) specimens were analyzed by immunohistochemistry.
RESULTS: Loss of ACVR1B from pancreata of mice increased the proliferation of pancreatic epithelial cells, led to formation of acinar to ductal metaplasia, and induced focal inflammatory changes compared with control mice. Disruption of Acvr1b in LSL-KRAS(G12D);Pdx1-Cre mice accelerated the growth of pancreatic IPMNs compared with LSL-KRAS(G12D);Pdx1-Cre mice, but did not alter growth of pancreatic intraepithelial neoplasias. We associated perinuclear localization of the activated NOTCH4 intracellular domain to the apical cytoplasm of neoplastic cells with the expansion of IPMN lesions in Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice. Loss of the gene that encodes p16 (Cdkn2a) was required for progression of IPMNs to pancreatic ductal adenocarcinomas in Acvr1b(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice. We also observed progressive loss of p16 in human IPMNs of increasing grades.
CONCLUSIONS: Loss of ACVR1B accelerates growth of mutant KRAS-induced pancreatic IPMNs in mice; this process appears to involve NOTCH4 and loss of p16. ACVR1B suppresses early stages of pancreatic tumorigenesis; the activin signaling pathway therefore might be a therapeutic target for pancreatic cancer.

Simões BM, O'Brien CS, Eyre R, et al.
Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity.
Cell Rep. 2015; 12(12):1968-77 [PubMed] Free Access to Full Article Related Publications
Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

Xu J, Song F, Jin T, et al.
Prognostic values of Notch receptors in breast cancer.
Tumour Biol. 2016; 37(2):1871-7 [PubMed] Related Publications
Notch receptors are frequently deregulated in several human malignancies including human breast cancer. Activation of Notch has been reported to cause mammary carcinomas in mice. However, the prognostic value of individual Notch receptors in breast cancer (BC) patients remains elusive. In the current study, we investigated the prognostic value of Notch receptors in human BC patients. More specifically, we investigated the prognostic value of four Notch receptors in breast cancer patients through "the Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information are from a total of 3554 breast cancer patients. Our results showed that Notch1 messenger RNA (mRNA) high expression was correlated to worsen overall survival (OS) in PgR-negative BC patients. Notch2, Notch3, and Notch4 mRNA high expressions were found to be correlated to better OS for all breast cancer patients. Notch2 was also found to be correlated to better OS in lymph node-negative breast cancer patients and HER2-positive breast cancer patients. These results will be useful for better understanding of the heterogeneity and complexity in the molecular biology of breast cancer and for developing tools to more accurately predict their prognosis and design their customized treatment strategies.

Zheng KL, He TL, Ji WP, et al.
Alternative splicing of NUMB, APP and VEGFA as the features of pancreatic ductal carcinoma.
Int J Clin Exp Pathol. 2015; 8(6):6181-91 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most common form of malignancy in pancreatic carcinoma. Here we report our discovery on the correlations between transcriptional alternative splicing (AS) of NUMB, APP, VEGFA and PDAC in patients.
METHODS: The expression of NUMB, APP, VEGFA from patient samples was determined by qRT-PCR. AS of these genes was examined through laser induced fluorescence capillary electrophoresis. Correlation between the AS of the genes and results from clinical laboratory examinations were analyzed. Expression of NOTHC1 and NOTCH4 as downstream target genes was examined by qRT-PCR and Western blot.
RESULTS: Quantitative results indicated that expression of NUMB was significantly lower in tumor tissues (TT) than in para-tumor tissues (TP) (P<0.05), while APP (P<0.01) and VEGFA (P<0.05) were significantly higher. AS transcript percentage of NUMB PRR(S) was lower in TT than TP (P<0.05). AS transcript percentage of VEGFA (105+185) was significantly lower in TT than TP (P<0.05) compared to higher expression of VEGFA (206+338) (P<0.05). Regression analysis indicated that AS transcript of NUMB PRR(L) correlated with tumor size (P<0.01), while AS transcripts of APP and VEGFA correlated with results of laboratory examinations. To reveal the correlation between AS and its downstream targets, NOTCH1 and NOTCH4 were selected as NUMB gene targets and detected to be significantly higher in TT than TP (P<0.05).
CONCLUSION: Alternative splicing of APP, VEGFA and NUMB may play an important role in pathogenesis of pancreatic ductal adenocarcinoma. Among the 3 genes, PRR(L) form of NUMB gene is highly expressed in TT and positively correlated with tumor size, while PRR(S) is lacking in TT and negatively correlated with NOTCH expression suggesting that PRR(S) might be protective in tumorogenesis and shows NOTCH pathway down regulation ability.

Naik S, MacFarlane M, Sarin A
Notch4 Signaling Confers Susceptibility to TRAIL-Induced Apoptosis in Breast Cancer Cells.
J Cell Biochem. 2015; 116(7):1371-80 [PubMed] Related Publications
Notch signaling has been established as a key regulator of cell fate in development, differentiation, and homeostasis. In breast cancers, increased Notch1 and Notch4 activity have been implicated in tumor progression and, accumulation of the intracellular domain of Notch4 (ICN4), reported in basal breast cancer cells. While, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have demonstrated selectively in targeting tumor cells, the majority of primary tumors are resistant to TRAIL. This necessitates the identification of factors that might regulate TRAIL sensitivity. Here we investigate TRAIL sensitivity in tumor cells following the modulation of Notch (1 and 4) activity using siRNA-mediated depletions or ectopic expression of GFP-tagged constructs of the intracellular domains of Notch1 (ICN1) or Notch4 (ICN4). Our findings suggest that Notch4, but not Notch1 signaling, sensitizes breast tumor cells to TRAIL-induced apoptosis. ICN4-induced sensitization to TRAIL is characterized by CBF1-dependence. Apoptosis was mediated via caspase-8 activation and regulated by the Bcl-2 family pro-apoptotic proteins Bak and Bid. Finally, we present evidence that endogenous Notch4 activity regulates susceptibility to TRAIL in basal-like breast cancer cells but not in cell lines of luminal origin. These experiments reveal a hitherto unexplored Notch4-TRAIL signaling axis in breast cancer cells.

D'Angelo RC, Ouzounova M, Davis A, et al.
Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity.
Mol Cancer Ther. 2015; 14(3):779-87 [PubMed] Free Access to Full Article Related Publications
Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

Kim SH, Singh SV
The role of polycomb group protein Bmi-1 and Notch4 in breast cancer stem cell inhibition by benzyl isothiocyanate.
Breast Cancer Res Treat. 2015; 149(3):681-92 [PubMed] Free Access to Full Article Related Publications
We showed previously that garden cress constituent benzyl isothiocyanate (BITC) inhibits self-renewal of breast cancer stem cells (bCSC) in vitro and in vivo. The present study offers novel insights into the mechanism by which BITC inhibits bCSC. Flow cytometry and mammosphere assay were performed to quantify bCSC fraction. Protein expression was determined by western blotting. Apoptosis was assessed by flow cytometry using Annexin V-propidium iodide method. Cell migration was determined by Boyden chamber assay. BITC treatment resulted in a marked decrease in protein level of polycomb group protein B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1) in cultured human breast cancer cells (MCF-7, SUM159, MDA-MB-231, and MDA-MB-361) and MDA-MB-231 xenografts in vivo. Overexpression (MCF-7) or knockdown (SUM159, and MDA-MB-231) of Bmi-1 protein had no meaningful impact on the BITC's ability to inhibit cell viability and cell migration and/or induce apoptosis. On the other hand, inhibition of bCSC markers (aldehyde dehydrogenase 1 activity and mammosphere frequency) resulting from BITC exposure was significantly altered by Bmi-1 overexpression and knockdown. BITC was previously shown to cause activation of Notch1, Notch2, and Notch4 in association with induction of γ-secretase complex component Nicastrin, which are also implicated in maintenance of cancer stemness. BITC-mediated inhibition of bCSC was augmented by knockdown of Notch4 and Nicastrin, but not by RNA interference of Notch1 or Notch2. The present study highlights important roles for Bmi-1 and Notch4 in BITC-mediated suppression of bCSC.

Qian C, Liu F, Ye B, et al.
Notch4 promotes gastric cancer growth through activation of Wnt1/β-catenin signaling.
Mol Cell Biochem. 2015; 401(1-2):165-74 [PubMed] Related Publications
Gastric cancer (GC) is one of the most common cancers and lethal malignancies in the world. Discovering novel biomarkers that correlate with GC may provide opportunities to reduce the severity of GC. As one of Notch receptor family members in mammals, Notch4 plays an important role in carcinogenesis of several tumors. However, the precise function and mechanism of Notch4 in GC remain undefined. To address this question, we investigated whether Notch4 could be involved in GC progression. We found that Notch4 was activated by overexpressing exogenous intracellular domain of Notch4 (ICN4), and Notch4 activation promoted GC growth in vitro and in vivo, while Notch4 inhibition using ICN4 siRNA had opposite effects. In addition, Notch4 activation induced expression and activation of Wnt1, β-catenin and downstream target genes, c-Myc and cyclin D1, in GC cells, while Notch4 inhibition had opposite effects. Moreover, β-catenin depletion by siRNA attenuated cell proliferation induced by Notch4 activation. Therefore, our results revealed that Notch4 activates Wnt1/β-catenin signaling to regulate GC growth.

Coradini D, Boracchi P, Oriana S, et al.
Differential expression of genes involved in the epigenetic regulation of cell identity in normal human mammary cell commitment and differentiation.
Chin J Cancer. 2014; 33(10):501-10 [PubMed] Free Access to Full Article Related Publications
The establishment and maintenance of mammary epithelial cell identity depends on the activity of a group of proteins, collectively called maintenance proteins, that act as epigenetic regulators of gene transcription through DNA methylation, histone modification, and chromatin remodeling. Increasing evidence indicates that dysregulation of these crucial proteins may disrupt epithelial cell integrity and trigger breast tumor initiation. Therefore, we explored in silico the expression pattern of a panel of 369 genes known to be involved in the establishment and maintenance of epithelial cell identity and mammary gland remodeling in cell subpopulations isolated from normal human mammary tissue and selectively enriched in their content of bipotent progenitors, committed luminal progenitors, and differentiated myoepithelial or differentiated luminal cells. The results indicated that, compared to bipotent cells, differentiated myoepithelial and luminal subpopulations were both characterized by the differential expression of 4 genes involved in cell identity maintenance: CBX6 and PCGF2, encoding proteins belonging to the Polycomb group, and SMARCD3 and SMARCE1, encoding proteins belonging to the Trithorax group. In addition to these common genes, the myoepithelial phenotype was associated with the differential expression of HDAC1, which encodes histone deacetylase 1, whereas the luminal phenotype was associated with the differential expression of SMARCA4 and HAT1, which encode a Trithorax protein and histone acetylase 1, respectively. The luminal compartment was further characterized by the overexpression of ALDH1A3 and GATA3, and the down-regulation of NOTCH4 and CCNB1, with the latter suggesting a block in cell cycle progression at the G2 phase. In contrast, myoepithelial differentiation was associated with the overexpression of MYC and the down-regulation of CCNE1, with the latter suggesting a block in cell cycle progression at the G1 phase.

Ueda J, Ho JC, Lee KL, et al.
The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth.
Mol Cell Biol. 2014; 34(19):3702-20 [PubMed] Free Access to Full Article Related Publications
Hypoxia promotes stem cell maintenance and tumor progression, but it remains unclear how it regulates long-term adaptation toward these processes. We reveal a striking downregulation of the hypoxia-inducible histone H3 lysine 9 (H3K9) demethylase JMJD1A as a hallmark of clinical human germ cell-derived tumors, such as seminomas, yolk sac tumors, and embryonal carcinomas. Jmjd1a was not essential for stem cell self-renewal but played a crucial role as a tumor suppressor in opposition to the hypoxia-regulated oncogenic H3K9 methyltransferase G9a. Importantly, loss of Jmjd1a resulted in increased tumor growth, whereas loss of G9a produced smaller tumors. Pharmacological inhibition of G9a also resulted in attenuation of tumor growth, offering a novel therapeutic strategy for germ cell-derived tumors. Finally, Jmjd1a and G9a drive mutually opposing expression of the antiangiogenic factor genes Robo4, Igfbp4, Notch4, and Tfpi accompanied by changes in H3K9 methylation status. Thus, we demonstrate a novel mechanistic link whereby hypoxia-regulated epigenetic changes are instrumental for the control of tumor growth through coordinated dysregulation of antiangiogenic gene expression.

Sehrawat A, Sakao K, Singh SV
Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells.
Breast Cancer Res Treat. 2014; 146(3):543-55 [PubMed] Free Access to Full Article Related Publications
We showed previously that zerumbone (ZER), a sesquiterpene isolated from subtropical ginger, inhibited in vitro (MCF-7 and MDA-MB-231cells) and in vivo (MDA-MB-231 cells) growth of human breast cancer cells in association with apoptosis induction. Here, we investigated the role of Notch receptors in anticancer effects of ZER (cell migration inhibition and apoptosis induction) using breast cancer cells. Western blotting was performed to determine protein expression changes. Effect of ZER on transcriptional activity of Notch was assessed by luciferase reporter assays. Transfection with small hairpin RNA or small interfering RNA was performed for knockdown of Notch2 or Presenilin-1 protein. Cell migration and apoptosis were quantitated by Boyden chamber assay and flow cytometry, respectively. Exposure of MDA-MB-231, MCF-7, and SUM159 cells to ZER resulted in increased cleavage of Notch2 in each cell line. On the other hand, levels of cleaved Notch1 and Notch4 proteins were decreased following ZER treatment. Increased cleavage of Notch2 in ZER-treated cells was accompanied by induction of Presenilin-1 protein and transcriptional activation of Notch. Inhibition of cell migration as well as apoptosis induction resulting from ZER exposure was significantly augmented by knockdown of Notch2 protein. ZER-mediated cleavage of Notch2 protein in MDA-MB-231 cells was markedly attenuated upon RNA interference of Presenilin-1. Knockdown of Presenilin-1 protein also resulted in escalation of ZER-induced apoptosis. The present study indicates that Notch2 activation by ZER inhibits its proapoptotic and anti-migratory response at least in breast cancer cells.

Lunde ML, Roman E, Warnakulasuriya S, et al.
Profiling of chromosomal changes in potentially malignant and malignant oral mucosal lesions from South and South-East Asia using array-comparative genomic hybridization.
Cancer Genomics Proteomics. 2014 May-Jun; 11(3):127-40 [PubMed] Related Publications
BACKGROUND/AIM: Using array-CGH, the present study aimed to explore genome-wide profiles of chromosomal aberrations in samples of oral cancer (OC), oral submucous fibrosis (OSF) and their corresponding normal oral mucosa from Indian (n=18) and OC from Sri Lankan (n=12) patients with history of BQ use, and correlate the findings to other clinicopathological parameters. A second aim was to verify the results from the array-CGH by selecting a candidate gene, S100A14, and examine its expression and genetic polymorphisms by immunohistochemistry (IHC) and restriction fragment length polymorphism (RFLP) using samples from both populations and from multi-national archival DNA and paraffin-embedded samples of OC.
RESULTS: In OC and OSF samples, 80 chromosomal regions (harboring 349 genes) were found as deleted or amplified. Out of the 349 genes, 34 (including several S100 gene family members) were found to be deleted and 30 (containing NOTCH4, TP53 and ERBB2) were found as amplified in OSF and OC cases. 285 genes (including TP53, ERBB2 and BRCA1) were found either as deleted in one population or amplified in the other. Few chromosomal alterations were found to be exclusive to either OC or OSF samples alone. IHC demonstrated down-regulation and transfer of S100A14 protein expression from membrane to cytoplasmic. RFLP showed differential distribution between Asian samples compared to African and Western samples at 461 G>A SNP.
CONCLUSION: The present study provides findings on chromosomal aberrations likely to be involved in pathogenesis of OC and OSF. Findings of chromosomal changes harboring genes previously found in OC examined from Western, African and Asian populations demonstrate the importance of these changes in development of OC, and the existence of common gene-specific amplifications/deletions, regardless of source of samples or attributed risk factors. We report a down-regulation of S100A14 expression to be a significant marker in association with loss of 1q21 in 70% of OC samples.

Lombardo Y, Faronato M, Filipovic A, et al.
Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells.
Breast Cancer Res. 2014; 16(3):R62 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Resistance to anti-estrogen therapies is a major cause of disease relapse and mortality in estrogen receptor alpha (ERα)-positive breast cancers. Tamoxifen or estrogen withdrawal increases the dependence of breast cancer cells on Notch signalling. Here, we investigated the contribution of Nicastrin and Notch signalling in endocrine-resistant breast cancer cells.
METHODS: We used two models of endocrine therapies resistant (ETR) breast cancer: tamoxifen-resistant (TamR) and long-term estrogen-deprived (LTED) MCF7 cells. We evaluated the migratory and invasive capacity of these cells by Transwell assays. Expression of epithelial to mesenchymal transition (EMT) regulators as well as Notch receptors and targets were evaluated by real-time PCR and western blot analysis. Moreover, we tested in vitro anti-Nicastrin monoclonal antibodies (mAbs) and gamma secretase inhibitors (GSIs) as potential EMT reversal therapeutic agents. Finally, we generated stable Nicastrin overexpessing MCF7 cells and evaluated their EMT features and response to tamoxifen.
RESULTS: We found that ETR cells acquired an epithelial to mesenchymal transition (EMT) phenotype and displayed increased levels of Nicastrin and Notch targets. Interestingly, we detected higher level of Notch4 but lower levels of Notch1 and Notch2 suggesting a switch to signalling through different Notch receptors after acquisition of resistance. Anti-Nicastrin monoclonal antibodies and the GSI PF03084014 were effective in blocking the Nicastrin/Notch4 axis and partially inhibiting the EMT process. As a result of this, cell migration and invasion were attenuated and the stem cell-like population was significantly reduced. Genetic silencing of Nicastrin and Notch4 led to equivalent effects. Finally, stable overexpression of Nicastrin was sufficient to make MCF7 unresponsive to tamoxifen by Notch4 activation.
CONCLUSIONS: ETR cells express high levels of Nicastrin and Notch4, whose activation ultimately drives invasive behaviour. Anti-Nicastrin mAbs and GSI PF03084014 attenuate expression of EMT molecules reducing cellular invasiveness. Nicastrin overexpression per se induces tamoxifen resistance linked to acquisition of EMT phenotype. Our finding suggest that targeting Nicastrin and/or Notch4 warrants further clinical evaluation as valid therapeutic strategies in endocrine-resistant breast cancer.

Zhang S, Chung WC, Wu G, et al.
Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation.
Neoplasia. 2014; 16(2):158-67 [PubMed] Free Access to Full Article Related Publications
Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng), which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44(+)CD24(-) and CD49f(+)CD24(-) stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

Dell'albani P, Rodolico M, Pellitteri R, et al.
Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation.
Neuro Oncol. 2014; 16(2):204-16 [PubMed] Free Access to Full Article Related Publications
Background Notch signaling is deregulated in human gliomas and may play a role in their malignancy. However, the role of each Notch receptor in glioma cell differentiation and progression is not clear. We examined the expression pattern of Notch receptors and compared it with differentiation markers in glioma cell lines, primary human cultures, and biopsies of different grades. Furthermore, the effects of a γ-secretase inhibitor (GSI) on cell survival were assessed. Methods Notch receptors and markers of cellular differentiation were analyzed by reverse transcriptase PCR, Western blotting, immunohistochemistry, and immunocytochemistry. GSI sensitivity was assessed in both cell lines and primary cultures grown as monolayers or tumorspheres, by MTT assay. Results In cell lines, Notch1 and Notch2/4 levels paralleled those of glial fibrillary acidic protein (GFAP) and vimentin, respectively. In human gliomas and primary cultures, Notch1 was moderate/strong in low-grade tumors but weak in glioblastoma multiforme (GBM). Conversely, Notch4 increased from astrocytoma grade II to GBM. Primary GBM cultures grown in serum (monolayer) showed moderate/high levels of CD133, nestin, vimentin, and Notch4 and very low levels of GFAP and Notch1, which were reduced in tumorspheres. This effect was drastic for Notch4. GSI reduced cell survival with stronger effect in serum, whilst human primary cultures showed different sensitivity. Conclusion Data from cell lines and human gliomas suggest a correlation between expression of Notch receptors and cell differentiation. Namely, Notch1 and Notch4 are markers of differentiated and less differentiated glioma cells, respectively. We propose Notch receptors as markers of glioma grading and possible prognostic factors.

Killela PJ, Pirozzi CJ, Reitman ZJ, et al.
The genetic landscape of anaplastic astrocytoma.
Oncotarget. 2014; 5(6):1452-7 [PubMed] Free Access to Full Article Related Publications
Anaplastic astrocytoma WHO grade III (A3) is a lethal brain tumor that often occurs in middle aged patients. Clinically, it is challenging to distinguish A3 from glioblastoma multiforme (GBM) WHO grade IV. To reveal the genetic landscape of this tumor type, we sequenced the exome of a cohort of A3s (n=16). For comparison and to illuminate the genomic landscape of other glioma subtypes, we also included in our study diffuse astrocytoma WHO grade II (A2, n=7), oligoastrocytoma WHO grade II (OA2, n=2), anaplastic oligoastrocytoma WHO grade III (OA3, n=4), and GBM (n=28). Exome sequencing of A3s identified frequent mutations in IDH1 (75%, 12/16), ATRX (63%, 10/16), and TP53 (82%, 13/16). In contrast, the majority of GBMs (75%, 21/28) did not contain IDH1 or ATRX mutations, and displayed a distinct spectrum of mutations. Finally, our study also identified novel genes that were not previously linked to this tumor type. In particular, we found mutations in Notch pathway genes (NOTCH1, NOTCH2, NOTCH4, NOTCH2NL), including a recurrent NOTCH1-A465Tmutation, in 31% (5/16) of A3s. This study suggests genetic signatures will be useful for the classification of gliomas.

El Hindy N, Keyvani K, Pagenstecher A, et al.
Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme.
Neuro Oncol. 2013; 15(10):1366-78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by massive neovascularization, necrosis, and intense resistance to therapy. Deregulated Notch signaling has been implicated in the formation and progression of different malignancies. The present study attempted to investigate the activation status of Dll4-Notch signaling in primary human GBM and its association with vascular and clinical parameters in patients.
METHODS: Major components of Dll4-Notch signaling were examined by real-time reverse-transcription polymerase chain reaction (PCR), Western blotting, and immunohistochemistry in GBM (n = 26) and control (n = 11) brain tissue. The vascular pattern (VP) and microvascular density (MVD) were analyzed after laminin immunostaining. O6-Methylguanine-methyltransferase (MGMT) promoter methylation in GBM samples was detected by methylation-specific PCR.
RESULTS: The mRNA levels of Dll4, Jagged1, Notch1, Notch4, Hey1, Hey2, Hes1, and VEGF were 3.12-, 3.58-, 3.37-, 5.77-, 4.89-, 3.13-, 6.62-, and 32.57-fold elevated, respectively, in GBM samples, compared with the controls. Western blotting revealed a 4-, 3.7-, and 45.6-fold upregulation of Dll4, Notch1, and Hey1, respectively, accompanied by a downregulation of PTEN expression and an increase in the expression of p-Akt and VEGF. Immunostaining located the immunoreactivity of Dll4 and Notch1 in endothelial cells, microglia/macrophages, tumor cells, and astrocytes. Furthermore, the upregulation of Dll4-Notch signaling components was correlated to a low MVD and was potentially related to a classic VP, tumor edema, and MGMT promoter methylation.
CONCLUSIONS: The upregulation of Dll4-Notch signaling components was found in a subset of GBM samples and was associated with some angiogenic and clinical parameters. These findings highlight this signaling pathway as a potential therapeutic target for patients with GBM who show an activation of Dll4-Notch signaling.

Rodríguez-Rodero S, Fernández AF, Fernández-Morera JL, et al.
DNA methylation signatures identify biologically distinct thyroid cancer subtypes.
J Clin Endocrinol Metab. 2013; 98(7):2811-21 [PubMed] Related Publications
OBJECTIVE: The purpose of this study was to determine the global patterns of aberrant DNA methylation in thyroid cancer.
RESEARCH DESIGN AND METHODS: We have used DNA methylation arrays to determine, for the first time, the genome-wide promoter methylation status of papillary, follicular, medullary, and anaplastic thyroid tumors.
RESULTS: We identified 262 and 352 hypermethylated and 13 and 21 hypomethylated genes in differentiated papillary and follicular tumors, respectively. Interestingly, the other tumor types analyzed displayed more hypomethylated genes (280 in anaplastic and 393 in medullary tumors) than aberrantly hypermethylated genes (86 in anaplastic and 131 in medullary tumors). Among the genes indentified, we show that 4 potential tumor suppressor genes (ADAMTS8, HOXB4, ZIC1, and KISS1R) and 4 potential oncogenes (INSL4, DPPA2, TCL1B, and NOTCH4) are frequently regulated by aberrant methylation in primary thyroid tumors. In addition, we show that aberrant promoter hypomethylation-associated overexpression of MAP17 might promote tumor growth in thyroid cancer.
CONCLUSIONS: Thyroid cancer subtypes present differential promoter methylation signatures, and nondifferentiated subtypes are characterized by aberrant promoter hypomethylation rather than hypermethylation. Additional studies are needed to determine the potential clinical interest of the tumor subtype-specific DNA methylation signatures described herein and the role of aberrant promoter hypomethylation in nondifferentiated thyroid tumors.

Beschorner R, Waidelich J, Trautmann K, et al.
Notch receptors in human choroid plexus tumors.
Histol Histopathol. 2013; 28(8):1055-63 [PubMed] Related Publications
Notch signaling plays a role in development and formation of the normal choroid plexus (nCP), and in formation of various tumors in humans. Activation of Notch3 has been reported to promote tumor growth in invasive gliomas and to initiate formation of choroid plexus tumors (CPT) in mice. We investigated the expression of all currently known Notch receptors (Notch 1-4) in 55 samples of nCP and 88 CPT, including 61 choroid plexus papillomas (CPP), 22 atypical CPP and 5 choroid plexus carcinomas by immunohistochemistry. Notch expression was semiquantitatively evaluated separately for membranous/cytoplasmic and for nuclear staining. In addition, we examined Her2 expression (EGFR2, Her2/neu, ErbB2, CD340) because of its functional link to Notch signaling. All samples were negative for Notch3. Membranous/cytoplasmic expression of Notch1 (p<0.0001) and Notch4 (p=0.046) was significantly higher, whereas Notch2 expression was significantly lower (p<0.0001) in nCP compared to CPT. Nuclear expression of Notch1, -2 and -4 was significantly higher in CPT compared to nCP (p<0.0001 each). Expression of Notch2 and Notch4 showed a shift from a prevailing membranous/cytoplasmic expression in nCP to a predominant nuclear expression in CPT. Her2 was weakly expressed in 42/84 CPT but only in 2/53 nCP (p=0.0001) and positively correlated with nuclear expression of Notch1, -2 and 4 in CPT. In summary, a shift between membranous/cytoplasmic (non-canonical signaling pathway) and nuclear expression (canonical signaling pathway) of Notch1, -2 and -4 and upregulation of Her2 indicate neoplastic transformation in human CP and may reveal new therapeutic approaches.

Chen W, Zhang H, Wang J, et al.
Lentiviral-mediated gene silencing of Notch-4 inhibits in vitro proliferation and perineural invasion of ACC-M cells.
Oncol Rep. 2013; 29(5):1797-804 [PubMed] Related Publications
Salivary adenoid cystic carcinoma (SACC) is a common type of salivary gland cancer. The poor long-term prognosis for patients with SACC is mainly due to local recurrence, perineural invasion (PNI) and distant metastasis. Notch signaling plays a critical role in determining cell fate such as proliferation, differentiation and apoptosis. Accumulating evidence indicates that aberrant Notch-4 expression has a tumor-promoting function in SACC. In the present study, we used lentiviral-mediated RNA interference (RNAi) targeted against Notch-4 to determine the effects of decreased levels of this protein in the human highly metastatic adenoid cystic carcinoma cell line ACC-M. Furthermore, the proliferative capability as well as the PNI potential of the treated cells were observed in vitro. Our studies demonstrated that RNAi directed against Notch-4 markedly decreased Notch-4 gene expression, resulting in the inhibition of cell proliferation, and G0/G1 to S phase arrest in ACC-M cells. Knockdown of Notch-4 also resulted in a decrease in the in vitro PNI activity in ACC-M cells. To conclude, RNAi targeting against Notch-4 induces the suppression of cell growth and inhibition of PNI in vitro in ACC-M cells. Notch-4 may play an important role in regulating proliferation and PNI activity of SACC.

You C, Sandalcioglu IE, Dammann P, et al.
Loss of CCM3 impairs DLL4-Notch signalling: implication in endothelial angiogenesis and in inherited cerebral cavernous malformations.
J Cell Mol Med. 2013; 17(3):407-18 [PubMed] Free Access to Full Article Related Publications
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformation (CCM), a common brain vascular anomaly involving aberrant angiogenesis. This study focused on signalling pathways underlying the angiogenic functions of CCM3. Silencing CCM3 by siRNA stimulated endothelial proliferation, migration and sprouting accompanied by significant downregulation of the core components of Notch signalling including DLL4, Notch4, HEY2 and HES1 and by activation of VEGF and Erk pathways. Treatment with recombinant DLL4 (rhDLL4) restored DLL4 expression and reversed CCM3-silence-mediated impairment of Notch signalling and reduced the ratio of VEGF-R2 to VEGF-R1 expression. Importantly, restoration of DLL4-Notch signalling entirely rescued the hyper-angiogenic phenotype induced by CCM3 silence. A concomitant loss of CCM3 and the core components of DLL4-Notch signalling were also demonstrated in CCM3-deficient endothelial cells derived from human CCM lesions (CCMEC) and in a CCM3 germline mutation carrier. This study defined DLL4 as a key downstream target of CCM3 in endothelial cells. CCM3/DLL4-Notch pathway serves as an important signalling for endothelial angiogenesis and is potentially implicated in the pathomechanism of human CCMs.

Jonusiene V, Sasnauskiene A, Lachej N, et al.
Down-regulated expression of Notch signaling molecules in human endometrial cancer.
Med Oncol. 2013; 30(1):438 [PubMed] Related Publications
Notch signaling pathway is a highly conserved developmental pathway, which plays an important role in the regulation of cellular proliferation, differentiation and apoptosis. Deregulation of Notch pathway has been connected with the carcinogenesis in a variety of cancers. In this study, we investigated the expression of Notch receptors (NOTCH1, NOTCH2, NOTCH3 and NOTCH4), ligands (JAG1, JAG2 and DLL1) and target gene HES1. Fifty paired samples of endometrial cancer and adjacent nontumor endometrial tissue from endometrial cancer patients were analyzed by quantitative PCR. The mRNA levels of all investigated molecules were lower in endometrial cancer compared to adjacent nontumor tissue. The expression of NOTCH1, NOTCH4 and DLL1 in IB stage adenocarcinoma was significantly lower (P < 0.05) than the expression in IA stage adenocarcinoma. Significant correlations were found between mRNA expression levels of Notch target gene HES1 and several Notch signaling molecules: NOTCH1, NOTCH3, DLL1 (P < 0.001) and NOTCH2, JAG2 (P < 0.05). This supports the notion that Notch pathway can function as tumor suppressor in human endometrial cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NOTCH4, Cancer Genetics Web: http://www.cancer-genetics.org/NOTCH4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999