Gene Summary

Gene:MAP2K6; mitogen-activated protein kinase kinase 6
Summary:This gene encodes a member of the dual specificity protein kinase family, which functions as a mitogen-activated protein (MAP) kinase kinase. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals. This protein phosphorylates and activates p38 MAP kinase in response to inflammatory cytokines or environmental stress. As an essential component of p38 MAP kinase mediated signal transduction pathway, this gene is involved in many cellular processes such as stress induced cell cycle arrest, transcription activation and apoptosis. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:dual specificity mitogen-activated protein kinase kinase 6
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (30)
Pathways:What pathways are this gene/protein implicaed in?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Enzymologic Gene Expression Regulation
  • Transcription Factor AP-1
  • Cell Movement
  • Enzyme Activation
  • Down-Regulation
  • MAP Kinase Kinase 6
  • Cancer Gene Expression Regulation
  • Chromosome 17
  • RNA Interference
  • Neoplasm Invasiveness
  • Lymphatic Metastasis
  • JNK Mitogen-Activated Protein Kinases
  • Phenotype
  • Colonic Neoplasms
  • ras Proteins
  • Breast Cancer
  • Stomach Cancer
  • Base Sequence
  • Colorectal Cancer
  • Phosphorylation
  • Signal Transduction
  • Promoter Regions
  • MAP Kinase Kinase 3
  • Up-Regulation
  • Transcription
  • Apoptosis
  • Cell Cycle
  • MAP Kinase Signaling System
  • siRNA
  • Transfection
  • STAT1 Transcription Factor
  • Bladder Cancer
  • Drug Resistance
  • Cell Proliferation
  • MAP Kinase Kinase 4
  • Mutation
  • Mitogen-Activated Protein Kinases
  • Enzyme Inhibitors
  • Gene Expression Profiling
  • Receptor, erbB-2
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAP2K6 (cancer-related)

Tung CL, Jian YJ, Chen JC, et al.
Curcumin downregulates p38 MAPK-dependent X-ray repair cross-complement group 1 (XRCC1) expression to enhance cisplatin-induced cytotoxicity in human lung cancer cells.
Naunyn Schmiedebergs Arch Pharmacol. 2016; 389(6):657-66 [PubMed] Related Publications
Cisplatin is a well-studied and widely used chemotherapeutic agent and is effective in the treatment of the advanced human non-small cell lung cancer (NSCLC). Curcumin is a yellow pigment derived from the rhizome of Curcuma longa and has been proved to have antioxidant and antitumor properties. XRCC1 is an important scaffold protein involved in base excision repair and plays an important role in the development of lung cancer. In this study, we characterize the role of curcumin in the cytotoxicity, p38 MAPK activation, and XRCC1 expression affected by cisplatin in NSCLC cells. We show that curcumin enhanced the cytotoxicity induced by cisplatin in two NSCLC cells, A549 and H1703. Treatment with cisplatin alone increased XRCC1 mRNA and protein expression through p38 MAPK activation. Moreover, SB2023580 (p38 inhibitor) decreased the XRCC1 mRNA and protein stability upon cisplatin treatment. Knockdown of XRCC1 in NSCLC cells by transfection of XRCC1 siRNA or inactivation of p38 MAPK resulted in enhancing the cytotoxicity and cell growth inhibition induced by cisplatin. Curcumin inhibited the expression of XRCC1 in cisplatin-exposed NSCLC cells. Furthermore, transfection with constitutive active MKK6 or HA-p38 MAPK vectors rescued the XRCC1 protein level and also the cell survival suppressed by cisplatin and curcumin combination in A549 and H1703 cells. These findings suggested that the downregulation of XRCC1 expression by curcumin can enhance the chemosensitivity of cisplatin in NSCLC cells.

Lu WJ, Chua MS, So SK
Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling.
Oncotarget. 2015; 6(39):41722-35 [PubMed] Free Access to Full Article Related Publications
The ATPase family, AAA domain containing 2 (ATAD2) is highly expressed in multiple cancers. We aim to understand the clinical and biological significance of ATAD2 over-expression in hepatocellular carcinoma (HCC), as a means to validate it as a therapeutic target in HCC. We demonstrated that ATAD2 was over-expressed in HCC patients, where high ATAD2 levels were significantly correlated with aggressive phenotypes such as high AFP levels, advanced tumor stages, and vascular invasion. Using RNA interference, suppression of ATAD2 in HCC cell lines decreased cell viability, migration, and invasion, and induced apoptosis in vitro. Furthermore, we identified p53 and p38 as key proteins that mediate apoptosis induced by ATAD2 suppression. In HCC cells, we demonstrated that ATAD2 directly interacted with MKK3/6, which prevented p38 activation and therefore inhibited p38-mediated apoptosis. In vivo, suppression of ATAD2 impaired the growth of HepG2 and Hep3B subcutaneous xenografts, accompanied by enhanced apoptosis and p-p53 and p-p38 levels. Our results validate that ATAD2 is an important negative regulator of apoptosis, and that neutralizing its activity has promising anti-tumor effects in HCC cells.

Liao H, Kang JL, Jiang WY, et al.
Delivery of Constitutively Active Mutant MKK6(E) With TAT-OSBP Induces Apoptosis in Human Ovarian Carcinoma HO8910 Cells.
Int J Gynecol Cancer. 2015; 25(9):1548-56 [PubMed] Related Publications
Biologically active peptides and proteins are novel agents that show promise in the development of anticancer drugs. Their relatively low cell permeability and poor tumor selectivity, however, impede their widespread applicability. In this study, we evaluated the tumor selectivity, cellular internalization, and biological activity of a cell-permeable ovarian cancer cell-specific therapeutic protein consisting of TAT-OSBP and constitutively active MKK6(E), an upstream kinase of the p38 signaling pathway that mediates cellular apoptosis. OSBP, a 7-amino-acid peptide with high affinity for human ovarian cancer HO8910 cells, was conjugated to the cell-penetrating peptide (TAT) to form a tumor-selective peptide (TAT-OSBP), which was further conjugated with EGFP or MKK6(E). Flow cytometry and fluorescent microscopy were performed to evaluate the tumor-targeted penetration of TAT-OSBP-EGFP. The inhibitory effects of TAT-OSBP-MKK6(E) were determined by cell proliferation and apoptosis assays. The internalization efficiency of TAT-OSBP-EGFP was significantly higher than that of TAT-EGFP. TAT-OSBP-EGFP selectively penetrated HO8910 cells. TAT-OSBP-MKK6(E) fusion protein inhibited cancer cell growth to varying degrees, with the highest level of inhibition in HO8910 cells. Moreover, TAT-OSBP-MKK6(E) significantly induced apoptosis of HO8910 cells. However, there was no significant difference in apoptosis in the normal ovarian epithelial cells treated with either TAT-OSBP-MKK6(E) or TAT-MKK6(E). Our results demonstrate that TAT-OSBP-MKK6(E) is a novel artificially designed molecule, which induces apoptosis and selectively targets human ovarian carcinoma HO8910 cells. Our study provides novel insights that may aid in the development of a new generation of anticancer drugs.

Zhong J, Kang J, Wang X, et al.
TAT-OSBP-1-MKK6(E), a novel TAT-fusion protein with high selectivity for human ovarian cancer, exhibits anti-tumor activity.
Med Oncol. 2015; 32(4):118 [PubMed] Related Publications
To improve the selectivity of TAT-fusion proteins for targeted cancer therapy, we developed a novel TAT-based target-specific fusion protein, TAT-OSBP-1-MKK6(E), and evaluated its selectivity and anti-tumor activity in vitro and in vivo. The fusion protein containing TAT-OSBP-1-MKK6(E) has three functional domains: (1) the protein transduction domain of TAT, (2) the human ovarian cancer HO8910 cell-specific binding peptide (OSBP-1) and (3) the potential anti-tumor effector domain of MKK6(E). The transduction efficiency, selectivity, cytotoxicity and apoptotic effect of TAT-OSBP-1-MKK6(E) were examined using immunofluorescence, CCK8 assay and flow cytometry. The in vivo anti-tumor efficacy and target specificity of the fusion protein were evaluated using a nude mouse model with subcutaneous xenografts of human ovarian cancer HO8910 cells. Tumor-bearing mice were divided into three treatment groups that received tail vein injections of TAT-OSBP-1-MKK6(E), TAT-OSBP-1 or normal saline. Tumor growth inhibition was determined by tumor volume, weight and morphology. The distribution and apoptotic effect of TAT-OSBP-1-MKK6(E) were assessed by immunohistochemical staining and TUNEL assays. TAT-OSBP-1-MKK6(E) can be selectively internalized into human ovarian cancer HO8910 cells, rather than normal ovarian OSE cells. In vivo, the fusion protein was mainly expressed in the tumor xenograft, but not in ovary or liver tissues. As a result, TAT-OSBP-1-MKK6(E) significantly induced growth inhibition and apoptosis of tumor cells in vitro and in vivo, with limited effects in normal cells and tissues. TAT-OSBP-1-MKK6(E) treatment can selectively target HO8910 cells in vitro and in vivo, leading to growth inhibition and apoptosis of tumor cells. As such, TAT-OSBP-1-MKK6(E) may be a potential approach for ovarian cancer target therapy.

Marino N, Collins JW, Shen C, et al.
Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines.
Clin Exp Metastasis. 2014; 31(7):771-86 [PubMed] Free Access to Full Article Related Publications
Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66 % compared to the empty vector-expressing cells (p = 0.01 and p = 0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47-62 % fewer lung metastases than shRNA-scramble expressing cells (p = 0.045 and p = 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.

Wang L, Huang J, Jiang M, et al.
CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) by biocomputation.
Cell Biochem Biophys. 2014; 70(2):1011-6 [PubMed] Related Publications
We data-analyzed and constructed the high-expression CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) compared with low-expression (fold change ≥ 2) no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) in GEO data set, using integration of gene regulatory network inference method with gene ontology (GO). Our result showed that CAMK1 transport subnetwork upstream KCNQ3, LCN2, NKX2_5, NUP62, SORT1, STX1A activated CAMK1, and downstream CAMK1-activated AFP, ENAH, KPNA2, SLC4A3; CAMK1 signal subnetwork upstream BRCA1, DKK1, GPSM2, LEF1, NR5A1, NUP62, SORT1, SSTR5, TBL3 activated CAMK1, and downstream CAMK1-activated MAP2K6, SFRP4, SSTR5, TSHB, UBE2C in HCC. We proposed that CAMK1 activated network enhanced endosome to lysosome transport, endosome transport via multivesicular body sorting pathway, Golgi to endosome transport, intracellular protein transmembrane transport, intracellular protein transport, ion transport, mRNA transport, plasma membrane to endosome transport, potassium ion transport, protein transport, vesicle-mediated transport, anion transport, intracellular transport, androgen receptor signaling pathway, cell surface receptor-linked signal transduction, hormone-mediated signaling, induction of apoptosis by extracellular signals, signal transduction by p53 class mediator resulting in transcription of p21 class mediator, signal transduction resulting in induction of apoptosis, phosphoinositide-mediated signaling, Wnt receptor signaling pathway, as a result of inducing phosphoinositide signal-mediated protein sorting, and transport in HCC. Our hypothesis was verified by CAMK1 functional regulation subnetwork containing positive regulation of calcium ion transport via voltage gated calcium channel, cell proliferation, DNA repair, exocytosis, I-kappaB kinase/NF-kappaB cascade, immunoglobulin-mediated immune response, mast cell activation, natural killer cell-mediated cytotoxicity directed against tumor cell target, protein ubiquitination, sodium ion transport, survival gene product activity, T cell-mediated cytotoxicity, transcription, transcription from RNA polymerase II promoter, transcription initiation from RNA polymerase II promoter, transcription via serum response element binding, exit from mitosis, ubiquitin ligase activity during mitotic cell cycle, regulation of angiogenesis, apoptosis, cell growth, cell proliferation, cyclin-dependent protein kinase activity, gene expression, insulin secretion, steroid biosynthesis, transcription from RNA polymerase II promoter, transcription from RNA polymerase III promoter, cell cycle, cell migration, DNA recombination, and protein metabolism; also by CAMK1 negative functional regulation subnetwork including negative regulation of apoptosis, cell proliferation, centriole replication, fatty acid biosynthesis, lipoprotein lipase activity, MAPK activity, progression through cell cycle, transcription, transcription from RNA polymerase II promoter, cell growth, phosphorylation, and ubiquitin ligase activity during mitotic cell cycle in HCC.

Ma B, Wells A
The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells.
J Biol Chem. 2014; 289(16):11153-61 [PubMed] Free Access to Full Article Related Publications
The greatest challenge for the seeding of cancer in metastatic sites is integration into the ectopic microenvironment despite the lack of an orthotopic supportive environment and presence of pro-death signals concomitant with a localized "foreign-body" inflammatory response. In this metastatic location, many carcinoma cells display a reversion of the epithelial-to-mesenchymal transition that marks dissemination in the primary tumor mass. This mesenchymal to epithelial reverting transition (MErT) is thought to help seeding and colonization by protecting against cell death. We have previously shown that hepatocyte coculture induces the re-expression of E-cadherin via abrogation of autocrine EGFR signaling pathway in prostate cancer (PCa) cells and that this confers a survival advantage. Herein, we show that hepatocytes educate PCa to undergo MErT by modulating the activity of p38 and ERK1/2. Hepatocytes inhibited p38 and ERK1/2 activity in prostate cancer cells, which allowed E-cadherin re-expression. Introduction of constitutively active MEK6 and MEK1 to DU145 cells cocultured with hepatocytes abrogated E-cadherin re-expression. At least a partial phenotypic reversion can be achieved by suppression of p38 and ERK1/2 activation in DU145 cells even in the absence of hepatocytes. Interestingly, these mitogen-activated protein kinase activities were also triggered by re-expressed E-cadherin leading to p38 and ERK1/2 activity in PCa cells; these signals provide protection to PCa cells upon challenge with chemotherapy and cell death-inducing cytokines. We propose that distinct p38/ERK pathways are related to E-cadherin levels and function downstream of E-cadherin allowing, respectively, for hepatocyte-mediated MErT and tumor cell survival in the face of death signals.

Tung CL, Chiu HC, Jian YJ, et al.
Down-regulation of MSH2 expression by an Hsp90 inhibitor enhances pemetrexed-induced cytotoxicity in human non-small-cell lung cancer cells.
Exp Cell Res. 2014; 322(2):345-54 [PubMed] Related Publications
Elevated heat shock protein 90 (Hsp90) expression has been linked to poor prognosis in patients with non-small cell lung cancer (NSCLC). The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against NSCLC. However, the efficacy of the combination of pemtrexed and Hsp90 inhibitor to prolong the survival of patients with NSCLC still remains unclear. Human MutS homolog 2 (MSH2), a crucial element of the highly conserved DNA mismatch repair system, and defects or polymorphisms of MSH2 have been found in lung cancer. In this study, we evaluated the effects of pemetrexed on NSCLC cell lines (H520 and H1703) and found that treatment with this drug at 20-50 µM increased the MSH2 mRNA and protein levels in a MKK3/6-p38 MAPK signal activation-dependent manner. Furthermore, the knockdown of MSH2 expression by transfection with small interfering RNA of MSH2 or the blockage of p38 MAPK activation by SB202190 enhanced the cytotoxicity of pemetrexed. Combining the drug treatment with an Hsp90 inhibitor resulted in an enhanced pemetrexed-induced cytotoxic effect, accompanied with the reduction of MSH2 protein and mRNA levels. The expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored the MSH2 protein levels and cell survival in NSCLC cells co-treated with pemetrexed and Hsp90 inhibitor. In this study, we have demonstrated that down-regulation of the MKK3/6-p38 MAPK signal with the subsequent reduction of MSH2 enhanced the cytotoxic effect of pemetrexed in H520 and H1703 cells. The results suggest a potential future benefit of combining pemetrexed and the Hsp90 inhibitor to treat lung cancer.

Yong KJ, Milenic DE, Baidoo KE, et al.
Gene expression profiling upon (212) Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model.
Cancer Med. 2013; 2(5):646-53 [PubMed] Free Access to Full Article Related Publications
Recent studies have demonstrated that therapy with (212) Pb-TCMC-trastuzumab resulted in (1) induction of apoptosis, (2) G2/M arrest, and (3) blockage of double-strand DNA damage repair in LS-174T i.p. (intraperitoneal) xenografts. To further understand the molecular basis of the cell killing efficacy of (212) Pb-TCMC-trastuzumab, gene expression profiling was performed with LS-174T xenografts 24 h after exposure to (212) Pb-TCMC-trastuzumab. DNA damage response genes (84) were screened using a quantitative real-time polymerase chain reaction array (qRT-PCR array). Differentially regulated genes were identified following exposure to (212) Pb-TCMC-trastuzumab. These included genes involved in apoptosis (ABL, GADD45α, GADD45γ, PCBP4, and p73), cell cycle (ATM, DDIT3, GADD45α, GTSE1, MKK6, PCBP4, and SESN1), and damaged DNA binding (DDB) and repair (ATM and BTG2). The stressful growth arrest conditions provoked by (212) Pb-TCMC-trastuzumab were found to induce genes involved in apoptosis and cell cycle arrest in the G2/M phase. The expression of genes involved in DDB and single-strand DNA breaks was also enhanced by (212) Pb-TCMC-trastuzumab while no modulation of genes involved in double-strand break repair was apparent. Furthermore, the p73/GADD45 signaling pathway mediated by p38 kinase signaling may be involved in the cellular response, as evidenced by the enhanced expression of genes and proteins of this pathway. These results further support the previously described cell killing mechanism by (212) Pb-TCMC-trastuzumab in the same LS-174T i.p. xenograft. Insight into these mechanisms could lead to improved strategies for rational application of radioimmunotherapy using α-particle emitters.

Ko JC, Chiu HC, Wo TY, et al.
Inhibition of p38 MAPK-dependent MutS homologue-2 (MSH2) expression by metformin enhances gefitinib-induced cytotoxicity in human squamous lung cancer cells.
Lung Cancer. 2013; 82(3):397-406 [PubMed] Related Publications
OBJECTIVES: Gefitinib, a quinazoline-derived tyrosine kinase inhibitor, has anti-tumor activity in vivo and in vitro. Human MutS homologue-2 (MSH2) plays a central role in promoting genetic stability by correcting DNA replication errors. The present study investigated the effects of p38 mitogen-activated protein kinase (MAPK) signal on gefitinib-induced MSH2 expression in two human non-small cell lung squamous cancer cell lines.
MATERIALS AND METHODS: After the gefitinib treatment, the expressions of MSH2 mRNA were determined by real-time PCR and RT-PCR analysis. Protein levels of MSH2, phospho-MKK3/6, phospho-p38 MAPK were determined by Western blot analysis. We used specific MSH2, and p38 MAPK small interfering RNA to examine the role of p38 MAPK-MSH2 signal in regulating the chemosensitivity of gefitinib. Cell viability was assessed by MTS assay, trypan blue exclusion, and colony-forming ability assay.
RESULTS: Exposure of gefitinib increased MSH2 protein and mRNA levels, which was accompanied by MKK3/6-p38 MAPK activation in H520 and H1703 cells. Moreover, blocking p38 MAPK activation by SB202190 significantly decreased gefitinib-induced MSH2 expression by increasing mRNA and protein instability. In contrast, enhancing p38 activation using constitutively active MKK6 (MKK6E) increased MSH2 protein and mRNA levels. Specific inhibition of MSH2 expression by siRNA enhanced gefitinib-induced cytotoxicity. Metformin, an anti-diabetic drug, might reduce cancer risk. In human lung squamous cancer cells, metformin decreased gefitinib-induced MSH2 expression and augmented the cytotoxic effect and growth inhibition by gefitinib. Transient expression of MKK6E or HA-p38 MAPK vector could abrogate metformin and gefitinib-induced synergistic cytotoxic effect in H520 and H1703 cells.
CONCLUSION: Together, down-regulation of MSH2 expression can be a possible strategy to enhance the sensitivity of gefitinib to human lung squamous cancer cells.

Chen RS, Ko JC, Chiu HC, et al.
Pemetrexed downregulates ERCC1 expression and enhances cytotoxicity effected by resveratrol in human nonsmall cell lung cancer cells.
Naunyn Schmiedebergs Arch Pharmacol. 2013; 386(12):1047-59 [PubMed] Related Publications
The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against nonsmall cell lung cancer (NSCLC). Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a polyphenol found in grapes and other plants and has great potential as a preventative and therapeutic agent due to its anticarcinogenic activity. The efficacy of adding resveratrol to pemetrexed to prolong the survival of patients with NSCLC still remains unclear. The excision repair cross-complementation 1 (ERCC1) is a DNA repair gene coding 5' endonuclease in nucleotide excision repair and is overexpressed in chemo- or radioresistant carcinomas. In this study, resveratrol (10-50 μM) inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with resveratrol increased ERCC1 messenger RNA and protein levels in a MKK3/6-p38 MAPK signal activation-dependent manner. Furthermore, blocking p38 MAPK activation by SB202190 or knocking down ERCC1 expression by transfection with small interfering RNA of ERCC1 enhanced the cytotoxicity of resveratrol. Combining resveratrol with pemetrexed resulted in a synergistic cytotoxic effect, accompanied with the reduction of phospho-p38 MAPK and ERCC1 protein levels, and a DNA repair capacity. Expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored ERCC1 protein levels and cell survival in resveratrol and pemetrexed cotreated NSCLC cells. In this study, for the first time, we have demonstrated the synergistic effect of combined treatment with resveratrol and pemetrexed in human NSCLC cells through downregulation of the MKK3/6-p38 MAPK-ERCC1 signal, suggesting a potential benefit of combining resveratrol and pemetrexed to treat lung cancer in the future.

Szabó DR, Baghy K, Szabó PM, et al.
Antitumoral effects of 9-cis retinoic acid in adrenocortical cancer.
Cell Mol Life Sci. 2014; 71(5):917-32 [PubMed] Related Publications
The currently available medical treatment options of adrenocortical cancer (ACC) are limited. In our previous meta-analysis of adrenocortical tumor genomics data, ACC was associated with reduced retinoic acid production and retinoid X receptor-mediated signaling. Our objective has been to study the potential antitumoral effects of 9-cis retinoic acid (9-cisRA) on the ACC cell line NCI-H295R and in a xenograft model. Cell proliferation, hormone secretion, and gene expression have been studied in the NCI-H295R cell line. A complex bioinformatics approach involving pathway and network analysis has been performed. Selected genes have been validated by real-time qRT-PCR. Athymic nude mice xenografted with NCI-H295R have been used in a pilot in vivo xenograft model. 9-cisRA significantly decreased cell viability and steroid hormone secretion in a concentration- and time-dependent manner in the NCI-H295R cell line. Four major molecular pathways have been identified by the analysis of gene expression data. Ten genes have been successfully validated involved in: (1) steroid hormone secretion (HSD3B1, HSD3B2), (2) retinoic acid signaling (ABCA1, ABCG1, HMGCR), (3) cell-cycle damage (GADD45A, CCNE2, UHRF1), and the (4) immune response (MAP2K6, IL1R2). 9-cisRA appears to directly regulate the cell cycle by network analysis. 9-cisRA also reduced tumor growth in the in vivo xenograft model. In conclusion, 9-cisRA might represent a promising new candidate in the treatment of hormone-secreting adrenal tumors and adrenocortical cancer.

Zhu H, Wang Z, Xu Q, et al.
Inhibition of STAT1 sensitizes renal cell carcinoma cells to radiotherapy and chemotherapy.
Cancer Biol Ther. 2012; 13(6):401-7 [PubMed] Related Publications
Renal cell carcinoma is resistant to chemotherapy and radiotherapy. STAT1 is overexpressed in human RCC tissue. Downregulation of STAT1 expression could significantly increase the radiosensitivity in RCC cell lines. To further investigate the function of STAT1 in RCC resistance to chemoradiotherapy, a stable STAT1 knockdown cell line was established. Knockdown of STAT1 led to significant growth suppression in vitro and in vivo. Inhibition of STAT1 sensitized 786-O cells to radiotherapy and Taxol treatment. Cells with low STAT1 expression accumulated more strongly in the G 2/M phase after treatment with chemotherapy and radiotherapy. The Human Cell Cycle and DNA Damage Signaling Pathway Real-time PCR arrays were performed and 3 genes upregulated and 16 genes downregulated after STAT1 knockdown were selected. Functional gene grouping showed that genes involved in the M phase, S phase and DNA replication did not differ between the two cell lines. G 1 phase related genes ANAPC2, CCNE1, CUL1 were downregulated, and G 2/M checkpoint genes p21, GADD45A and Rb were strongly reduced by STAT1 knockdown. DNA damage-related genes GADD45A, MAP2K6, were significantly downregulated. The results prove that overexpression of STAT1 in human RCC is associated with the chemoradioresistance. Targeting of STAT1 might be a potential strategy to sensitize RCC to chemotherapy and radiotherapy.

Galan-Moya EM, de la Cruz-Morcillo MA, Llanos Valero M, et al.
Balance between MKK6 and MKK3 mediates p38 MAPK associated resistance to cisplatin in NSCLC.
PLoS One. 2011; 6(12):e28406 [PubMed] Free Access to Full Article Related Publications
The p38 MAPK signaling pathway has been proposed as a critical mediator of the therapeutic effect of several antitumor agents, including cisplatin. Here, we found that sensitivity to cisplatin, in a system of 7 non-small cell lung carcinoma derived cell lines, correlated with high levels of MKK6 and marked activation of p38 MAPK. However, knockdown of MKK6 modified neither the response to cisplatin nor the activation of p38 MAPK. Deeper studies showed that resistant cell lines also displayed higher basal levels of MKK3. Interestingly, MKK3 knockdown significantly decreased p38 phosphorylation upon cisplatin exposure and consequently reduced the response to the drug. Indeed, cisplatin poorly activated MKK3 in resistant cells, while in sensitive cell lines MKK3 showed the opposite pattern in response to the drug. Our data also demonstrate that the low levels of MKK6 expressed in resistant cell lines are the consequence of high basal activity of p38 MAPK mediated by the elevated levels of MKK3. This finding supports the existence of a regulatory mechanism between both MAPK kinases through their MAPK. Furthermore, our results were also mirrored in head and neck carcinoma derived cell lines, suggesting our observations boast a potential universal characteristic in cancer resistance of cisplatin. Altogether, our work provides evidence that MKK3 is the major determinant of p38 MAPK activation in response to cisplatin and, hence, the resistance associated with this MAPK. Therefore, these data suggest that the balance between both MKK3 and MKK6 could be a novel mechanism which explains the cellular response to cisplatin.

Otto KB, Acharya SS, Robinson VL
Stress-activated kinase pathway alteration is a frequent event in bladder cancer.
Urol Oncol. 2012 Jul-Aug; 30(4):415-20 [PubMed] Related Publications
OBJECTIVES: The stress-activated MAP kinases (SAPK) signaling pathways play a critical role in the cellular response to toxins and physical stress, mediate inflammation, and modulate carcinogenesis and tumor metastasis. The stress-activated MAP kinases (MAPK) c-Jun N-terminal kinase (JNK) and p38 are activated upon phosphorylation by a widely expressed and conserved family of upstream MAP kinase kinases (MAP2K). Signaling mediated by p38 and JNK has well-established importance in cancer, yet the contribution of this pathway in urothelial bladder cancer is not understood. This study evaluated stress-activated MAP kinase pathway expression in cell lines derived from human urothelial carcinomas.
MATERIALS AND METHODS: Total protein lysates from a panel of human urothelial bladder cancer cell lines (RT4, T24, UMUC-3, J82, 5637, 253J, and 253J-BV) were analyzed by immunoblotting for the JNK and p38 MAPKs, as well as MKK3, MKK4, MKK6, and MKK7. Quantitative real time PCR was utilized to determine mRNA expression levels of the MAP2Ks. Stress stimuli (sorbitol, hydrogen peroxide, and UV irradiation) were used to active p38, which was measured by phospho-antibody.
RESULTS: Although protein levels were variable, all cell lines expressed p38 and JNK. On the other hand, with the exception of the well-differentiated cell line RT4, each cell line had a reduction or absence of expression of one or more MAP2K. 253J and 253J-BV exhibited no expression of MKK6, even when an excess of protein was queried. mRNA levels indicated that both transcriptional and post-transcriptional mechanisms are involved in the regulation of MAP2Ks. Decreased MAP2K expression correlated with decreased ability to activate p38 in response to stress stimuli.
CONCLUSIONS: Aberrant MAP2K protein expression indicates that altered cellular signal transduction mediated via JNK and p38 may be common in bladder cancer. Down-regulation of MAP2Ks likely occurs at both the transcriptional and post-transcriptional levels. Consistent with the known function of p38 and JNK in apoptosis, defects in normal pathway function caused by decreased expression of upstream MAP2Ks may provide a survival advantage to bladder cancer cells. Further investigations should focus on identifying a functional role for these pathways in bladder cancer development.

Tsai MS, Weng SH, Chen HJ, et al.
Inhibition of p38 MAPK-dependent excision repair cross-complementing 1 expression decreases the DNA repair capacity to sensitize lung cancer cells to etoposide.
Mol Cancer Ther. 2012; 11(3):561-71 [PubMed] Related Publications
Etoposide (VP-16), a topoisomerase II inhibitor, is an effective anticancer drug currently used for the treatment of a wide range of cancers. Excision repair cross-complementary 1 (ERCC1) is a key protein involved in the process of nucleotide excision repair. High level of ERCC1 expression in cancers is associated with resistance to DNA damage-based chemotherapy. In this study, the effects of p38 mitogen-activated protein kinase (MAPK) signal on the ERCC1 expression induced by etoposide in non-small cell lung cancer (NSCLC) cell lines was investigated. Etoposide increased phosphorylated MAPK kinase 3/6 (MKK3/6)-p38 MAPK and ERCC1 protein and mRNA levels in A549 and H1975 cells. Moreover, SB202190, a p38 inhibitor, or knockdown of p38 expression by specific short interfering RNA (siRNA) significantly decreased the etoposide-induced ERCC1 protein levels and DNA repair capacity in etoposide-exposed NSCLC cells. Enhancement of p38 activation by constitutively active MKK6 (MKK6E) increased ERCC1 protein levels. Specific inhibition of ERCC1 by siRNA significantly enhanced the etoposide-induced cytotoxicity and hypoxanthine guanine phosphoribosyltransferase (hprt) gene mutation rate. Moreover, the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) could decrease the etoposide-induced p38 MAPK-mediated ERCC1 expression and augment the cytotoxic effect and growth inhibition by etopsoside. 17-AAG and etoposide-induced synergistic cytotoxic effect and DNA repair capacity decrease could be abrogated in lung cancer cells with MKK6E or HA-p38 MAPK expression vector transfection. Our results suggest that in human NSCLC cells, ERCC1 is induced by etoposide through the p38 MAPK pathway, and this phenomenon is required for NSCLC survival and resistant DNA damage.

Klopfleisch R, Lenze D, Hummel M, Gruber AD
The metastatic cascade is reflected in the transcriptome of metastatic canine mammary carcinomas.
Vet J. 2011; 190(2):236-43 [PubMed] Related Publications
Proliferation, dedifferentiation and loss of cell-cell contacts are amongst the first steps of the metastatic cascade. The complex molecular pathways and gene expression changes associated with these events in canine mammary tumors are still largely undetermined. In this study, the transcriptome of 13 lymph node positive canine mammary carcinomas and corresponding non-neoplastic mammary glands were compared to identify the molecular pathways associated with metastatic progression. Differential gene expression was analyzed using gene set enrichment and pathway analysis and compared with gene expression data from human breast cancer. Metastatic canine carcinomas had 1312 significantly differentially expressed genes compared to normal mammary glands. This expression profile included a significant up-regulation of cell division and matrix invasion genes (MMP, SERPINE1, TIMP3). In contrast, genes associated with epithelial differentiation (EGF, EGFR, MAP2K6, STAT 5), cell adhesion (CLDN5, CTNNAL1, MUC1, PECAM1) and angiogenesis (ANGPT 2, ANGPTL1-4, FIGF, TIE1) were mostly down-regulated. Tumors had a significant decrease in membrane receptors and pathway gene expression (EGFR, FGFR1, GHR, PDGFR, TGFBR, TIE1) indicating a tendency towards independence from these proliferative stimuli. A number of the identified deregulated pathways overlapped with gene expression profiles of human breast cancer. Gene expression profiling of metastatic carcinomas, therefore, identified molecular pathways and functional gene families that are deregulated during malignant progression in canine mammary tumors.

Kumar V, Behera R, Lohite K, et al.
p38 kinase is crucial for osteopontin-induced furin expression that supports cervical cancer progression.
Cancer Res. 2010; 70(24):10381-91 [PubMed] Related Publications
p38 kinases activated by growth factors, hormones, and environmental stresses exert diverse functions in regulating normal and malignant cell pathophysiology. Enhanced levels of activated p38 isoforms have been linked with poor prognosis in breast cancer, although the mechanistic basis for this association is poorly understood. In this study, we report that p38 activation in cervical cancer cells is driven by osteopontin (OPN), an extracellular matrix-associated cytokine that drives invasive progression. OPN regulates CD44-mediated p38 phosphorylation that induces NF-κB activation and NF-κB-dependent expression of furin, an extracellular protease implicated in human papilloma virus (HPV) processing that enhances cervical cancer cell motility. OPN induces CD44-mediated MKK3/6 phosphorylation which in turn phosphorylates p38 in these cells. OPN-induced furin expression and cell motility was impeded by blockades to MKK3/6, p38α/β or NF-κB signaling. In a mouse xenograft model of human cervical cancer, tumor growth was enhanced by OPN overexpression and blocked by short hairpin RNA (shRNA)-mediated OPN silencing. Furin overexpression similarly augmented tumor growth in the model, whereas blocking MKK3/6, p38, or furin reduced OPN-induced cervical tumor growth. Analysis of clinical specimens revealed that enhanced expression of OPN, phosphorylated NF-κB, p65, and furin correlated with cervical cancer progression, further strengthening the in vitro and in vivo results. In summary, our findings offer a proof of concept for targeting OPN and its downstream p38 signaling as a novel therapeutic strategy to manage cervical cancer.

Tsuchimochi K, Otero M, Dragomir CL, et al.
GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes.
J Biol Chem. 2010; 285(11):8395-407 [PubMed] Free Access to Full Article Related Publications
GADD45beta (growth arrest- and DNA damage-inducible) interacts with upstream regulators of the JNK and p38 stress response kinases. Previously, we reported that the hypertrophic zone of the Gadd45beta(-/-) mouse embryonic growth plate is compressed, and expression of type X collagen (Col10a1) and matrix metalloproteinase 13 (Mmp13) genes is decreased. Herein, we report that GADD45beta enhances activity of the proximal Col10a1 promoter, which contains evolutionarily conserved AP-1, cAMP-response element, and C/EBP half-sites, in synergism with C/EBP family members, whereas the MMP13 promoter responds to GADD45beta together with AP-1, ATF, or C/EBP family members. C/EBPbeta expression also predominantly co-localizes with GADD45beta in the embryonic growth plate. Moreover, GADD45beta enhances C/EBPbeta activation via MTK1, MKK3, and MKK6, and dominant-negative p38alphaapf, but not JNKapf, disrupts the combined trans-activating effect of GADD45beta and C/EBPbeta on the Col10a1 promoter. Importantly, GADD45beta knockdown prevents p38 phosphorylation while decreasing Col10a1 mRNA levels but does not affect C/EBPbeta binding to the Col10a1 promoter in vivo, indicating that GADD45beta influences the transactivation function of DNA-bound C/EBPbeta. In support of this conclusion, we show that the evolutionarily conserved TAD4 domain of C/EBPbeta is the target of the GADD45beta-dependent signaling. Collectively, we have uncovered a novel molecular mechanism linking GADD45beta via the MTK1/MKK3/6/p38 axis to C/EBPbeta-TAD4 activation of Col10a1 transcription in terminally differentiating chondrocytes.

Kim ES, Jeong JB, Kim S, et al.
The G12 family proteins upregulate matrix metalloproteinase-2 via p53 leading to human breast cell invasion.
Breast Cancer Res Treat. 2010; 124(1):49-61 [PubMed] Related Publications
Although mounting evidence suggests a role for G(12) proteins, G(α12) and G(α13), in tumor progression, a direct role of G(12) proteins has not been determined. This study aims to elucidate the molecular mechanism for a tumorigenic and invasive potential of G(α12) and G(α13) in MCF10A human breast epithelial cells. Here, we report, for the first time, that G(α12) and G(α13) induce upregulation of matrix metalloproteinase (MMP)-2 leading to the invasive and migratory phenotypes in MCF10A cells. We further show that p53 is an important transcription factor for induction of MMP-2 transcriptional activation by G(α12/13). G(α12/13)-induced MMP-2 upregulation, invasion, and migration are dependent on the activation of Ras, Rac1, MKK3/6, p38, and Akt. Using human breast tissue samples, we demonstrate that the expression levels of G(α12) and MMP-2 are strongly correlated with the pathogenically diagnosed cancer (P < 0.0001). Moreover, the expression of G(α12) shows a strong correlation with that of MMP-2 in human breast cancer tissues, implicating the in vivo tumorigenic potential of G(α12). Taken together, this study elucidated the role of G(12) proteins in regulating processes for MMP-2 expression and malignant phenotypic conversion of MCF10A human breast epithelial cells, providing a molecular basis for the promoting role of G(α12) and G(α13) in breast cell invasion.

Mitra AP, Pagliarulo V, Yang D, et al.
Generation of a concise gene panel for outcome prediction in urinary bladder cancer.
J Clin Oncol. 2009; 27(24):3929-37 [PubMed] Free Access to Full Article Related Publications
PURPOSE: This study sought to determine if alterations in molecular pathways could supplement TNM staging to more accurately predict clinical outcome in patients with urothelial carcinoma (UC).
PATIENTS AND METHODS: Expressions of 69 genes involved in known cancer pathways were quantified on bladder specimens from 58 patients with UC (stages Ta-T4) and five normal urothelium controls. All tumor transcript values beyond two standard deviations from the normal mean expression were designated as over- or underexpressed. Univariate and multivariable analyses were conducted to obtain a predictive expression signature. A published external data set was used to confirm the potential of the prognostic gene panels.
RESULTS: In univariate analysis, six genes were significantly associated with time to recurrence, and 10 with overall survival. Recursive partitioning identified three genes as significant determinants for recurrence, and three for overall survival. Of all genes identified by either univariate or partitioning analysis, four were found to significantly predict both recurrence and survival (JUN, MAP2K6, STAT3, and ICAM1); overexpression was associated with worse outcome. Comparing the favorable (low or normal) expression of > or = three of four versus < or = two of four of these oncogenes showed 5-year recurrence probability of 41% versus 88%, respectively (P < .001), and 5-year overall survival probability of 61% versus 5%, respectively (P < .001). The prognostic potential of this four-gene panel was confirmed in a large independent external cohort (disease-specific survival, P = .039).
CONCLUSION: We have documented the generation of a concise, biologically relevant four-gene panel that significantly predicts recurrence and survival and may also identify potential therapeutic targets for UC.

Shim M, Eling TE
Vitamin E succinate induces NAG-1 expression in a p38 kinase-dependent mechanism.
Mol Cancer Ther. 2008; 7(4):961-71 [PubMed] Free Access to Full Article Related Publications
NAG-1 (nonsteroidal anti-inflammatory drug-activated gene), a member of the transforming growth factor-beta superfamily, is involved in many cellular processes, such as inflammation, apoptosis/survival, and tumorigenesis. Vitamin E succinate (VES) is the succinate derivative of alpha-tocopherol and has antitumorigenic activity in a variety of cell culture and animal models. In the current study, the regulation and role of NAG-1 expression in PC-3 human prostate carcinoma cells by VES was examined. VES treatment induced growth arrest and apoptosis as well as an increase in NAG-1 protein and mRNA levels in a time- and concentration-dependent manner. VES treatment induced nuclear translocation and activation of p38 kinase. Pretreatment with p38 kinase inhibitor blocked the VES-induced increase in NAG-1 protein and mRNA levels, whereas an inhibition of protein kinase C, Akt, c-Jun NH(2)-terminal kinase, or MEK activity had no effect on VES-induced NAG-1 levels. Forced expression of constitutively active MKK6, an upstream kinase for p38, induced an increase in NAG-1 promoter activity, whereas p38 kinase inhibitor blocked MKK6-induced increase in NAG-1 promoter activity. VES treatment resulted in >3-fold increase in the half-life of NAG-1 mRNA in a p38 kinase-dependent manner and transient transfection experiment showed that VES stabilizes NAG-1 mRNA through AU-rich elements in 3'-untranslated region of NAG-1 mRNA. The inhibition of NAG-1 expression by small interfering RNA significantly blocked VES-induced poly(ADP-ribose) polymerase cleavage, suggesting that NAG-1 may play an important role in VES-induced apoptosis. These results indicate that VES-induced expression of NAG-1 mRNA/protein is regulated by transcriptional/post-transcriptional mechanism in a p38 kinase-dependent manner and NAG-1 can be chemopreventive/therapeutic target in prostate cancer.

Merkerova M, Bruchova H, Brdicka R
JNK2 and p38 MAPK over-expressions do not represent key events in chronic myeloid leukemia transformation.
Neoplasma. 2007; 54(6):503-10 [PubMed] Related Publications
Over-expression of two members of MAP kinase family (JNK2 and p38) has been already observed in chronic myeloid leukemia (CML). In the present study, significance of this deregulation was investigated. Impacts of JNK2/p38 suppression on gene expression profile of CML cell lines (K562/KU-812) were studied using an experimental approach that combines siRNA-mediated specific inhibition of the genes and array-based expression analyses. After JNK2 depletion, 27 out of 588 tested genes showed significant expression changes, with 13 down-regulated genes and 14 up-regulated genes. Among others, expression of MSH2 and MSH6, mdm2, and caspase-2 was reduced and, on the other hand, MKK1 and MKK6, RFC2, cytokeratins K18 and K19, BAD, and DR5 expression was up-regulated. In the case of p38 silencing, 20 genes were considered as significantly deregulated (7 genes reduced, 13 over-expressed). These genes included caspase-10, SOD1, and Notch4 (down-regulation) and caspase-2 and caspase-3, CDC2, CDK4, and c-kit (up-regulation). In conclusion, comparison of expression profiles after JNK2 or p38 gene silencing revealed distinct sets of affected genes. The results implied an unequal impact of the MAPK deregulation on the CML cells. Further, we demonstrated that neither JNK2 nor p38 siRNAmediated inhibition led to significant change of CML cell proliferation. It suggests that there are other important, likely upstream regulators essential for CML malignant cell growth/transformation; therefore, separate inhibition of JNK2 or p38 MAPK gene is not sufficient for a proliferation arrest.

Qi X, Pohl NM, Loesch M, et al.
p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response.
J Biol Chem. 2007; 282(43):31398-408 [PubMed] Related Publications
p38 MAPK family consists of four isoform proteins (alpha, beta, gamma, and delta) that are activated by the same stimuli, but the information about how these proteins act together to yield a biological response is missing. Here we show a feed-forward mechanism by which p38alpha may regulate Ras transformation and stress response through depleting its family member p38gamma protein via c-Jun-dependent ubiquitin-proteasome pathways. Analyses of MAPK kinase 6 (MKK6)-p38 fusion proteins showed that constitutively active p38alpha (MKK6-p38alpha) and p38gamma (MKK6-p38gamma) stimulates and inhibits c-Jun phosphorylation respectively, leading to a distinct AP-1 regulation. Depending on cell type and/or stimuli, p38alpha phosphorylation results in either Ras-transformation inhibition or a cell-death escalation that invariably couples with a decrease in p38gamma protein expression. p38gamma, on the other hand, increases Ras-dependent growth or inhibits stress induced cell-death independent of phosphorylation. In cells expressing both proteins, p38alpha phosphorylation decreases p38gamma protein expression, whereas its inhibition increases cellular p38gamma concentrations, indicating an active role of p38alpha phosphorylation in negatively regulating p38gamma protein expression. Mechanistic analyses show that p38alpha requires c-Jun activation to deplete p38gamma proteins by ubiquitin-proteasome pathways. These results suggest that p38alpha may, upon phosphorylation, act as a gatekeeper of the p38 MAPK family to yield a coordinative biological response through disrupting its antagonistic p38gamma family protein.

Friedman E
Mirk/Dyrk1B in cancer.
J Cell Biochem. 2007; 102(2):274-9 [PubMed] Related Publications
Mirk/Dyrk1B is a member of a conserved family of serine/threonine kinases which are activated by intramolecular tyrosine phosphorylation, and which mediate differentiation in different tissues-Mirk in skeletal muscle, Dyrk1A in the brain, etc. One role of Mirk in skeletal muscle differentiation is to block cycling myoblasts in the G0 quiescent state by modification of cell cycle regulators, while another role of Mirk is to limit apoptosis in fusing myoblasts. Amplification of the Mirk gene, upregulation of Mirk expression and/or constitutive activation of this kinase have been observed in several different types of cancer. If coupled with a stress condition such as serum starvation which induces a quiescent state, depletion of Mirk by RNA interference using either synthetic duplex RNAi's or pSilencer-encoded RNAi's have decreased colony formation of different cancer cell lines and enhanced apoptosis induced by chemotherapeutic drugs. Mirk is activated by phosphorylation by the stress-activated SAPK kinases MKK3 and MKK6. Our working hypothesis is that Mirk is activated by this pathway in response to various stresses, and then acts as a checkpoint kinase to arrest damaged tumor cells in a quiescent state and allow cellular repair. Pharmacological inhibition of Mirk may enhance the anti-tumor effect of chemotherapeutic drugs.

Song H, Ki SH, Kim SG, Moon A
Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells.
Cancer Res. 2006; 66(21):10487-96 [PubMed] Related Publications
Mounting evidence suggests a role for matrix metalloproteinase (MMP)-2 in the malignant progression of breast cancer cells. We showed previously that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells through Rac-MKK3/6-p38 pathway resulted in MMP-2 up-regulation. Activation of p38 pathway by MKK6 caused a selective up-regulation of MMP-2. In this study, we aimed to elucidate the transcriptional regulation of MMP-2 by p38 pathway leading to the invasive phenotype of MCF10A cells. By using 5' deletion mutant constructs of MMP-2 promoter, we showed that deletion of the region containing activator protein-1 (AP-1) site caused the greatest reduction of MMP-2 promoter activity both in MKK6- and H-Ras-activated MCF10A cells, suggesting that the AP-1 binding site is critical for the MMP-2 promoter activation. DNA binding and transcriptional activities of AP-1 were increased by MKK6 or H-Ras as evidenced by electrophoretic mobility shift assay and luciferase assay using an AP-1-driven plasmid. By doing immunoinhibition assay and chromatin immunoprecipitation assay, we revealed the activating transcription factor (ATF) 2 as a transcription factor for MMP-2 gene expression through binding to the functional AP-1 site. Activation of ATF2, which depended on p38 activity, was crucial for MMP-2 promoter activity as well as induction of invasive and migrative phenotypes in MCF10A cells. This is the first report revealing ATF2 as an essential transcription factor linking MKK3/6-p38 signaling pathway to MMP-2 up-regulation, providing evidence for a direct role of ATF2 activation in malignant phenotypic changes of human breast epithelial cells.

Zhang P, Zhang Z, Zhou X, et al.
Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line.
BMC Cancer. 2006; 6:224 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells.
METHODS: A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated.
RESULTS: Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 microM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells.
CONCLUSION: The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance.

Keum YS, Yu S, Chang PP, et al.
Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells.
Cancer Res. 2006; 66(17):8804-13 [PubMed] Related Publications
Exposure of sulforaphane to HepG2 cells increased heme oxygenase-1 (HO-1) expression by activating antioxidant response element (ARE) through induction of Nrf2 and suppression of Kelch-like ECH-associated protein 1 (Keap1). Using human HO-1 promoter reporter plasmids and ChIP assay, we have identified that sulforaphane transcriptionally activated the upstream ARE-rich enhancer region, located at -9.0 kb upstream human HO-1 promoter. Induction of HO-1 by sulforaphane was attenuated by overexpression of mutant Nrf2 plasmid in HepG2 cells and totally abolished in Nrf2 knockout mouse embryonic keratinocytes and fibroblasts. Overexpression of individual p38 mitogen-activated protein (MAP) kinase (MAPK) isoforms also suppressed constitutive as well as sulforaphane- or Nrf2-induced ARE-dependent gene expression. Among the upstream kinases, although MKK3 was not involved in suppression of ARE by any of p38 MAPK isoforms, MKK6 selectively suppressed ARE by p38 gamma or p38 delta, but not by p38 alpha or p38 beta. Importantly, sulforaphane not only activated MAP/extracellular signal-regulated kinase (ERK) kinases 1/2 and ERK1/2, but also strongly suppressed anisomycin-induced activation of p38 MAPK isoforms by blocking phosphorylation of upstream kinases, MKK3/6. Finally, we found that stimulation of p38 MAPK isoforms phosphorylated purified Nrf2 protein and caused an increase in the interaction between Nrf2 and Keap1 in vitro and the suppression of Nrf2 translocation into the nucleus. Collectively, our results indicate that transcriptional activation of Nrf2/ARE is critical in sulforaphane-mediated induction of HO-1, which can be modulated in part by the blockade of p38 MAPK signaling pathway. In addition, our study shows that p38 MAPK can phosphorylate Nrf2 and promotes the association between Nrf2 and Keap1 proteins, thereby potentially inhibiting nuclear translocation of Nrf2.

Giafis N, Katsoulidis E, Sassano A, et al.
Role of the p38 mitogen-activated protein kinase pathway in the generation of arsenic trioxide-dependent cellular responses.
Cancer Res. 2006; 66(13):6763-71 [PubMed] Related Publications
Arsenic trioxide (As(2)O(3)) induces differentiation and apoptosis of leukemic cells in vitro and in vivo, but the precise mechanisms that mediate such effects are not known. In the present study, we provide evidence that the kinases MAPK kinase 3 (Mkk3) and Mkk6 are activated during treatment of leukemic cell lines with As(2)O(3) to regulate downstream engagement of the p38 mitogen-activated protein kinase. Using cells with targeted disruption of both the Mkk3 and Mkk6 genes, we show that As(2)O(3)-dependent activation of p38 is defective in the absence of Mkk3 and Mkk6, establishing that these kinases are essential for As(2)O(3)-dependent engagement of the p38 pathway. Pharmacologic inhibition of p38 enhances As(2)O(3)-dependent activation of the c-jun NH(2)-terminal kinase (JNK) and subsequent induction of apoptosis of chronic myelogenous leukemia (CML)- or acute promyelocytic leukemia (APL)-derived cell lines. In addition, in APL blasts, inhibition of p38 enhances myeloid cell differentiation in response to As(2)O(3), as well as suppression of Bcl-2 expression and loss of mitochondrial membrane potential. Similarly, induction of As(2)O(3)-dependent apoptosis is enhanced in mouse embryonic fibroblasts (MEF) with targeted disruption of both the Mkk3 and Mkk6 genes, establishing a key role for this pathway in the regulation of As(2)O(3)-induced apoptosis. In other studies, we show that the small-molecule p38 inhibitors SD-282 and SCIO-469 potentiate As(2)O(3)-mediated suppression of myeloid leukemic progenitor growth from CML patients, indicating a critical regulatory role for p38 in the induction of antileukemic responses. Altogether, our data indicate that the Mkk3/6-p38 signaling cascade is activated in a negative regulatory feedback manner to control induction of As(2)O(3)-mediated antileukemic effects.

Mitra AP, Almal AA, George B, et al.
The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer.
BMC Cancer. 2006; 6:159 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Previous studies on bladder cancer have shown nodal involvement to be an independent indicator of prognosis and survival. This study aimed at developing an objective method for detection of nodal metastasis from molecular profiles of primary urothelial carcinoma tissues.
METHODS: The study included primary bladder tumor tissues from 60 patients across different stages and 5 control tissues of normal urothelium. The entire cohort was divided into training and validation sets comprised of node positive and node negative subjects. Quantitative expression profiling was performed for a panel of 70 genes using standardized competitive RT-PCR and the expression values of the training set samples were run through an iterative machine learning process called genetic programming that employed an N-fold cross validation technique to generate classifier rules of limited complexity. These were then used in a voting algorithm to classify the validation set samples into those associated with or without nodal metastasis.
RESULTS: The generated classifier rules using 70 genes demonstrated 81% accuracy on the validation set when compared to the pathological nodal status. The rules showed a strong predilection for ICAM1, MAP2K6 and KDR resulting in gene expression motifs that cumulatively suggested a pattern ICAM1 > MAP2K6 > KDR for node positive cases. Additionally, the motifs showed CDK8 to be lower relative to ICAM1, and ANXA5 to be relatively high by itself in node positive tumors. Rules generated using only ICAM1, MAP2K6 and KDR were comparably robust, with a single representative rule producing an accuracy of 90% when used by itself on the validation set, suggesting a crucial role for these genes in nodal metastasis.
CONCLUSION: Our study demonstrates the use of standardized quantitative gene expression values from primary bladder tumor tissues as inputs in a genetic programming system to generate classifier rules for determining the nodal status. Our method also suggests the involvement of ICAM1, MAP2K6, KDR, CDK8 and ANXA5 in unique mathematical combinations in the progression towards nodal positivity. Further studies are needed to identify more class-specific signatures and confirm the role of these genes in the evolution of nodal metastasis in bladder cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAP2K6, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999