MSLN

Gene Summary

Gene:MSLN; mesothelin
Aliases: MPF, SMRP
Location:16p13.3
Summary:This gene encodes a preproprotein that is proteolytically processed to generate two protein products, megakaryocyte potentiating factor and mesothelin. Megakaryocyte potentiating factor functions as a cytokine that can stimulate colony formation of bone marrow megakaryocytes. Mesothelin is a glycosylphosphatidylinositol-anchored cell-surface protein that may function as a cell adhesion protein. This protein is overexpressed in epithelial mesotheliomas, ovarian cancers and in specific squamous cell carcinomas. Alternative splicing results in multiple transcript variants, at least one of which encodes an isoform that is proteolytically processed. [provided by RefSeq, Feb 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:mesothelin
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MSLN (cancer-related)

Lamberts LE, de Groot DJ, Bense RD, et al.
Functional genomic mRNA profiling of a large cancer data base demonstrates mesothelin overexpression in a broad range of tumor types.
Oncotarget. 2015; 6(29):28164-72 [PubMed] Free Access to Full Article Related Publications
The membrane bound glycoprotein mesothelin (MSLN) is a highly specific tumor marker, which is currently exploited as target for drugs. There are only limited data available on MSLN expression by human tumors. Therefore we determined overexpression of MSLN across different tumor types with Functional Genomic mRNA (FGM) profiling of a large cancer database. Results were compared with data in articles reporting immunohistochemical (IHC) MSLN tumor expression. FGM profiling is a technique that allows prediction of biologically relevant overexpression of proteins from a robust data set of mRNA microarrays. This technique was used in a database comprising 19,746 tumors to identify for 41 tumor types the percentage of samples with an overexpression of MSLN compared to a normal background. A literature search was performed to compare the FGM profiling data with studies reporting IHC MSLN tumor expression. FGM profiling showed MSLN overexpression in gastrointestinal (12-36%) and gynecological tumors (20-66%), non-small cell lung cancer (21%) and synovial sarcomas (30%). The overexpression found in thyroid cancers (5%) and renal cell cancers (10%) was not yet reported with IHC analyses. We observed that MSLN amplification rate within esophageal cancer depends on the histotype (31% for adenocarcinomas versus 3% for squamous-cell carcinomas). Subset analysis in breast cancer showed MSLN amplification rates of 28% in triple-negative breast cancer (TNBC) and 33% in basal-like breast cancer. Further subtype analysis of TNBCs showed the highest amplification rate (42%) in the basal-like 1 subtype and the lowest amplification rate (9%) in the luminal androgen receptor subtype.

Evason KJ, Francisco MT, Juric V, et al.
Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish.
PLoS Genet. 2015; 11(7):e1005305 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. The search for targeted treatments has been hampered by the lack of relevant animal models for the genetically diverse subsets of HCC, including the 20-40% of HCCs that are defined by activating mutations in the gene encoding β-catenin. To address this chemotherapeutic challenge, we created and characterized transgenic zebrafish expressing hepatocyte-specific activated β-catenin. By 2 months post fertilization (mpf), 33% of transgenic zebrafish developed HCC in their livers, and 78% and 80% of transgenic zebrafish showed HCC at 6 and 12 mpf, respectively. As expected for a malignant process, transgenic zebrafish showed significantly decreased mean adult survival compared to non-transgenic control siblings. Using this novel transgenic model, we screened for druggable pathways that mediate β-catenin-induced liver growth and identified two c-Jun N-terminal kinase (JNK) inhibitors and two antidepressants (one tricyclic antidepressant, amitriptyline, and one selective serotonin reuptake inhibitor) that suppressed this phenotype. We further found that activated β-catenin was associated with JNK pathway hyperactivation in zebrafish and in human HCC. In zebrafish larvae, JNK inhibition decreased liver size specifically in the presence of activated β-catenin. The β-catenin-specific growth-inhibitory effect of targeting JNK was conserved in human liver cancer cells. Our other class of hits, antidepressants, has been used in patient treatment for decades, raising the exciting possibility that these drugs could potentially be repurposed for cancer treatment. In support of this proposal, we found that amitriptyline decreased tumor burden in a mouse HCC model. Our studies implicate JNK inhibitors and antidepressants as potential therapeutics for β-catenin-induced liver tumors.

Melaiu O, Melissari E, Mutti L, et al.
Expression status of candidate genes in mesothelioma tissues and cell lines.
Mutat Res. 2015; 771:6-12 [PubMed] Related Publications
In order to broaden knowledge on the pathogenesis of malignant pleural mesothelioma (MPM), we reviewed studies on the MPM-transcriptome and identified 119 deregulated genes. However, there was poor consistency among the studies. Thus, the expression of these genes was further investigated in the present work using reverse transcriptase-quantitative PCR (RT-qPCR) in 15 MPM and 20 non-MPM tissue samples. Fifty-nine genes showed a statistically significant deregulation and were further evaluated in two epithelioid MPM cell lines (compared to MET-5A, a non-MPM cell line). Nine genes (ACSL1, CCNO, CFB, PDGFRB, SULF1, TACC1, THBS2, TIMP3, XPOT) were deregulated with statistical significance in both cell lines, 12 (ASS1, CCNB1, CDH11, COL1A1, CXADR, EIF4G1, GALNT7, ITGA4, KRT5, PTGIS, RAN, SOD1) in at least one cell line, whereas 7 (DSP, HEG1, MCM4, MSLN, NME2, NMU, TNPO2) were close but did not reach the statistical significance in any of the cell line. Patients whose MPM tissues expressed elevated mRNA levels of BIRC5, DSP, NME2, and THBS2 showed a statistically significant shorter overall survival. Although MPM is a poorly studied cancer, some features are starting to emerge. Novel cancer genes are suggested here, in particular those involved in cell-cell and cell-matrix interactions.

Steinbach D, Bader P, Willasch A, et al.
Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia.
Clin Cancer Res. 2015; 21(6):1353-9 [PubMed] Related Publications
PURPOSE: This study evaluated the prognostic impact of a novel, simple, and standardized assay for monitoring minimal residual disease (MRD) in pediatric acute myelogenous leukemia (AML).
EXPERIMENTAL DESIGN: The expression of seven leukemia-associated genes (WT1, PRAME, CCL23, GAGED2, MSLN, SPAG6, and ST18) was measured by TaqMan Low Density Arrays in 112 patients and 52 healthy controls. Patients were treated according to the multicenter study AML-BFM 2004. Samples were collected prospectively at standard time points. The laboratory that measured MRD was blinded to patient outcome.
RESULTS: Relapse-free survival (RFS) was 95% (N = 19; SE = 5%) if expression of all genes was down to normal on day 15, 63% (N = 41; SE = 8%) if expression was normalized on day 28, and 38% (N = 21; SE = 11%) in patients who still showed elevated expression on day 28. The prognostic impact of MRD remained significant (P = 0.002) when patients were stratified for the AML-BFM 2004 risk group. Multivariate analysis identified the MRD risk group and day 28 cytology as the only independent prognostic factors. Patients with a cytologic nonremission on day 28, which was confirmed by MRD, had a dismal prognosis. Only 1 out of 8 patients survived without relapse.
CONCLUSIONS: This novel method of monitoring MRD has a strong prognostic impact that is independent from established risk factors in childhood AML.

Garritano S, De Santi C, Silvestri R, et al.
A common polymorphism within MSLN affects miR-611 binding site and soluble mesothelin levels in healthy people.
J Thorac Oncol. 2014; 9(11):1662-8 [PubMed] Related Publications
INTRODUCTION: Soluble mesothelin related peptide (SMRP) was proposed as a promising diagnostic marker for malignant pleural mesothelioma (MPM). In a previous study, we found that rs1057147 within the 3' untranslated region of MSLN gene was associated with SMRP levels. Thus, we aimed to (1) confirm the previous association on a large series of volunteers and (2) test the hypothesis that the SNP could affect microRNA binding sites.
METHODS: The association analysis was verified in 759 subjects. Then, in silico predictions highlighted miR-611 and miR-887 as candidate miRNAs binding to the polymorphic site. Thus, chimeric constructs bearing the alternative alleles (G > A) were assayed alone or in cotransfection with the miRNA mimics, with dual luciferase reporter assay in non-MPM Met-5A cells. The miRNAs were also assayed by western blot analysis for their ability to down-regulate endogenous mesothelin in the MPM Mero-14 cell line.
RESULTS: We confirmed that, among non-MPM volunteers, GG homozygotes have the lowest SMRP levels. When the genotype is taken into account, the specificity of SMRP as biomarker improves from 79.7% to 85.3%. Dual-luciferase assays showed a significantly lower reporter activity when the vector harbored the G allele as compared to A allele. miR-887 mimic caused a reduced reporter activity of vectors harboring A or G alleles, while miR-611 was effective only on the vector harboring the G allele. Transfection of these miRNAs into Mero-14 cells significantly reduced endogenous MSLN protein.
CONCLUSION: SMRP performance as diagnostic biomarker improved by considering the genotype rs1057147. This polymorphism most likely affects a binding site for miR-611.

Tholey RM, Lal S, Jimbo M, et al.
MUC1 Promoter-Driven DTA as a Targeted Therapeutic Strategy against Pancreatic Cancer.
Mol Cancer Res. 2015; 13(3):439-48 [PubMed] Related Publications
UNLABELLED: Mucin1 (MUC1) is overexpressed in pancreatic ductal adenocarcinoma (PDA) and is associated with tumor aggressiveness, suggesting that MUC1 is a promising therapeutic target for promoter-driven diphtheria toxin A (DTA). Endogenous MUC1 transcript levels were analyzed by quantitative PCR (qPCR) in multiple PDA cells (Capan1, HPAFII, Su.86.86, Capan2, Hs766T, MiaPaCa2, and Panc1). Expression levels were correlated with luciferase activity and cell death after transfection with MUC1 promoter-driven luciferase and DTA constructs. MUC1-positive (+) cells had significantly elevated MUC1 mRNA expression compared with MUC1-negative (-) cells. Luciferase activity was significantly higher in MUC1(+) cells when transfected with MUC1 promoter-driven luciferase and MUC1(+) cells underwent enhanced cell death after transfection with a single dose of MUC1 promoter-driven DTA. IFNγ pretreatment enhanced MUC1 expression in MUC1(-) cells and induced sensitivity to MUC1-DTA therapy. Matched primary and metastatic tumor lesions from clinical specimens revealed similar MUC1 IHC labeling patterns, and a tissue microarray of human PDA biopsies revealed increased immunolabeling with a combination of MUC1 and mesothelin (MSLN) antibodies, compared with either antibody alone. Combining MUC1 with MSLN-targeted DTA enhanced drug efficacy in an in vitro model of heterogeneous PDA. These data demonstrate that MUC1 promoter-driven DTA preferentially kills MUC1-expressing PDA cells and drugs that enhance MUC1 expression sensitize PDA cells with low MUC1 expression.
IMPLICATIONS: MUC1 expression in primary and metastatic lesions provides a rationale for the development of a systemic MUC1 promoter-driven DTA therapy that may be further enhanced by combination with other promoter-driven DTA constructs.

Scales SJ, Gupta N, Pacheco G, et al.
An antimesothelin-monomethyl auristatin e conjugate with potent antitumor activity in ovarian, pancreatic, and mesothelioma models.
Mol Cancer Ther. 2014; 13(11):2630-40 [PubMed] Related Publications
Mesothelin (MSLN) is an attractive target for antibody-drug conjugate therapy because it is highly expressed in various epithelial cancers, with normal expression limited to nondividing mesothelia. We generated novel antimesothelin antibodies and conjugated an internalizing one (7D9) to the microtubule-disrupting drugs monomethyl auristatin E (MMAE) and MMAF, finding the most effective to be MMAE with a lysosomal protease-cleavable valine-citrulline linker. The humanized (h7D9.v3) version, αMSLN-MMAE, specifically targeted mesothelin-expressing cells and inhibited their proliferation with an IC50 of 0.3 nmol/L. Because the antitumor activity of an antimesothelin immunotoxin (SS1P) in transfected mesothelin models did not translate to the clinic, we carefully selected in vivo efficacy models endogenously expressing clinically relevant levels of mesothelin, after scoring mesothelin levels in ovarian, pancreatic, and mesothelioma tumors by immunohistochemistry. We found that endogenous mesothelin in cancer cells is upregulated in vivo and identified two suitable xenograft models for each of these three indications. A single dose of αMSLN-MMAE profoundly inhibited or regressed tumor growth in a dose-dependent manner in all six models, including two patient-derived tumor xenografts. The robust and durable efficacy of αMSLN-MMAE in preclinical models of ovarian, mesothelioma, and pancreatic cancers justifies the ongoing phase I clinical trial.

Zhang J, Bera TK, Liu W, et al.
Megakaryocytic potentiating factor and mature mesothelin stimulate the growth of a lung cancer cell line in the peritoneal cavity of mice.
PLoS One. 2014; 9(8):e104388 [PubMed] Free Access to Full Article Related Publications
The mesothelin (MSLN) gene encodes a 71 kilodalton (kDa) precursor protein that is processed into megakaryocytic potentiating factor (MPF), a 31 kDa protein that is secreted from the cell, and mature mesothelin (mMSLN), a 40 kDa cell surface protein. The mMSLN binds to CA125, an interaction that has been implicated in the intra-cavitary spread of mesothelioma and ovarian cancer. To better define the role of MPF and mMSLN, growth of the lung cancer cell line A549 was evaluated in immuno-deficient mice with inactivation of the Msln gene. We observed that Msln-/- mice xenografted with intraperitoneal A549 tumors survive significantly long than tumor-bearing Msln+/+ mice. When tumor-bearing Msln-/- mice are supplemented with recombinant MPF (and to a lesser extent mMSLN), most of this survival advantage is lost. These studies demonstrate that MPF and mMSLN have an important role in the growth of lung cancer cells in vivo and raise the possibility that inactivation of MPF may be a useful treatment for lung and other MSLN expressing cancers.

Melaiu O, Stebbing J, Lombardo Y, et al.
MSLN gene silencing has an anti-malignant effect on cell lines overexpressing mesothelin deriving from malignant pleural mesothelioma.
PLoS One. 2014; 9(1):e85935 [PubMed] Free Access to Full Article Related Publications
Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM) are still poorly characterized. So far, mesothelin (MSLN) has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373) has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e., NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A). MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA) to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer.

Kachala SS, Bograd AJ, Villena-Vargas J, et al.
Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma.
Clin Cancer Res. 2014; 20(4):1020-8 [PubMed] Free Access to Full Article Related Publications
PURPOSE: In an effort to identify molecular markers of tumor aggressiveness and therapeutic targets in lung adenocarcinoma (ADC), we investigated the expression of mesothelin (MSLN) in lung ADC, as well as its biologic and clinical relevance.
EXPERIMENTAL DESIGN: In a training and validation set of patients with early-stage (I-III) lung ADC (n = 1,209), a tissue microarray consisting of tumors and normal lung tissue was used to examine the association between MSLN expression and recurrence-free survival (RFS) and overall survival (OS). The influence of MSLN overexpression on lung ADC was investigated in vitro and in vivo by use of clinically relevant orthotopic and metastatic xenogeneic and syngeneic mouse models.
RESULTS: MSLN was expressed in 69% of lung ADC tumors, with one in five patients strongly expressing MSLN and no expression in normal lung tissue. Increased MSLN expression was associated with reduced OS [HR = 1.78; 95% confidence interval (CI), 1.26-2.50; P < 0.01] and RFS (HR = 1.67; 95% CI, 1.21-2.27; P < 0.01) in multivariate analyses, even after adjustment for currently known markers of tumor aggressiveness in lung ADC: male sex, smoking history, increasing stage, morphologic pattern, visceral pleural invasion, lymphatic or vascular invasion, and mutation status. In vitro, lung ADC cells overexpressing MSLN demonstrated increased cell proliferation, migration, and invasion; in vivo, mice with MSLN(+) tumors demonstrated decreased survival (P = 0.001).
CONCLUSIONS: MSLN expression in patients with early-stage lung ADC is associated with increased risk of recurrence and reduced OS, indicating that MSLN expression is a molecular marker of tumor aggressiveness and a potential target for therapy.

Creaney J, Sneddon S, Dick IM, et al.
Comparison of the diagnostic accuracy of the MSLN gene products, mesothelin and megakaryocyte potentiating factor, as biomarkers for mesothelioma in pleural effusions and serum.
Dis Markers. 2013; 35(2):119-27 [PubMed] Free Access to Full Article Related Publications
The MSLN gene products, soluble mesothelin and megakaryocyte potentiating factor (MPF), are being investigated as biomarkers for the asbestos-related cancer malignant mesothelioma (MM). Pleural fluid biomarkers of MM can be elevated when serum levels remain normal. The aim of this study was to determine if this was true for MPF and to compare levels of mesothelin. Biomarker concentrations were compared in 66 MM patients, 39 patients with other malignancies, 37 with benign disease, 18 asbestos-exposed healthy individuals, and 53 patients with chronic kidney disease. In pleural effusions, MPF and soluble mesothelin concentrations were both significantly elevated in MM patients relative to controls. No significant difference between the area under the receiver operator curve (AUC) for MPF (0.945 ± 0.02) and mesothelin (0.928 ± 0.03) when distinguishing MM from all other causes of effusion was observed. MPF and mesothelin serum concentrations were highly correlated and of equivalent diagnostic accuracy with AUCs of 0.813 ± 0.04 and 0.829 ± 0.03, respectively. Serum levels of both markers increased with decreasing kidney function. In conclusion, MPF is elevated in the pleural effusions of MM patients similar to that of mesothelin. Mesothelin and MPF convey equivalent diagnostic information for distinguishing MM from other diseases in pleural effusions as well as serum.

Ito T, Kajino K, Abe M, et al.
ERC/mesothelin is expressed in human gastric cancer tissues and cell lines.
Oncol Rep. 2014; 31(1):27-33 [PubMed] Free Access to Full Article Related Publications
ERC/mesothelin is expressed in mesothelioma and other malignancies. The ERC/mesothelin gene (MSLN) encodes a 71-kDa precursor protein, which is cleaved to yield 31-kDa N-terminal (N-ERC/mesothelin) and 40-kDa C-terminal (C-ERC/mesothelin) proteins. N-ERC/mesothelin is a soluble protein and has been reported to be a diagnostic serum marker of mesothelioma and ovarian cancer. Gastric cancer tissue also expresses C-ERC/mesothelin, but the significance of serum N-ERC levels for diagnosing gastric cancer has not yet been studied. We examined the latter issue in the present study as well as C-ERC/mesothelin expression in human gastric cancer tissues and cell lines. We immunohistochemically examined C-ERC/mesothelin expression in tissue samples from 50 cases of gastric cancer, and we also assessed the C-ERC/mesothelin expression in 6 gastric cancer cell lines (MKN-1, MKN-7, MKN-74, NUGC-3, NUGC-4 and TMK-1) using reverse transcription-polymerase chain reaction, flow cytometry, immunohistochemistry and immunoblotting. We also examined the N-ERC/mesothelin concentrations in the supernatants of cultured cells and in the sera of gastric cancer patients using an enzyme-linked immunosorbent assay (ELISA). N-ERC/mesothelin was detected in the supernatants of 3 gastric cancer cell lines (MKN-1, NUGC-4 and TMK-1) by ELISA, but its concentration in the sera of gastric cancer patients was almost same as that observed in the sera of the normal controls. In the gastric cancer tissues, C-ERC/mesothelin expression was associated with lymphatic invasion. N-ERC/mesothelin was secreted into the supernatants of gastric cancer cell lines, but does not appear to be a useful serum marker of gastric cancer.

Marin-Muller C, Li D, Bharadwaj U, et al.
A tumorigenic factor interactome connected through tumor suppressor microRNA-198 in human pancreatic cancer.
Clin Cancer Res. 2013; 19(21):5901-13 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The majority of pancreatic cancers overexpress mesothelin (MSLN), which contributes to enhanced proliferation, invasion, and migration. However, the MSLN regulatory network is still unclear. Here, we investigated the regulation of a panel of tumorigenic factors and explored the potential of MSLN-regulated miR-198 treatment in vivo.
EXPERIMENTAL DESIGN: The expression and functional regulation of the tumorigenic factors MSLN, NF-κB, and the homeobox transcription factors (TF) POU2F2 (OCT-2), Pre-B-cell leukemia homeobox factor 1 (PBX-1), valosin-containing protein (VCP), and miR-198 were studied in pancreatic cancer cell lines, patient tumor samples, and xenograft pancreatic cancer mouse models.
RESULTS: We found that miR-198 is downregulated in pancreatic cancer and is involved in an intricate reciprocal regulatory loop with MSLN, which represses miR-198 through NF-κB-mediated OCT-2 induction. Furthermore, miR-198 repression leads to overexpression of PBX-1 and VCP. The dysregulated PBX-1/VCP axis leads to increased tumorigenicity. Reconstitution of miR-198 in pancreatic cancer cells results in reduced tumor growth, metastasis, and increased survival through direct targeting MSLN, PBX-1, and VCP. Most interestingly, reduced levels of miR-198 in human tissue samples are associated with upregulation of these tumorigenic factors (MSLN, OCT-2, PBX-1, VCP) and predict poor survival. Reduced miR-198 expression links this tumor network signature and prognosticates poor patient outcome. High miR-198 disrupts the network and predicts better prognosis and increased survival.
CONCLUSIONS: miR-198 acts as a central tumor suppressor and modulates the molecular makeup of a critical interactome in pancreatic cancer, indicating a potential prognostic marker signature and the therapeutic potential of attacking this tumorigenic network through a central vantage point.

O'Shannessy DJ, Jackson SM, Twine NC, et al.
Gene expression analyses support fallopian tube epithelium as the cell of origin of epithelial ovarian cancer.
Int J Mol Sci. 2013; 14(7):13687-703 [PubMed] Free Access to Full Article Related Publications
Folate receptor alpha (FOLR1/FRA) is reported to be overexpressed in epithelial ovarian cancers (EOC), especially the serous histotype. Further, while dysregulation of the folate-dependent 1-carbon cycle has been implicated in tumorogenesis, little is known relative to the potential mechanism of action of FOLR1 expression in these processes. We therefore investigated the expression of FOLR1, other folate receptors, and genes within the 1-carbon cycle in samples of EOC, normal ovary and fallopian tube on a custom TaqMan Low Density Array. Also included on this array were known markers of EOC such as MSLN, MUC16 and HE4. While few differences were observed in the expression profiles of genes in the 1-carbon cycle, genes previously considered to be overexpressed in EOC (e.g., FOLR1, MSLN, MUC16 and HE4) showed significantly increased expression when comparing EOC to normal ovary. However, when the comparator was changed to normal fallopian tube, these differences were abolished, supporting the hypothesis that EOC derives from fallopian fimbriae and, further, that markers previously considered to be upregulated or overexpressed in EOC are most likely not of ovarian origin, but fallopian in derivation. Our findings therefore support the hypothesis that the cell of origin of EOC is tubal epithelium.

Wang Y, Wang L, Li D, et al.
Mesothelin promotes invasion and metastasis in breast cancer cells.
J Int Med Res. 2012; 40(6):2109-16 [PubMed] Related Publications
OBJECTIVE: The presence of mesothelin (encoded by the mesothelin [MSLN] gene) in breast cancer is associated with tumour infiltration of the lymph node. This study evaluated whether MSLN overexpression promotes breast cancer cell invasiveness and metastasis.
METHODS: This study evaluated the effects of overexpression of MSLN on extracellular signal-regulated kinase (ERK1/2) and matrix metalloproteinase (MMP)-9 levels, and the invasiveness and angiogenesis of the breast cancer cell line MCF-7 in vitro, and on MCF-7-derived tumour development in vivo.
RESULTS: MSLN overexpression significantly increased ERK1/2 and MMP9 protein levels and activity, and the invasive and angiogenic capability of MCF-7 cells, in vitro. Inhibition of ERK1/2 suppressed MMP-9 and the invasive and angiogenic capability of MSLN overexpressing MCF-7 cells. MSLN overexpression also increased MCF-7-derived tumour metastasis in vivo.
CONCLUSION: MSLN overexpression promoted the invasive potential of MCF-7 cells through ERK1/2-dependent upregulation of MMP-9; this association may have contributed to metastasis of MCF-7 cells in vivo. Mesothelin may be a useful biomarker for cancer progression and a novel therapeutic or chemopreventive target in human breast cancer.

Ren YR, Chaerkady R, Hu S, et al.
Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin.
J Proteome Res. 2012; 11(11):5301-10 [PubMed] Free Access to Full Article Related Publications
Although significant effort is expended on identifying transcripts/proteins that are up-regulated in cancer, there are few reports on systematic elucidation of transcriptional mechanisms underlying such druggable cancer-specific targets. The mesothelin (MSLN) gene offers a promising subject, being expressed in a restricted pattern normally, yet highly overexpressed in almost one-third of human malignancies and a target of cancer immunotherapeutic trials. CanScript, a cis promoter element, appears to control MSLN cancer-specific expression; its related genomic sequences may up-regulate other cancer markers. CanScript is a 20-nt bipartite element consisting of an SP1-like motif and a consensus MCAT sequence. The latter recruits TEAD (TEA domain) family members, which are universally expressed. Exploration of the active CanScript element, especially the proteins binding to the SP1-like motif, thus could reveal cancer-specific features having diagnostic or therapeutic interest. The efficient identification of sequence-specific DNA-binding proteins at a given locus, however, has lagged in biomarker explorations. We used two orthogonal proteomics approaches--unbiased SILAC (stable isotope labeling by amino acids in cell culture)/DNA affinity-capture/mass spectrometry survey (SD-MS) and a large transcription factor protein microarray (TFM)--and functional validation to explore systematically the CanScript interactome. SD-MS produced nine candidates, and TFM, 18. The screens agreed in confirming binding by TEAD proteins and by newly identified NAB1 and NFATc. Among other identified candidates, we found functional roles for ZNF24, NAB1 and RFX1 in MSLN expression by cancer cells. Combined interactome screens yield an efficient, reproducible, sensitive, and unbiased approach to identify sequence-specific DNA-binding proteins and other participants in disease-specific DNA elements.

Wang L, Niu Z, Zhang L, et al.
Clinicopathological significance of mesothelin expression in invasive breast cancer.
J Int Med Res. 2012; 40(3):909-16 [PubMed] Related Publications
OBJECTIVES: This study evaluated the expression profile of the mesothelin (MSLN) gene and its prognostic significance in breast cancer.
METHODS: To evaluate the diagnostic and prognostic significance of mesothelin, immunohistochemistry was used to assess the level of mesothelin protein in surgically resected, formalin-fixed, paraffin-embedded invasive breast carcinoma specimens. Associations between mesothelin and other biomarkers, including oestrogen receptor (OR), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu), were also evaluated.
RESULTS: A total of 182 breast carcinoma specimens were included. Mesothelin protein was present in the membrane of malignant cells. There was correlation between the presence of mesothelin in tumour cells and tumour infiltration of the lymph node. There was no correlation between the presence of mesothelin and HER2/neu protein, OR and PR in tumour cells. Mesothelin levels were significantly associated with decreased overall survival.
CONCLUSIONS: Lymph node status, tumour size, HER2/neu and mesothelin protein levels in breast cancer cells were independent prognostic factors. Mesothelin could be useful as a prognostic marker of overall survival in invasive breast cancer.

Røe OD, Szulkin A, Anderssen E, et al.
Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma.
PLoS One. 2012; 7(8):e40521 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pemetrexed, a multi-folate inhibitor combined with a platinum compound is the first-line treatment of malignant mesothelioma, but median survival is still one year. Intrinsic and acquired resistance to pemetrexed is common, but its biological basis is obscure. Here we report for the first time a genome-wide profile of acquired resistance in the tumour from an exceptional case with advanced pleural mesothelioma and almost six years survival after 39 cycles of second-line pemetrexed/carboplatin treatment.
METHODOLOGY AND PRINCIPAL FINDINGS: Genome-wide analysis with Illumina BeadChip Kit of 25,000 genes was performed on mRNA from pre-treatment and post-resistance biopsies from this individual as well on case and control samples from our previously published study (in total 17 samples). Cell specific expression of proteins encoded by selected genes were analysed by immunohistochemistry. Serial serum levels of CA125, CYFRA21-1 and SMRP levels were examined. TS protein, the main target of pemetrexed was overexpressed. Proteins and genes related to DNA damage response, elongation and telomere extension and repair related directly and indirectly to platinum resistance were overexpressed, as the CHK1 protein and the genes CHEK2, LIG3, POLD1, POLA2, FANCD2, PRPF19, RECQ5 respectively, the last two not previously described in mesothelioma. We observed a down-regulation of leukocyte transendothelial migration and cell adhesion molecules pathways. Silencing of NT5C in two mesothelioma cell lines did not sensitize the cells to Pemetrexed. Proposed resistance markers are TS, KRT7/ CK7, TYMP/ thymidine phosphorylase and down-regulated SPARCL1 and CDKN1B. Moreover, comparison of the primary expression of the sensitive versus a primary resistant case showed multi-fold overexpressed DNA repair, cell cycle, cytokinesis, and spindle formation in the latter. Serum CA125 and SMRP reflected the clinical and radiological course and tumour burden.
CONCLUSIONS: Genome-wide microarray of mesothelioma pre- and post-resistance biopsies indicated a novel resistance signature to pemetrexed/carboplatin that deserve validation in a larger cohort.

Pantazopoulos I, Boura P, Xanthos T, Syrigos K
Effectiveness of mesothelin family proteins and osteopontin for malignant mesothelioma.
Eur Respir J. 2013; 41(3):706-15 [PubMed] Related Publications
Malignant mesothelioma (MM) is an aggressive tumour with poor prognosis whose early diagnosis is difficult. Mesothelin, megakaryocyte potentiating factor (MPF) and osteopontin have attracted attention as biomarkers. The aim of the present review is to provide an overview regarding these candidate biomarkers for MM, and discuss their potential role in today's clinical practice. Mesothelin and MPF have good specificity but sub-optimal sensitivity for detection of MM, being negative both in the sarcomatoid histological sub-type and in almost half of epithelioid mesothelioma, especially in the early stages. Osteopontin is a marker of the duration of asbestos exposure, but lacks specificity for mesothelioma. Several patient characteristics influence the diagnostic accuracy of biomarkers and make the establishment of the "optimal" diagnostic threshold difficult. Mesothelin and MPF have proved useful in assessing response to treatment. Combining different markers together may lead to an improvement in diagnostic accuracy, but there is still need for research in this area. Extensive validation and further research is required to improve the use of serum markers in mesothelioma management. In the near future, their application in clinical practice is probably in monitoring response to therapy, rather than in guiding diagnostic decisions and risk assessment of asbestos-exposed populations.

Winter JM, Tang LH, Klimstra DS, et al.
A novel survival-based tissue microarray of pancreatic cancer validates MUC1 and mesothelin as biomarkers.
PLoS One. 2012; 7(7):e40157 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: One-fifth of patients with seemingly 'curable' pancreatic ductal adenocarcinoma (PDA) experience an early recurrence and death, receiving no definable benefit from a major operation. Some patients with advanced stage tumors are deemed 'unresectable' by conventional staging criteria (e.g. liver metastasis), yet progress slowly. Effective biomarkers that stratify PDA based on biologic behavior are needed. To help researchers sort through the maze of biomarker data, a compendium of ∼2500 published candidate biomarkers in PDA was compiled (PLoS Med, 2009. 6(4) p. e1000046).
METHODS AND FINDINGS: Building on this compendium, we constructed a survival tissue microarray (termed s-TMA) comprised of short-term (cancer-specific death <12 months, n = 58) and long-term survivors (>30 months, n = 79) who underwent resection for PDA (total, n = 137). The s-TMA functions as a biological filter to identify bona fide prognostic markers associated with survival group extremes (at least 18 months separate survival groups). Based on a stringent selection process, 13 putative PDA biomarkers were identified from the public biomarker repository. Candidates were tested against the s-TMA by immunohistochemistry to identify the best markers of tumor biology. In a multivariate model, MUC1 (odds ratio, OR = 28.95, 3+ vs. negative expression, p = 0.004) and MSLN (OR = 12.47, 3+ vs. negative expression, p = 0.01) were highly predictive of early cancer-specific death. By comparison, pathologic factors (size, lymph node metastases, resection margin status, and grade) had ORs below three, and none reached statistical significance. ROC curves were used to compare the four pathologic prognostic features (ROC area = 0.70) to three univariate molecular predictors (MUC1, MSLN, MUC2) of survival group (ROC area = 0.80, p = 0.07).
CONCLUSIONS: MUC1 and MSLN were superior to pathologic features and other putative biomarkers as predicting survival group. Molecular assays comparing cancers from short and long survivors are an effective strategy to screen biomarkers and prioritize candidate cancer genes for diagnostic and therapeutic studies.

Bournet B, Pointreau A, Souque A, et al.
Gene expression signature of advanced pancreatic ductal adenocarcinoma using low density array on endoscopic ultrasound-guided fine needle aspiration samples.
Pancreatology. 2012 Jan-Feb; 12(1):27-34 [PubMed] Related Publications
AIMS: The purpose of this study was to investigate the clinical feasibility and utility of low-density array analysis on samples obtained from endoscopic ultrasound-guided fine needle aspiration biopsy in locally advanced and/or metastatic pancreatic ductal adenocarcinoma and chronic pancreatitis.
PATIENTS AND METHODS: In this prospective multicenter study, we quantified candidate gene expression in biopsies sampled from 44 locally advanced and/or metastatic pancreatic carcinoma and from 17 pseudotumoural chronic pancreatitis using dedicated low-density array microfluidic plates.
RESULTS: We first demonstrated that 18S gene expression is stable and comparable in normal pancreas and pancreatic cancer tissues. Next, we found that eight genes (S100P, PLAT, PLAU, MSLN, MMP-11, MMP-7, KRT7, KRT17) were significantly over expressed in pancreatic cancer samples when compared to pseudotumoural chronic pancreatitis (p value ranging from 0.0007 to 0.0215): Linear discriminative analysis identified S100P, PLAT, MSLN, MMP-7, KRT7 as highly explicative variables. The area under receiver operating curve establishes the clinical validity of the potential diagnostic markers identified in this study (values ranging from 0.69 to 0.76). In addition, combination of S100P and KRT7 gave better diagnosis performances (Area Under Receiver Operating Curve 0.81, sensitivity 81%, specificity 77%).
CONCLUSION: We demonstrate that molecular studies on EUS-guided FNA material are feasible for the identification and quantification of markers in PDAC patients diagnosed with non-resectable tumours. Using low-density array, we isolated a molecular signature of advanced pancreatic carcinoma including mostly cancer invasion-related genes. This work stems for the use of novel biomarkers for the molecular diagnosis of patient with solid pancreatic masses.

Servais EL, Colovos C, Rodriguez L, et al.
Mesothelin overexpression promotes mesothelioma cell invasion and MMP-9 secretion in an orthotopic mouse model and in epithelioid pleural mesothelioma patients.
Clin Cancer Res. 2012; 18(9):2478-89 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Mesothelin (MSLN) is a tumor-associated antigen, being investigated as a biomarker and therapeutic target in malignant pleural mesothelioma (MPM). The biologic function of MSLN overexpression in MPM is unknown. We hypothesized that MSLN may promote tumor invasion in MPM, a tumor characterized primarily by regional aggressiveness and rare distant metastases.
EXPERIMENTAL DESIGN: Human and murine MPM cells with MSLN forced expression and short hairpin RNA knockdown were examined for proliferation, invasion, and matrix metalloproteinase (MMP) secretion. The influence of MSLN overexpression on MPM cell invasion was assessed in an orthotopic mouse model and in patient samples.
RESULTS: MSLN expression promotes MPM cell invasion and MMP secretion in both human and murine MPM cells. In an orthotopic MPM mouse model characterized by our laboratory, MPM cells with MSLN overexpression preferentially localized to the tumor invading edge, colocalized with MMP-9 expression, and promoted decreased survival without an increase in tumor burden progression. In a tissue microarray from epithelioid MPM patients (n = 139, 729 cores), MSLN overexpression correlated with higher MMP-9 expression at individual core level. Among stage III MPM patients (n = 72), high MSLN expression was observed in 26% of T2 tumors and 51% of T3 tumors.
CONCLUSIONS: Our data provide evidence elucidating a biologic role for MSLN as a factor promoting tumor invasion and MMP-9 expression in MSLN expressing MPM. As regional invasion is the characteristic feature in MSLN expressing solid cancers (MPM, pancreas, and ovarian), our observations add rationale to studies investigating MSLN as a therapeutic target.

Melaiu O, Cristaudo A, Melissari E, et al.
A review of transcriptome studies combined with data mining reveals novel potential markers of malignant pleural mesothelioma.
Mutat Res. 2012 Apr-Jun; 750(2):132-40 [PubMed] Related Publications
Malignant pleural mesothelioma (MPM), a cancer of the serosal pleural cavities, is one of the most aggressive human tumors. In order to identify genes crucial for the onset and progression of MPM, we performed an extensive literature review focused on transcriptome studies (RTS). In this kind of studies a great number of transcripts are analyzed without formulating any a priori hypothesis, thus preventing any bias coming from previously established knowledge that could lead to an over-representation of specific genes. Each study was thoroughly analyzed paying particular attention to: (i) the employed microarray platform, (ii) the number and type of samples, (iii) the fold-change, and (iv) the statistical significance of deregulated genes. We also performed data mining (DM) on MPM using three different tools (Coremine, SNPs3D, and GeneProspector). Results from RTS and DM were compared in order to restrict the number of genes potentially deregulated in MPM. Our main requirement for a gene to be a "mesothelioma gene" (MG) is to be reproducibly deregulated among independent studies and confirmed by DM. A list of MGs was thus produced, including PTGS2, BIRC5, ASS1, JUNB, MCM2, AURKA, FGF2, MKI67, CAV1, SFRP1, CCNB1, CDK4, and MSLN that might represent potential novel biomarkers or therapeutic targets for MPM. Moreover, it was found a sub-group of MGs including ASS1, JUNB, PTGS2, EEF2, SULF1, TOP2A, AURKA, BIRC5, CAV1, IFITM1, PCNA, and PKM2 that could explain, at least in part, the mechanisms of resistance to cisplatin, one first-line chemotherapeutic drug used for the disease. Finally, the pathway analysis showed that co-regulation networks related to the cross-talk between MPM and its micro-environment, in particular involving the adhesion molecules, integrins, and cytokines, might have an important role in MPM. Future studies are warranted to better characterize the role played by these genes in MPM.

Chang MC, Chen CA, Chen PJ, et al.
Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways.
Biochem J. 2012; 442(2):293-302 [PubMed] Related Publications
Ovarian cancer has one of the highest mortalities in malignancies in women, but little is known of its tumour progression properties and there is still no effective molecule that can monitor its growth or therapeutic responses. MSLN (mesothelin), a secreted protein that is overexpressed in ovarian cancer tissues with a poor clinical outcome, has been previously identified to activate PI3K (phosphoinositide 3-kinase)/Akt signalling and inhibit paclitaxel-induced apoptosis. The present study investigates the correlation between MSLN and MMP (matrix metalloproteinase)-7 in the progression of ovarian cancer, and the mechanism of MSLN in enhancing ovarian cancer invasion. The expression of MSLN correlated well with MMP-7 expression in human ovarian cancer tissues. Overexpressing MSLN or ovarian cancer cells treated with MSLN showed enhanced migration and invasion of cancer cells through the induction of MMP-7. MSLN regulated the expression of MMP-7 through the ERK (extracellular-signal-regulated kinase) 1/2, Akt and JNK (c-Jun N-terminal kinase) pathways. The expression of MMP-7 and the migrating ability of MSLN-treated ovarian cancer cells were suppressed by ERK1/2- or JNK-specific inhibitors, or a decoy AP-1 (activator protein 1) oligonucleotide in in vitro experiments, whereas in vivo animal experiments also demonstrated that mice treated with MAPK (mitogen-activated protein kinase)/ERK- or JNK-specific inhibitors could decrease intratumour MMP-7 expression, delay tumour growth and extend the survival of the mice. In conclusion, MSLN enhances ovarian cancer invasion by MMP-7 expression through the MAPK/ERK and JNK signal transduction pathways. Blocking the MSLN-related pathway could be a potential strategy for inhibiting the growth of ovarian cancer.

Kanamori-Katayama M, Kaiho A, Ishizu Y, et al.
LRRN4 and UPK3B are markers of primary mesothelial cells.
PLoS One. 2011; 6(10):e25391 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Mesothelioma is a highly malignant tumor that is primarily caused by occupational or environmental exposure to asbestos fibers. Despite worldwide restrictions on asbestos usage, further cases are expected as diagnosis is typically 20-40 years after exposure. Once diagnosed there is a very poor prognosis with a median survival rate of 9 months. Considering this the development of early pre clinical diagnostic markers may help improve clinical outcomes.
METHODOLOGY: Microarray expression arrays on mesothelium and other tissues dissected from mice were used to identify candidate mesothelial lineage markers. Candidates were further tested by qRTPCR and in-situ hybridization across a mouse tissue panel. Two candidate biomarkers with the potential for secretion, uroplakin 3B (UPK3B), and leucine rich repeat neuronal 4 (LRRN4) and one commercialized mesothelioma marker, mesothelin (MSLN) were then chosen for validation across a panel of normal human primary cells, 16 established mesothelioma cell lines, 10 lung cancer lines, and a further set of 8 unrelated cancer cell lines.
CONCLUSIONS: Within the primary cell panel, LRRN4 was only detected in primary mesothelial cells, but MSLN and UPK3B were also detected in other cell types. MSLN was detected in bronchial epithelial cells and alveolar epithelial cells and UPK3B was detected in retinal pigment epithelial cells and urothelial cells. Testing the cell line panel, MSLN was detected in 15 of the 16 mesothelioma cells lines, whereas LRRN4 was only detected in 8 and UPK3B in 6. Interestingly MSLN levels appear to be upregulated in the mesothelioma lines compared to the primary mesothelial cells, while LRRN4 and UPK3B, are either lost or down-regulated. Despite the higher fraction of mesothelioma lines positive for MSLN, it was also detected at high levels in 2 lung cancer lines and 3 other unrelated cancer lines derived from papillotubular adenocarcinoma, signet ring carcinoma and transitional cell carcinoma.

Bharadwaj U, Marin-Muller C, Li M, et al.
Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression.
Mol Cancer. 2011; 10:106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Previous studies showed that mesothelin (MSLN) plays important roles in survival of pancreatic cancer (PC) cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade) + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis.
METHODS: Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN), stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN) and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48) were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay.
RESULTS: Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN) were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN) were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75) BAD, and activated (p-Ser70) Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis. Blocking NF-κB using IKK inhibitor wedelolactone also increased sensitivity to TNF-α-mediated cytotoxicity with concomitant decrease in Mcl-1. Blocking Akt using PI3K inhibitor also had a likewise effect presumably affecting cell cycle. MIA-MSLN cells produced increased IL-6 and were increased furthermore by TNF-α treatment. SiRNA-silencing of IL-6 increased TNF-α sensitivity of MIA-MSLN cells.
CONCLUSIONS: Our study delineates a MSLN-Akt-NF-κB-IL-6-Mcl-1 survival axis that may be operative in PC cells, and might help cancer cells' survival in the highly inflammatory milieu evident in PC. Further, for the success of TNFerade + gemcitabine to be successful, we feel the simultaneous inhibition of components of this axis is also essential.

Nelson HH, Almquist LM, LaRocca JL, et al.
The relationship between tumor MSLN methylation and serum mesothelin (SMRP) in mesothelioma.
Epigenetics. 2011; 6(8):1029-34 [PubMed] Free Access to Full Article Related Publications
Malignant pleural mesothelioma (MPM) remains a cancer of poor prognosis. It is hoped that implementation of effective screening biomarkers will lead to earlier diagnoses and improved outcomes. Serum-measured soluble mesothelin-related peptide (SMRP) has been demonstrated to have excellent specificity for MPM, but poor sensitivity precludes its use as a screening biomarker. Using a case series of MPM patients from the International Mesothelioma Program at the Brigham and Women's hospital, we sought to determine whether epigenetic change at the MSLN gene in patient tumors is responsible for the poor sensitivity of SMRP. We identified three potential target regions for CpG methylation silencing in the MSLN promoter, one of which was amenable to bisulfite pyrosequencing and located 214 bp upstream of the transcription start site. MSLN promoter methylation was significantly higher in normal pleura than tumor tissue (P < 6.0x10-9). Next, we compared cases according to serum SMRP status and observed that MSLN methylation was significantly higher among tumors from patients testing negative for SMRP (< 1.5nM) versus those that were SMRP positive (P < 0.03). These results demonstrate that MSLN is normally methylated in the pleura, and that methylation is lost in most tumors. However, in a subset of tumors methylation is retained, and this mechanism explains the poor sensitivity of the SMRP assay. These results may lead to additional biomarker targets that will resolve the poor sensitivity of the SMRP assay and allow implementation of screening among exposed populations.

Cristaudo A, Foddis R, Bonotti A, et al.
Two novel polymorphisms in 5' flanking region of the mesothelin gene are associated with soluble mesothelin-related peptide (SMRP) levels.
Int J Biol Markers. 2011 Apr-Jun; 26(2):117-23 [PubMed] Related Publications
BACKGROUND AND AIMS: Increased concentrations of soluble mesothelin-related peptides (SMRP) have been found in sera of patients with malignant pleural mesothelioma (MPM) even if a relatively high rate of false positives has hampered their clinical use as a tumor marker. Individual SMRP levels could be affected by polymorphic elements. The aim of this study was to investigate the association between single nucleotide polymorphisms within the promoter-5'UTR regions and SMRP levels in healthy asbestos-exposed individuals and patients suffering from MPM.?
METHODS: The promoter-5'UTR regions of the mesothelin gene were genotyped in 59 healthy asbestos-exposed subjects and 27 MPM patients. SMRP levels were measured using a commercially available ELISA kit.?
RESULTS: Two novel polymorphisms, an A>C variant (called New1) and a C>T variant (called New2), were identified. In healthy subjects, high SMRP levels were associated with the C-variant of New1, with an average 1.62-fold increase compared with AA homozygotes (p<0.0001). Most of the C-allele carriers had SMRP levels above the threshold of 1.00 nM. We set two different SMRP cutoffs on the basis of the combined New1+New2 genotypes.?
CONCLUSIONS: New1-New2 genotypes could be employed as markers for setting individualized and appropriate thresholds of "normality" when SMRP is used in surveillance programs of asbestos-exposed people.

Miyazawa M, Iwahashi M, Ojima T, et al.
Dendritic cells adenovirally-transduced with full-length mesothelin cDNA elicit mesothelin-specific cytotoxicity against pancreatic cancer cell lines in vitro.
Cancer Lett. 2011; 305(1):32-9 [PubMed] Related Publications
Mesothelin (MSLN) is an attractive candidate as a molecular target for pancreatic cancer immunotherapy. The purpose of this study was to demonstrate that cytotoxic T lymphocytes (CTLs) generated from peripheral blood mononuclear cells (PBMCs) by stimulation with genetically-modified dendritic cells (DCs) expressing MSLN could produce specific anti-tumor immunity against pancreatic cancer cells endogenously expressing MSLN. MSLN-specific CTLs were generated from PBMCs of healthy donors by in vitro stimulation with DCs adenovirally-transduced with the full-length MSLN gene (DC-AxCAMSLN). The cytotoxic activity was tested using a 4-h (51)Cr-release assay. The pancreatic cancer cell lines (PK1, CfPAC1, AsPC1), a lymphoblastoid cell lines (LCL) transduced with the MSLN gene, and LCL pulsed with MSLN-epitope peptides were used as target cells. MSLN-specific CTLs induced by in vitro stimulation with DC-AxCAMSLN killed pancreatic cancer cell lines expressing MSLN in an HLA-restricted fashion. These CTLs also showed cytotoxic activity against autologous LCL pulsed with multiple MSLN-derived epitope peptides. In addition, CD8(+) T cells, as well as CD4(+) T cells, sorted from these CTLs showed significant production of interferon-γ when stimulated with DC-AxCAMSLN. The in vitro stimulation of PBMCs with DCs transduced with the full-length MSLN gene elicited a potent MSLN-specific cytotoxic activity against pancreatic cancer cell lines endogenously expressing MSLN by recognizing multiple MSLN epitopes and activating both CD8(+) T cells and CD4(+) helper T cells. These results therefore suggest the potential of developing future clinical applications of the vaccines using genetically-modified DCs expressing MSLN.

Ren YR, Patel K, Paun BC, Kern SE
Structural analysis of the cancer-specific promoter in mesothelin and in other genes overexpressed in cancers.
J Biol Chem. 2011; 286(14):11960-9 [PubMed] Free Access to Full Article Related Publications
Mesothelin (MSLN) may be the most "dramatic" of the tumor markers, being strongly overexpressed in nearly one-third of human malignancies. The biochemical cause is unclear. We previously ascribed this cancer-specific overexpression to an element, Canscript, residing around 50 bp 5' of the transcription start site in cancer (Hucl, T., Brody, J. R., Gallmeier, E., Iacobuzio-Donahue, C. A., Farrance, I. K., and Kern, S. E. (2007) Cancer Res. 67, 9055-9065). Herein, we found a Canscript promoter activity elevated over 100-fold in cancer cells. In addition to a highly conserved TEAD1 (TEA domain family member 1)-binding MCAT motif, nucleotide substitution revealed the consensus core sequence (WCYCCACCC) of an SP1-like motif in Canscript. The unknown transcription factor binding to the SP1-like motif may hold the key for the cancer specificity of Canscript. SP1, GLI1, and RUNX1, -2, and -3 appeared unlikely to be the direct transcription factors acting at the SP1-like motif, but KLF6 had some features of such a candidate. YAP1, a TEAD1-binding protein, appeared necessary, but not sufficient, for Canscript activity; knockdown of YAP1 by small interfering RNAs greatly reduced MSLN levels in MSLN-overexpressing cells, but overexpressing YAP1 in MSLN-negative cells did not induce MSLN expression. Cansript-like sequences were found in other genes up-regulated in pancreatic cancer; reporters driven by the sequences from FXYD3, MUC1, and TIMP1 had activities more than 2 times that of the control. This suggested that the cause of MSLN overexpression might also contribute mechanistically to the overexpression of other tumor markers.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MSLN, Cancer Genetics Web: http://www.cancer-genetics.org/MSLN.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999