PIK3R1

Gene Summary

Gene:PIK3R1; phosphoinositide-3-kinase regulatory subunit 1
Aliases: p85, AGM7, GRB1, IMD36, p85-ALPHA
Location:5q13.1
Summary:Phosphatidylinositol 3-kinase phosphorylates the inositol ring of phosphatidylinositol at the 3-prime position. The enzyme comprises a 110 kD catalytic subunit and a regulatory subunit of either 85, 55, or 50 kD. This gene encodes the 85 kD regulatory subunit. Phosphatidylinositol 3-kinase plays an important role in the metabolic actions of insulin, and a mutation in this gene has been associated with insulin resistance. Alternative splicing of this gene results in four transcript variants encoding different isoforms. [provided by RefSeq, Jun 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:phosphatidylinositol 3-kinase regulatory subunit alpha
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (82)
Pathways:What pathways are this gene/protein implicaed in?
Show (64)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Oligonucleotide Array Sequence Analysis
  • AKT1
  • Neoplasm Proteins
  • MicroRNAs
  • Chromosome 5
  • Bladder Cancer
  • Single-Stranded Conformational Polymorphism
  • Proto-Oncogene Proteins
  • Single Nucleotide Polymorphism
  • Brain Tumours
  • Apoptosis
  • High-Throughput Nucleotide Sequencing
  • Neoplasm Invasiveness
  • Repressor Proteins
  • Messenger RNA
  • Down-Regulation
  • Cancer Gene Expression Regulation
  • Staging
  • PTEN
  • Tissue Array Analysis
  • Antineoplastic Agents
  • DNA Mutational Analysis
  • siRNA
  • Signal Transduction
  • Glioblastoma
  • Risk Factors
  • Breast Cancer
  • Immunohistochemistry
  • Class Ia Phosphatidylinositol 3-Kinase
  • Quinolines
  • Up-Regulation
  • Cell Movement
  • Cell Proliferation
  • Genetic Predisposition
  • Endometrial Cancer
  • Gene Expression Profiling
  • Biomarkers, Tumor
  • RTPCR
  • Mutation
  • Phosphatidylinositol 3-Kinases
  • Stomach Cancer
  • Transcription
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PIK3R1 (cancer-related)

Yu W, Honisch S, Schmidt S, et al.
Chorein Sensitive Orai1 Expression and Store Operated Ca2+ Entry in Rhabdomyosarcoma Cells.
Cell Physiol Biochem. 2016; 40(5):1141-1152 [PubMed] Related Publications
BACKGROUND: Chorein, a protein encoded by VPS13A (vacuolar protein sorting-associated protein 13A), is defective in chorea acanthocytosis, a rare disease characterized by acanthocytosis of red blood cells and neuronal cell death with progressive hyperkinetic movement disorder, cognitive dysfunction, behavioral abnormalities and chronic hyperkalemia. Chorein is highly expressed in ZF rhabdomyosarcoma cells and counteracts apoptosis of those cells. Chorein is effective in part by interacting with and fostering stimulation of phosphoinositide-3-kinase (PI3K)-p85-subunit. PI3K dependent signaling includes the serum and glucocorticoid inducible kinase SGK1. The kinase activates NFκB with subsequent up-regulation of the Ca2+ channel subunit Orai1, which accomplishes store operated Ca2+ entry (SOCE). Orai1 and SOCE have been shown to confer survival of tumor cells. The present study thus explored whether chorein impacts on Orai1 expression and SOCE.
METHODS: In rhabdomyosarcoma cells chorein, Orai1, NFκB and SGK1 transcript levels were quantified by RT-PCR, Orai1 protein abundance by Western blotting, FACS analysis and confocal laser microscopy, [Ca2+]i utilizing Fura-2 fluorescence, and SOCE from the increase of [Ca2+]i following store depletion with extracellular Ca2+ removal and inhibition of the sarcoendoplasmatic reticular Ca2+ ATPase with thapsigargin.
RESULTS: The mRNA coding for chorein was most abundant in drug resistant, poorly differentiated human ZF rhabdomyosarcoma cells. Chorein silencing significantly decreased Orai1 transcript levels and Orai1 protein expression, as well as SGK1 and NFκB transcript levels. SOCE in ZF rhabdomyosarcoma cells was significantly blunted by chorein silencing, Orai1 inhibitor 2-APB (50 µM), SGK1 inhibitor EMD638683 (50 µM, 10 h) and NFκB inhibitor wogonin (50 µM, 24 h).
CONCLUSION: Chorein is a stimulator of Orai1 expression and thus of store operated Ca2+ entry. The effect may involve SGK1 and NFκB.

Wang P, Ye JA, Hou CX, et al.
Combination of lentivirus-mediated silencing of PPM1D and temozolomide chemotherapy eradicates malignant glioma through cell apoptosis and cell cycle arrest.
Oncol Rep. 2016; 36(5):2544-2552 [PubMed] Free Access to Full Article Related Publications
Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy.

Saleh AJ, Soltani BM, Dokanehiifard S, et al.
Experimental verification of a predicted novel microRNA located in human PIK3CA gene with a potential oncogenic function in colorectal cancer.
Tumour Biol. 2016; 37(10):14089-14101 [PubMed] Related Publications
PI3K/AKT signaling is involved in cell survival, proliferation, and migration. In this pathway, PI3Kα enzyme is composed of a regulatory protein encoded by p85 gene and a catalytic protein encoded by PIK3CA gene. Human PIK3CA locus is amplified in several cancers including lung and colorectal cancer (CRC). Therefore, microRNAs (miRNAs) that are encoded within the PIK3CA gene might have a role in cancer development. Here, we report a novel microRNA named PIK3CA-miR1 (EBI accession no. LN626315), which is located within PIK3CA gene. A DNA segment corresponding to PIK3CA-premir1 sequence was transfected in human cell lines that resulted in generation of mature exogenous PIK3CA-miR1. Following the overexpression of PIK3CA-miR1, its predicted target genes (APPL1 and TrkC) were significantly downregulated in the CRC-originated HCT116 and SW480 cell lines, detected by qRT-PCR. Then, dual luciferase assay supported the interaction of PIK3CA-miR1 with APPL1 and TrkC transcripts. Endogenous PIK3CA-miR1 expression was also detected in several cell lines (highly in HCT116 and SW480) and highly in CRC specimens. Consistently, overexpression of PIK3CA-premir1 in HCT116 and SW480 cells resulted in significant reduction of the sub-G1 cell distribution and apoptotic cell rate, as detected by flowcytometry, and resulted in increased cell proliferation, as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PIK3CA-miR1 overexpression also resulted in Wnt signaling upregulation detected by Top/Fop assay. Overall, accumulative evidences indicated the presence of a bona fide novel onco-miRNA encoded within the PIK3CA oncogene, which is highly expressed in colorectal cancer and has a survival effect in CRC-originated cells.

Tian F, Shen Y, Chen Z, et al.
Aberrant miR-181b-5p and miR-486-5p expression in serum and tissue of non-small cell lung cancer.
Gene. 2016; 591(2):338-43 [PubMed] Related Publications
BACKGROUND: Lung cancer is the leading cause of cancer deaths in China. Non-small cell lung cancer (NSCLC) is the major type of lung cancer.
OBJECTIVES: The aim of our study was to characterize the expression profiles of miRNAs in serum and tissue of NSCLC at the same time, and to find more accurate relationship of miRNAs between serum and tissue. Furthermore, we intended to find more biomarkers of miRNAs in NSCLC samples.
METHODS: In this study, the miRNAs were sequenced in 18 paired serum and 18 paired tissue samples. The expression levels of miRNAs and targets were quantified by qRT-PCR. The function analysis was performed by using bioinformatics methods.
RESULTS: In these paired samples miR-181b-5p was up-regulated in squamous cell carcinoma (SCC), miR-486-5p was down-regulated in adenocarcinoma (AC), and miR-21-5p was up-regulated in both SCC and AC. However, miR-181b-5p and miR-486-5p were rarely reported in lung cancer related studies. The expression levels of these two miRNAs and their targets, RASSF1 and PIK3R1 were quantified in additional samples by qRT-PCR. The results showed that the targets were negatively regulated by the two miRNAs. In addition, we noted that RASSF1 and PIK3R1 were directly involved in non-small cell lung cancer pathway.
CONCLUSIONS: Our study suggested that miR-181b-5p and miR-486-5p could be new potential biomarkers for early diagnosis of NSCLC.

Yang X, Zhang Y, Liu H, Lin Z
Cancerous Inhibitor of PP2A Silencing Inhibits Proliferation and Promotes Apoptosis in Human Multiple Myeloma Cells.
Biomed Res Int. 2016; 2016:6864135 [PubMed] Free Access to Full Article Related Publications
Multiple myeloma is the second most prevalent type of blood cancer, representing approximately 1% of all cancers and 2% of all cancer deaths. There is therefore a strong need to identify critical targets in multiple myeloma neoplasia and progression. Cancerous inhibitor of PP2A (CIP2A) is a human oncoprotein that regulates cancer cell viability and anchorage-independent growth and induces apoptosis. The present study investigated CIP2A function in the human multiple myeloma cell lines RPMI-8226 and NCI-H929 to determine whether it can serve as a potential therapeutic target. CIP2A was silenced in the cells by transfection of short interfering RNA and cell proliferation and apoptosis were evaluated by a tetrazolium salt-based assay and flow cytometry, respectively. CIP2A knockdown inhibited proliferation and induced apoptosis in RPMI-8226 and NCI-H929 cells and decreased the phosphorylation of phosphoinositide 3-kinase (PI3K) p85, AKT1, and mammalian target of rapamycin (mTOR) without affecting total protein levels. Treatment of CIP2A-depletion cells with insulin-like growth factor 1 decreased the effects of CIP2A inhibition on cell viability and apoptosis. These results indicate that CIP2A modulates myeloma cell proliferation and apoptosis via PI3K/AKT/mTOR signaling and suggest that it can potentially serve as a drug target for the treatment of multiple myeloma.

Schulten HJ, Hussein D, Al-Adwani F, et al.
Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression.
PLoS One. 2016; 11(4):e0153681 [PubMed] Free Access to Full Article Related Publications
Meningiomas are the most common primary brain tumors bearing in a minority of cases an aggressive phenotype. Although meningiomas are stratified according to their histology and clinical behavior, the underlying molecular genetics predicting aggressiveness are not thoroughly understood. We performed whole transcript expression profiling in 10 grade I and four grade II meningiomas, three of which invaded the brain. Microarray expression analysis identified deleted in colorectal cancer (DCC) as a differentially expressed gene (DEG) enabling us to cluster meningiomas into DCC low expression (3 grade I and 3 grade II tumors), DCC medium expression (2 grade I and 1 grade II tumors), and DCC high expression (5 grade I tumors) groups. Comparison between the DCC low expression and DCC high expression groups resulted in 416 DEGs (p-value<0.05; fold change>2). The most significantly downregulated genes in the DCC low expression group comprised DCC, phosphodiesterase 1C (PDE1C), calmodulin-dependent 70kDa olfactomedin 2 (OLFM2), glutathione S-transferase mu 5 (GSTM5), phosphotyrosine interaction domain containing 1 (PID1), sema domain, transmembrane domain (TM) and cytoplasmic domain, (semaphorin) 6D (SEMA6D), and indolethylamine N-methyltransferase (INMT). The most significantly upregulated genes comprised chromosome 5 open reading frame 63 (C5orf63), homeodomain interacting protein kinase 2 (HIPK2), and basic helix-loop-helix family, member e40 (BHLHE40). Biofunctional analysis identified as predicted top upstream regulators beta-estradiol, TGFB1, Tgf beta complex, LY294002, and dexamethasone and as predicted top regulator effectors NFkB, PIK3R1, and CREBBP. The microarray expression data served also for a comparison between meningiomas from female and male patients and for a comparison between brain invasive and non-invasive meningiomas resulting in a number of significant DEGs and related biofunctions. In conclusion, based on its expression levels, DCC may constitute a valid biomarker to identify those benign meningiomas at risk for progression.

Nikbakht H, Panditharatna E, Mikael LG, et al.
Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma.
Nat Commun. 2016; 7:11185 [PubMed] Free Access to Full Article Related Publications
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.

Kirouac DC, Du J, Lahdenranta J, et al.
HER2+ Cancer Cell Dependence on PI3K vs. MAPK Signaling Axes Is Determined by Expression of EGFR, ERBB3 and CDKN1B.
PLoS Comput Biol. 2016; 12(4):e1004827 [PubMed] Free Access to Full Article Related Publications
Understanding the molecular pathways by which oncogenes drive cancerous cell growth, and how dependence on such pathways varies between tumors could be highly valuable for the design of anti-cancer treatment strategies. In this work we study how dependence upon the canonical PI3K and MAPK cascades varies across HER2+ cancers, and define biomarkers predictive of pathway dependencies. A panel of 18 HER2+ (ERBB2-amplified) cell lines representing a variety of indications was used to characterize the functional and molecular diversity within this oncogene-defined cancer. PI3K and MAPK-pathway dependencies were quantified by measuring in vitro cell growth responses to combinations of AKT (MK2206) and MEK (GSK1120212; trametinib) inhibitors, in the presence and absence of the ERBB3 ligand heregulin (NRG1). A combination of three protein measurements comprising the receptors EGFR, ERBB3 (HER3), and the cyclin-dependent kinase inhibitor p27 (CDKN1B) was found to accurately predict dependence on PI3K/AKT vs. MAPK/ERK signaling axes. Notably, this multivariate classifier outperformed the more intuitive and clinically employed metrics, such as expression of phospho-AKT and phospho-ERK, and PI3K pathway mutations (PIK3CA, PTEN, and PIK3R1). In both cell lines and primary patient samples, we observed consistent expression patterns of these biomarkers varies by cancer indication, such that ERBB3 and CDKN1B expression are relatively high in breast tumors while EGFR expression is relatively high in other indications. The predictability of the three protein biomarkers for differentiating PI3K/AKT vs. MAPK dependence in HER2+ cancers was confirmed using external datasets (Project Achilles and GDSC), again out-performing clinically used genetic markers. Measurement of this minimal set of three protein biomarkers could thus inform treatment, and predict mechanisms of drug resistance in HER2+ cancers. More generally, our results show a single oncogenic transformation can have differing effects on cell signaling and growth, contingent upon the molecular and cellular context.

Myers AP, Filiaci VL, Zhang Y, et al.
Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
Gynecol Oncol. 2016; 141(1):43-8 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development.
METHODS: Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next-generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored.
RESULTS: Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01-0.78) and RR (response difference 0.83; 95% CI 0.03-0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20-0.97) but not RR (response difference 0.00, 95% CI -0.34-0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR.
CONCLUSIONS: Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus.

Cybula M, Wieteska Ƚ, Józefowicz-Korczyńska M, et al.
New miRNA expression abnormalities in laryngeal squamous cell carcinoma.
Cancer Biomark. 2016; 16(4):559-68 [PubMed] Related Publications
BACKGROUND: Although the development of novel diagnostic and treatment strategies concerning laryngeal cancer is highly intensive, the survival rate remains virtually unchanged. Small non-coding RNAs appear to be very promising biomarkers - and so remain the focus of extensive investigation in laryngeal cancer.
OBJECTIVE: We examined the expression of five miRNA and five genes related to cancer whether they could be potential laryngeal cancer biomarkers.
METHODS: We performed an analysis in 47 patients diagnosed with laryngeal cancer. The qPCR technique was used to investigate the expression profile.
RESULTS: While miR-21-3p and miR-525-5p were found to be significantly up-regulated, miR-139-3p and miR-885-5p expression is lower in laryngeal cancer. Moreover, PIK3R1 and HACE1 were found to be also down-regulated.
CONCLUSIONS: The change in miRNA expression is frequent than the expression of other tested genes. The expression of passenger strands such as miR-21-3p and miR-139-3p, which are rarely investigated, is also significantly affected in laryngeal cancer. While PIK3R1, HACE1, miR-139-3p, and miR-885-5p may act as tumor suppressor genes in the studied tumour type, miR-21-3p and miR-525-5p seem to have oncogenic properties. Our findings suggest that miR-885-5p and PIK3R1 are the best indicators for the classification of laryngeal cancer tissue and normal mucosa.

Zhu P, Zhao N, Sheng D, et al.
Inhibition of Growth and Metastasis of Colon Cancer by Delivering 5-Fluorouracil-loaded Pluronic P85 Copolymer Micelles.
Sci Rep. 2016; 6:20896 [PubMed] Free Access to Full Article Related Publications
Hepatic metastasis is the leading cause of mortality of colon cancer, which is still lack of an effective therapy. A new delivery system, pluronic P85 block copolymers, conveying chemotherapeutic agent 5-fluorouracil (5-Fu) for inhibiting growth and metastasis of colon cancer was designed and developed. In this study, we demonstrated that 5-Fu produce strong pesticide effect at lower doses in the present of pluronic P85 compared with control groups. The migration and invasion of HCT116 cells and RKO cells were examined and the results showed that migration and invasion capacities of HCT116 cells and RKO cells were reduced by administering 5-Fu/P85 copolymer micelles in vitro and in vivo which indicating an effectively activity. Interestingly, the content of CD133 + CXCR4+ cells in HCT116 cancer cells and RKO cells treated by 5-Fu/P85 copolymer micelles was decreased. Importantly, the epithelial-mesenchymal transition (EMT) of CD133 + CXCR4+ cells, which was strongly associated with liver metastasis of colon cancer, was also suppressed by giving 5-Fu/P85 copolymer micelles. The results indicated that 5-Fu/P85 copolymer micelles could inhibit the growth and metastasis of colon cancer, which could be attributed to the decrease of the content of CD133 + CXCR4+ cells and suppression of EMT of CD133 + CXCR4+ cells.

Wang H, Qiu T, Shi J, et al.
Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer.
Mol Med Rep. 2016; 13(3):2110-6 [PubMed] Free Access to Full Article Related Publications
The present study aimed to investigate the molecular mechanisms underlying non‑syndromic cleft lip, with or without cleft palate (NSCL/P), and the association between this disease and cancer. The GSE42589 data set was downloaded from the Gene Expression Omnibus database, and contained seven dental pulp stem cell samples from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and construction of a pathway interaction network. Subsequently, cancer genes were obtained from six cancer databases, and the cancer‑associated protein‑protein interaction network for the DEGs was visualized using Cytoscape. In total, 452 upregulated and 1,288 downregulated DEGs were screened. The upregulated DEGs were significantly enriched in the arachidonic acid metabolism pathway, including PTGDS, CYP4F2 and PLA2G16; and transforming growth factor (TGF)‑β signaling pathway, including SMAD3 and TGFB2. The downregulated DEGs were distinctly involved in the pathways of DNA replication, including MCM2 and POLA1; cell cycle, including CDK1 and STAG1; and viral carcinogenesis, including PIK3CA and HIST1H2BF. Furthermore, the pathways of cell cycle and viral carcinogenesis, with higher degrees of interaction were found to interact with other pathways, including DNA replication, transcriptional misregulation in cancer, and the TGF‑β signaling pathway. Additionally, TP53, CDK1, SMAD3, PIK3R1 and CASP3, with higher degrees, interacted with the cancer genes. In conclusion, the DEGs for NSCL/P were implicated predominantly in the TGF‑β signaling pathway, the cell cycle and in viral carcinogenesis. The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were found to be associated, not only with NSCL/P, but also with cancer. These results may contribute to a better understanding of the molecular mechanisms of NSCL/P.

Jahn SW, Kashofer K, Thüringer A, et al.
Mutation Profiling of Usual Ductal Hyperplasia of the Breast Reveals Activating Mutations Predominantly at Different Levels of the PI3K/AKT/mTOR Pathway.
Am J Pathol. 2016; 186(1):15-23 [PubMed] Related Publications
Usual ductal hyperplasia (UDH) of the breast is generally regarded as a nonneoplastic proliferation, albeit loss of heterozygosity has long been reported in a part of these lesions. To gain deeper insights into the molecular drivers of these lesions, an extended mutation profiling was performed. The coding regions of 409 cancer-related genes were investigated by next-generation sequencing in 16 cases of UDH, nine unassociated with neoplasia (classic) and seven arising within papillomas. Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) activation was investigated by phosphorylated AKT, mTOR, and S6 immunohistochemistry. Of 16 lesions, 10 (63%) were mutated; 56% of classic lesions were unassociated with neoplasia, and 71% of lesions arose in papillomas. Fourteen missense mutations were detected: PIK3CA [6 (43%) of 14], AKT1 [2 (14%) of 14], as well as GNAS, MTOR, PIK3R1, LPHN3, LRP1B, and IGF2R [each 1 (7%) of 14]. Phosphorylated mTOR was seen in 83% and phosphorylated S6 in 86% of evaluable lesions (phospho-AKT staining was technically uninterpretable). In conclusion, UDH displays mutations of the phosphatidylinositol 3-kinase/AKT/mTOR axis at different levels, with PIK3R1, MTOR, and GNAS mutations not previously described. Specifically, oncogenic G-protein activation represents a yet unrecognized route to proliferation in UDH. On the basis of evidence of activating mutations, loss of heterozygosity, and a mass forming proliferation, we propose that UDH is most appropriately viewed as an early neoplastic intraductal proliferation.

Gao CC, Xu XL, Li F, et al.
Silencing pancreatic adenocarcinoma upregulated factor (PAUF) increases the sensitivity of pancreatic cancer cells to gemcitabine.
Tumour Biol. 2016; 37(6):7555-64 [PubMed] Related Publications
Pancreatic adenocarcinoma upregulated factor (PAUF) is a new oncogene that activates signaling pathways that play a critical role in resistance to gemcitabine. We thus speculated that PAUF also plays a role in resistance to gemcitabine of pancreatic cancer cells. We established BxPC-3 cell lines with stable PAUF knockdown (BxPC-3_shPAUF) and controls (BxPC-3_shCtrl) and evaluated sensitivity to gemcitabine in vitro by MTT and flow cytometry. We established a xenograft model of human pancreatic cancer to examine PAUF function in gemcitabine resistance in vivo. Gene chip microarrays were performed to identify differentially expressed genes in BxPC-3_shPAUF and BxPC-3_shCtrl cells. Silencing PAUF increased the sensitivity of BxPC-3 cells to gemcitabine in vitro and in vivo. PAUF-knockdown BxPC-3 cell lines treated with gemcitabine showed increased proliferation inhibition and apoptosis compared with controls. Gemcitabine exhibited a more pronounced effect on reduction of BxPC-3_shPAUF tumors than BxPC-3_shCtrl tumors. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assays confirmed a significantly higher apoptotic rate of BXPC-3_shPAUF tumors compared with BXPC-3_shCtrl tumors. Gene array showed that PAUF function in gemcitabine sensitivity might involve MRP2, MRP3, MDR1, PIK3R1, and NFkB2 genes. PAUF could be considered as a key molecular target for sensitizing pancreatic cancer cells to gemcitabine.

Yan LX, Liu YH, Xiang JW, et al.
PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer.
Int J Oncol. 2016; 48(2):471-84 [PubMed] Free Access to Full Article Related Publications
We have previously shown that dysregulation of miR-21 functioned as an oncomiR in breast cancer. The aim of the present study was to elucidate the mechanisms by which miR-21 regulate breast tumor migration and invasion. We applied pathway analysis on genome microarray data and target-predicting algorithms for miR-21 target screening, and used luciferase reporting assay to confirm the direct target. Thereafter, we investigated the function of the target gene phosphoinositide-3-kinase, regulatory subunit 1 (α) (PIK3R1), and detected PIK3R1 coding protein (p85α) by immunohistochemistry and miR-21 by RT-qPCR on 320 archival paraffin-embedded tissues of breast cancer to evaluate the correlation of their expression with prognosis. First, we found that PIK3R1 suppressed growth, invasiveness, and metastatic properties of breast cancer cells. Next, we identified the PIK3R1 as a direct target of miR-21 and showed that it was negatively regulated by miR-21. Furthermore, we demonstrated that p85α overexpression phenocopied the suppression effects of antimiR-21 on breast cancer cell growth, migration and invasion, indicating its tumor suppressor role in breast cancer. On the contrary, PIK3R1 knockdown abrogated antimiR‑21-induced effect on breast cancer cells. Notably, antimiR-21 induction increased p85α, accompanied by decreased p-AKT level. Besides, antimiR-21/PIK3R1-induced suppression of invasiveness in breast cancer cells was mediated by reversing epithelial-mesenchymal transition (EMT). p85α downregulation was found in 25 (7.8%) of the 320 breast cancer patients, and was associated with inferior 5-year disease-free survival (DFS) and overall survival (OS). Taken together, we provide novel evidence that miR-21 knockdown suppresses cell growth, migration and invasion partly by inhibiting PI3K/AKT activation via direct targeting PIK3R1 and reversing EMT in breast cancer. p85α downregulation defined a specific subgroup of breast cancer with shorter 5-year DFS and OS, which may require more aggressive treatment.

Ye K, Wang J, Jayasinghe R, et al.
Systematic discovery of complex insertions and deletions in human cancers.
Nat Med. 2016; 22(1):97-104 [PubMed] Free Access to Full Article Related Publications
Complex insertions and deletions (indels) are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here we present a systematic analysis of somatic complex indels in the coding sequences of samples from over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer-associated genes (such as PIK3R1, TP53, ARID1A, GATA3 and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or misannotated (17.6%) in previous reports of 2,199 samples. In-frame complex indels are enriched in PIK3R1 and EGFR, whereas frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN and ATRX. Furthermore, complex indels display strong tissue specificity (such as VHL in kidney cancer samples and GATA3 in breast cancer samples). Finally, structural analyses support findings of previously missed, but potentially druggable, mutations in the EGFR, MET and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research.

Chang YS, Huang HD, Yeh KT, Chang JG
Genetic alterations in endometrial cancer by targeted next-generation sequencing.
Exp Mol Pathol. 2016; 100(1):8-12 [PubMed] Related Publications
Many genetic factors play important roles in the development of endometrial cancer. The aim of this study was to investigate genetic alterations in the Taiwanese population with endometrial cancer. DNA was extracted from 10 cases of fresh-frozen endometrial cancer tissue. The exomes of cancer-related genes were captured using the NimbleGen Comprehensive Cancer Panel (578 cancer-related genes) and sequenced using the Illumina Genomic Sequencing Platform. Our results revealed 120 variants in 99 genes, 21 of which were included in the Oncomine Cancer Research Panel used in the National Cancer Institute Match Trial. The 21 genes comprised 8 tumor suppressor candidates (ATM, MSH2, PIK3R1, PTCH1, PTEN, TET2, TP53, and TSC1) and 13 oncogene candidates (ALK, BCL9, CTNNB1, ERBB2, FGFR2, FLT3, HNF1A, KIT, MTOR, PDGFRA, PPP2R1A, PTPN11, and SF3B1). We identified a high frequency of mutations in PTEN (50%) and genes involved in the endometrial cancer-related molecular pathway, which involves the IL-7 signaling pathway (PIK3R1, n=1; AKT2, n=1; FOXO1, n=1). We report the mutational landscape of endometrial cancer in the Taiwanese population. We believe that this study will shed new light on fundamental aspects for understanding the molecular pathogenesis of endometrial cancer and may aid in the development of new targeted therapies.

Xiang T, Fei R, Wang Z, et al.
Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway.
Oncol Rep. 2016; 35(1):205-10 [PubMed] Related Publications
Nicotine as a cigarette component is an established risk factor for colorectal cancer tumorigenesis. The downstream signaling pathways of nicotinic acetylcholine receptors (nAchRs) are believed to be responsible for the cellular effects. In the present study, we evaluated the effects and novel mechanisms for nicotine on the capacity for colorectal cancer cell invasion and metastasis. LOVO and SW620 colorectal cancer cells were stimulated with nicotine in vitro. A Transwell chamber model was applied to detect the capacity for tumor cell invasion. Assays for gelatin zymography and western blotting were applied to detect the activity and expression of metastasis-related matrix metalloproteinases (MMPs), respectively. Signal transduction was assessed by immunoblotting for the phosphorylation of relevant signal molecules and the application of pharmaceutical inhibitors. We showed that nicotine increased LOVO and SW620 colorectal cancer cell invasion along with enhanced activity and expression of MMP-1, -2 and -9. Nicotine increased phosphorylation of p38, ERK, Akt and PI3K p85 but had no effect on phosphorylation of JNK, or NF-κB. Of the pharmaceutical inhibitors of U0126 (ERK1/2 inhibitor), LY294002 (Akt activation inhibitor), SB239063 (p38 MAPK activation inhibitor) and hexamethonium (Hex) (nAchRs inhibitor), the cellular and molecular effects were reduced by the applications of SB239063 and Hex. We concluded that nicotine stimulates the invasion and metastasis of colon cancer cells in vitro via activation of the nAchRs and the p38 MAPK downstream signaling pathway. Therefore, p38 MAPK may have potential as a therapeutic target for smoking-related human colorectal cancer metastasis.

Hsieh YH, Hsieh SC, Lee CH, et al.
Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway.
Oncotarget. 2015; 6(33):34859-74 [PubMed] Free Access to Full Article Related Publications
Epithelial membrane protein-3 (EMP3), a typical member of the epithelial membrane protein (EMP) family, is epigenetically silenced in some cancer types, and has been proposed to be a tumor suppressor gene. However, its effects on tumor suppression are controversial and its roles in development and malignancy of hepatocellular carcinoma (HCC) remain unclear. In the present study, we found that EMP3 was highly expressed in the tumorous tissues comparing to the matched normal tissues, and negatively correlated with differentiated degree of HCC patients. Knockdown of EMP3 significantly reduced cell proliferation, arrested cell cycle at G1 phase, and inhibited the motility and invasiveness in accordance with the decreased expression and activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) in HCC cells. The in vivo tumor growth of HCC was effectively suppressed by knockdown of EMP3 in a xenograft mouse model. The EMP3 knockdown-reduced cell proliferation and invasion were attenuated by inhibition of phosphatidylinositol 3-kinase (PI3K) or knockdown of Akt, and rescued by overexpression of Akt in HCC cells. Clinical positive correlations of EMP3 with p85 regulatory subunit of PI3K, p-Akt, uPA, as well as MMP-9 were observed in the tissue sections from HCC patients. Here, we elucidated the tumor progressive effects of EMP3 through PI3K/Akt pathway and uPA/MMP-9 cascade in HCC cells. The findings provided a new insight into EMP3, which might be a potential molecular target for diagnosis and treatment of HCC.

Aravindan S, Ramraj SK, Somasundaram ST, et al.
Polyphenols from marine brown algae target radiotherapy-coordinated EMT and stemness-maintenance in residual pancreatic cancer.
Stem Cell Res Ther. 2015; 6:182 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Therapy-associated onset of stemness-maintenance in surviving tumor-cells dictates tumor relapse/recurrence. Recently, we recognized the anti-pancreatic cancer (PC) potential of seaweed polyphenol manifolds and narrowed down three superior drug-deliverables that could serve as adjuvants and benefit PC cure. Utilizing the PC- cancer stem cells (PC-CSCs) grown ex vivo and mouse model of residual-PC, we investigated the benefits of seaweed polyphenols in regulating stemness-maintenance.
METHODS: ALDH(+)CD44(+)CD24(+) PC-CSCs from Panc-1, Panc-3.27, MiaPaCa-2, or BxPC-3 cells-derived xenografts grown ex vivo were either mock-irradiated, exposed to fractionated irradiation (FIR, 2Gy/D for 5 days), treated with polyphenols (100 μg/ml) of Hormophysa triquerta (HT-EA), Spatoglossum asperum (SA-EA) or Padina tetrastromatica (PT-EA) with/without FIR were examined for cell viability, transcription of 93 stem-cell-related molecules (QPCR profiling). Polyphenol-dependent regulation of FIR-transactivated Oct4, Zic3, EIF4C, Nanog, and LIF (QPCR) and functional translation of Nanog, SOX2, and OCT3/4 (immunoblotting) were examined in Panc-1/Panc-3.27/MiaPaCa-2/BxPC-3-xenografts derived PC-CSCs. Effect of seaweed-polyphenols in the regulation of EMT (N-Cadherin), pluripotency- (SOX2, OCT3/4, Nanog) and stemness-maintenance (PI3KR1, LIF, CD44) in therapy (FIR, 2Gy/D for 5D/wk for 3-weeks) resistant residual tumors were examined by tissue microarray construction and automated immunohistochemistry.
RESULTS: Ex vivo exposure of PC-CSCs to SA-EA, PT-EA and HT-EA exhibit dose-dependent inhibition of cell viability. FIR amplified the transcription of 69, 80, 74 and 77 stem-cell related genes in MiaPaCa-2-, Panc-1-, Panc-3.27- and BXPC3-established xenograft-derived ALDH(+)CD44(+)CD24(+)PC-CSCs. Treatment with SA-EA, PT-EA, or HT-EA completely suppressed FIR-activated stem-cell transcriptional machinery in ALDH(+)CD44(+)CD24(+)PC-CSCs established from MiaPaCa-2, Panc-1, Panc-3.27 and BXPC3 xenografts. QPCR validated EIF4C, OCT3/4, Nanog, LIF, and ZIC3 transcriptional profile outcomes. Nanog, Sox2, and OCT3/4 immunoblotting affirmed the PC-CSC radiosensitizing benefit of seaweed polyphenols. Residual-PC tissues microarrayed and immunostained after in vivo treatments recognized complete regulation of FIR-induced SOX2, OCT3/4, Nanog, LIF, CD44, PIK3R1, N-Cadherin, and E-Cadherin with SA-EA, PT-EA, and HT-EA.
CONCLUSIONS: These data, for the first time, documented the EMT/stemness-maintenance in therapy-resistant PC-CSCs. Further, the data suggest that seaweed polyphenols may inhibit PC relapse/recurrence by targeting therapy-orchestrated stem-cell signaling in residual cells.

Lin H, Zhang M, Yu H, et al.
Analysis of differentially expressed genes between endometrial carcinosarcomas and endometrioid endometrial carcinoma by bioinformatics.
Arch Gynecol Obstet. 2016; 293(5):1073-9 [PubMed] Related Publications
PURPOSE: This study aimed to explore the underlying molecular mechanisms of endometrial carcinosarcomas (ECS) and endometrioid endometrial carcinoma (EEC) by bioinformatics analysis.
METHODS: Gene expression profile GSE33723 was downloaded from the Gene Expression Omnibus. A total of 15 ECS and 23 EEC samples were used to identify the differentially expressed genes (DEGs) by significance analysis of microarrays. After construction of protein-protein interaction (PPI) network, Gene Ontology (GO) functional and pathway enrichment analyses of DEGs were performed, followed by network module analysis.
RESULTS: A total of 49 DEGs were identified between EEC and ECS samples. In the PPI network, TP53 (tumor protein p53) was selected as the highest degree, hub centrality and betweenness. The top 10 enriched GO terms including regulation of cell death and top 10 significant pathways including cell cycle were selected. After network module analysis, PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1) and AKT2 (v-akt murine thymoma viral oncogene homolog 2) were selected as the co-expressed genes in the states of ECS while STAT3 (signal transducer and activator of transcription 3) and JAZF (JAZF zinc finger 1) were selected as the co-expressed genes in the states of EEC.
CONCLUSIONS: The DEGs, such as TP53, PIK3R1 and AKT2 may be used for targeted diagnosis and treatment of ECS while STAT3 and JAZF1 may be served as a target for EEC.

Gao H, Zhang Z
Systematic Analysis of Endometrial Cancer-Associated Hub Proteins Based on Text Mining.
Biomed Res Int. 2015; 2015:615825 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: The aim of this study was to systematically characterize the expression of endometrial cancer- (EC-) associated genes and to analysis the functions, pathways, and networks of EC-associated hub proteins.
METHODS: Gene data for EC were extracted from the PubMed (MEDLINE) database using text mining based on NLP. PPI networks and pathways were integrated and obtained from the KEGG and other databases. Proteins that interacted with at least 10 other proteins were identified as the hub proteins of the EC-related genes network.
RESULTS: A total of 489 genes were identified as EC-related with P < 0.05, and 32 pathways were identified as significant (P < 0.05, FDR < 0.05). A network of EC-related proteins that included 271 interactions was constructed. The 17 proteins that interact with 10 or more other proteins (P < 0.05, FDR < 0.05) were identified as the hub proteins of this PPI network of EC-related genes. These 17 proteins are EGFR, MET, PDGFRB, CCND1, JUN, FGFR2, MYC, PIK3CA, PIK3R1, PIK3R2, KRAS, MAPK3, CTNNB1, RELA, JAK2, AKT1, and AKT2.
CONCLUSION: Our data may help to reveal the molecular mechanisms of EC development and provide implications for targeted therapy for EC. However, corrections between certain proteins and EC continue to require additional exploration.

Lambrechts D, Thienpont B, Thuillier V, et al.
Evaluation of efficacy and safety markers in a phase II study of metastatic colorectal cancer treated with aflibercept in the first-line setting.
Br J Cancer. 2015; 113(7):1027-34 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aflibercept (ziv-aflibercept) is an anti-angiogenic agent recently approved in combination with FOLFIRI for the treatment of metastatic colorectal cancer (mCRC) patients previously treated with oxaliplatin. Despite heterogeneity in response to aflibercept, no biomarkers for efficacy or adverse effects have been identified. Here we present biomarker data from the randomised phase II AFFIRM trial assessing aflibercept in combination with mFOLFOX6 first line in mCRC.
METHODS: Ninety-six somatic mutations in key oncogenic drivers of mCRC and 133 common single-nucleotide polymorphisms (SNPs) in vascular endothelial growth factor (VEGF) pathway genes were analysed, and 27 plasma markers measured at baseline, during and after treatment. We assessed correlations of these three classes of biomarkers with progression-free survival (PFS) and adverse events (AEs).
RESULTS: Somatic mutations identified in KRAS, BRAF, NRAS, PIK3CA and PIK3R1 did not significantly correlate with PFS (multiple testing-adjusted false discovery rate (FDR) or multiple testing-adjusted FDR>0.3). None of the individual SNPs correlated with PFS (multiple testing-adjusted FDR>0.22), but at the gene level variability in VEGFB significantly correlated with PFS (multiple testing-adjusted FDR=0.0423). Although none of the plasma markers measured at baseline significantly correlated with PFS, high levels of circulating IL8 at baseline together with increased levels of IL8 during treatment were significantly associated with reduced PFS (multiple testing-adjusted FDR=0.0478). No association was found between biomarkers and AEs.
CONCLUSIONS: This represents the first biomarker study in mCRC treated with aflibercept. High IL8 plasma levels at baseline and subsequent increases in IL8 were associated with worse PFS, suggesting that IL8 may act as a potentially predictive biomarker of aflibercept treatment outcome.

Cai J, Zhao J, Zhang N, et al.
MicroRNA-542-3p Suppresses Tumor Cell Invasion via Targeting AKT Pathway in Human Astrocytoma.
J Biol Chem. 2015; 290(41):24678-88 [PubMed] Free Access to Full Article Related Publications
The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma.

Ming H, Lan Y, He F, et al.
Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis.
Chin J Cancer. 2015; 34(10):459-67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cytochrome b5 reductase 2 (CYB5R2) is a potential tumor suppressor that inhibits cell proliferation and motility in nasopharyngeal carcinoma (NPC). Inactivation of CYB5R2 is associated with lymph node metastasis in NPC. This study aimed to explore the mechanisms contributing to the anti-neoplastic effects of CYB5R2.
METHODS: Polymerase chain reaction (PCR) assays were used to analyze the transcription of 84 genes known to be involved in representative cancer pathways in the NPC cell line HONE1. NPC cell lines CNE2 and HONE1 were transiently transfected with CYB5R2, and data was validated by real-time PCR. A chick chorioallantoic membrane (CAM) embryo model was implanted with CYB5R2-expressing CNE2 and HONE1 cells to evaluate the effect of CYB5R2 on angiogenesis. An immunohistochemical assay of the CAM model was used to analyze the protein expression of vascular endothelial growth factor (VEGF).
RESULTS: In CYB5R2-transfected NPC cells, PCR assays revealed up-regulated mRNA levels of Fas cell surface death receptor (FAS), FBJ murine osteosarcoma viral oncogene homolog (FOS), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), integrin beta 3 (ITGB3), metastasis suppressor 1 (MTSS1), interferon beta 1 (IFNB1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and down-regulated levels of integrin beta 5 (ITGB5), insulin-like growth factor 1 (IGF1), TEK tyrosine kinase (TEK), transforming growth factor beta receptor 1 (TGFBR1), and VEGF. The angiogenesis in the CAM model implanted with CYB5R2-transfected NPC cells was inhibited. Down-regulation of VEGF by CYB5R2 in NPC cells was confirmed by immunohistochemical staining in the CAM model.
CONCLUSION: CYB5R2 up-regulates the expression of genes that negatively modulate angiogenesis in NPC cells and down-regulates the expression of VEGF to reduce angiogenesis, thereby suppressing tumor formation.

Oliveira LH, Schiavinato JL, Fráguas MS, et al.
Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia.
Cancer Sci. 2015; 106(10):1264-77 [PubMed] Free Access to Full Article Related Publications
Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease.

Kato S, Elkin SK, Schwaederle M, et al.
Genomic landscape of salivary gland tumors.
Oncotarget. 2015; 6(28):25631-45 [PubMed] Free Access to Full Article Related Publications
Effective treatment options for advanced salivary gland tumors are lacking. To better understand these tumors, we report their genomic landscape. We studied the molecular aberrations in 117 patients with salivary gland tumors that were, on physician request, tested in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation Medicine, Cambridge, MA) using next-generation sequencing (182 or 236 genes), and analyzed by N-of-One, Inc. (Lexington, MA). There were 354 total aberrations, with 240 distinct aberrations identified in this patient population. Only 10 individuals (8.5%) had a molecular portfolio that was identical to any other patient (with four different portfolios amongst the ten patients). The most common abnormalities involved the TP53 gene (36/117 [30.8% of patients]), cyclin pathway (CCND1, CDK4/6 or CDKN2A/B) (31/117 [26.5%]) and PI3K pathway (PIK3CA, PIK3R1, PTEN or AKT1/3) (28/117 [23.9%]). In multivariate analysis, statistically significant co-existing aberrations were observed as follows: TP53 and ERBB2 (p = 0.01), cyclin pathway and MDM2 (p = 0.03), and PI3K pathway and HRAS (p = 0.0001). We were able to identify possible cognate targeted therapies in most of the patients (107/117 [91.5%]), including FDA-approved drugs in 80/117 [68.4%]. In conclusion, salivary gland tumors were characterized by multiple distinct aberrations that mostly differed from patient to patient. Significant associations between aberrations in TP53 and ERBB2, the cyclin pathway and MDM2, and HRAS and the PI3K pathway were identified. Most patients had actionable alterations. These results provide a framework for tailored combinations of matched therapies.

Chen QY, Jiao DM, Zhu Y, et al.
Identification of carcinogenic potential-associated molecular mechanisms in CD133(+) A549 cells based on microRNA profiles.
Tumour Biol. 2016; 37(1):521-30 [PubMed] Related Publications
This study aimed to identify carcinogenic potential-related molecular mechanisms in cancer stem cells (CSCs) in lung cancer. CD133(+) and CD133(-) subpopulations were sorted from A549 cells using magnetic-activated cell sorting. The abilities to form sphere and clone, proliferate, migrate, and invade were compared between CD133(+) and CD133(-) cells, as well as drug sensitivity. Thereafter, microRNA (miRNA) profiles were performed to identify differentially expressed miRNAs between CD133(+) and CD133(-) subpopulation. Following, bioinformatic methods were used to predict target genes for differentially expressed miRNAs and perform enrichment analysis. Furthermore, the mammalian target of rapamycin (mTOR) signaling pathways and CSC property-associated signaling pathways were explored and visualized in regulatory network among competitive endogenous RNA (ceRNA), miRNA, and target gene. CD133(+) subpopulation showed greater oncogenic potential than CD133(-) subpopulation. In all, 14 differentially expressed miRNAs were obtained and enriched in 119 pathways, including five upregulated (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, and -4734) and nine downregulated (hsa-miR-1246, -30b-5p, -5096, -6510-5p, has-miR-7110-5p, -7641, -3197, -7108-5p, and -6791-5p). For mTOR signaling pathway, eight differential miRNAs (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, -4734, -1246, -7641, and -3197) and 39 target genes (e.g., AKT1, AKT2, PIK3CB, PIK3CG, PIK3R1, PIK3CA, and PIK3CD) were involved, as well as some ceRNAs. Besides, for CSC property-related signaling pathways, six miRNAs (hsa-miR-1246, -15b-5p, -30b-5p, -3197, -4734, and -7110-5p) were dramatically enriched in Hedgehog, Notch, and Wnt signaling pathways via regulating 108 target genes (e.g., DVL1, DVL3, WNT3A, and WNT5A). The mTOR and CSC property-associated signaling pathways may be important oncogenic molecular mechanisms in CD133(+) A549 cells.

Saunus JM, Quinn MC, Patch AM, et al.
Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.
J Pathol. 2015; 237(3):363-78 [PubMed] Related Publications
Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.

Echeverria I, Liu Y, Gabelli SB, Amzel LM
Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α.
FEBS J. 2015; 282(18):3528-42 [PubMed] Free Access to Full Article Related Publications
Phosphatidylinositol 3-kinase (PI3K) α is a heterodimeric lipid kinase that catalyzes the conversion of phosphoinositol-4,5-bisphosphate to phosphoinositol-3,4,5-trisphosphate. The PI3Kα signaling pathway plays an important role in cell growth, proliferation, and survival. This pathway is activated in numerous cancers, where the PI3KCA gene, which encodes for the p110α PI3Kα subunit, is mutated. Its mutation often results in gain of enzymatic activity; however, the mechanism of activation by oncogenic mutations remains unknown. Here, using computational methods, we show that oncogenic mutations that are far from the catalytic site and increase the enzymatic affinity destabilize the p110α-p85α dimer. By affecting the dynamics of the protein, these mutations favor the conformations that reduce the autoinhibitory effect of the p85α nSH2 domain. For example, we determined that, in all of the mutants, the nSH2 domain shows increased positional heterogeneity as compared with the wild-type, as demonstrated by changes in the fluctuation profiles computed by normal mode analysis of coarse-grained elastic network models. Analysis of the interdomain interactions of the wild-type and mutants at the p110α-p85α interface obtained with molecular dynamics simulations suggest that all of the tumor-associated mutations effectively weaken the interactions between p110α and p85α by disrupting key stabilizing interactions. These findings have important implications for understanding how oncogenic mutations change the conformational multiplicity of PI3Kα and lead to increased enzymatic activity. This mechanism may apply to other enzymes and/or macromolecular complexes that play a key role in cell signaling.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PIK3R1, Cancer Genetics Web: http://www.cancer-genetics.org/PIK3R1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999