Gene Summary

Gene:PLK1; polo like kinase 1
Aliases: PLK, STPK13
Summary:The Ser/Thr protein kinase encoded by this gene belongs to the CDC5/Polo subfamily. It is highly expressed during mitosis and elevated levels are found in many different types of cancer. Depletion of this protein in cancer cells dramatically inhibited cell proliferation and induced apoptosis; hence, it is a target for cancer therapy. [provided by RefSeq, Sep 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine/threonine-protein kinase PLK1
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (53)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Centrosome
  • Tumor Suppressor Proteins
  • Promoter Regions
  • Cell Cycle Proteins
  • Down-Regulation
  • RNA Interference
  • Cancer Gene Expression Regulation
  • Chromosome 16
  • Brain Tumours
  • Mutation
  • Cell Survival
  • Hepatocellular Carcinoma
  • Protein Kinases
  • Staging
  • Protein Kinase Inhibitors
  • Neoplasm Metastasis
  • siRNA
  • Biomarkers, Tumor
  • Neoplastic Cell Transformation
  • Protein-Serine-Threonine Kinases
  • Cell Proliferation
  • Lung Cancer
  • Gene Silencing
  • HeLa Cells
  • Breast Cancer
  • Cell Cycle Checkpoints
  • Apoptosis
  • Phosphorylation
  • Mitosis
  • Mice, Inbred BALB C
  • Immunohistochemistry
  • Osteosarcoma
  • Antineoplastic Agents
  • Western Blotting
  • Glioblastoma
  • Oligonucleotide Array Sequence Analysis
  • Gene Expression Profiling
  • Drug Resistance
  • Cell Cycle
  • Gene Knockdown Techniques
  • Liver Cancer
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PLK1 (cancer-related)

Cheng L, Ke Y, Yu S, Jing J
Co-delivery of doxorubicin and recombinant plasmid pHSP70-Plk1-shRNA by bacterial magnetosomes for osteosarcoma therapy.
Int J Nanomedicine. 2016; 11:5277-5286 [PubMed] Free Access to Full Article Related Publications
To explore a novel combination of chemotherapy, gene therapy, and thermotherapy for osteosarcoma, a targeted heat-sensitive co-delivery system based on bacterial magnetosomes (BMs) was developed. The optimal culture conditions of magnetotactic bacteria (MTB) AMB-1 and characterization of BMs were achieved. A recombinant eukaryotic plasmid heat shock protein 70-polo-like kinase 1-short hairpin RNA (pHSP70-Plk1-shRNA) under transcriptional control of a thermosensitive promoter (human HSP70 promoter) was constructed for gene therapy. Doxorubicin (DOX) and pHSP70-Plk1-shRNA were included in the targeted thermosensitive co-delivery system, and in vitro DOX release activity, targeted gene silencing efficiency and in vitro antitumor efficacy were investigated. The results showed that the optimal culture conditions of MTB AMB-1 are an oxygen concentration of 4.0%, a pH value of 7.0, 20 μmol/L of ferrous sulfate, 800 mg/L of sodium nitrate, and 200 mg/L of succinic acid. The temperature of BMs reached 43°C within 3 minutes and could be maintained for 30 minutes by adjusting the magnitude of the alternating magnetic field (AMF). The diameters of BMs, BM-DOX, BM-recombinant eukaryotic plasmid pHSP70-Plk1-shRNA (shPlk1), and BM-DOX-shPlk1 were 43.7±4.6, 79.2±5.4, 88.9±7.8, and 133.5±11.4 nm, respectively. The zeta potentials of BMs, BM-DOX, BM-shPlk1, and BM-DOX-shPlk1 were -29.4±6.9, -9.5±5.6, -16.7±4.8, and -10.3±3.1 mV, respectively. Besides, the system exhibited good release behavior. DOX release rate from BM-DOX-shPlk1 was 54% after incubation with phosphate-buffered saline at 43°C and 37% after incubation with 50% fetal bovine serum, which was significantly higher than that at 37°C (P<0.05). In addition, the expressions of Plk1 mRNA and protein were significantly suppressed in cells treated with BM-DOX-shPlk1 following hyperthermia treatment under the influence of an AMF compared to other groups (P<0.05). Furthermore, evaluation of the effect of in vitro antitumor revealed that BM-DOX-shPlk1 following hyperthermia treatment under the influence of an AMF was significantly more effective than others in tumor inhibition. In conclusion, the new heat-sensitive co-delivery system represents a promising approach for the treatment of cancer.

Arora H, Qureshi R, Rizvi MA, et al.
Study of apoptosis-related interactions in colorectal cancer.
Tumour Biol. 2016; 37(11):14415-14425 [PubMed] Related Publications
Abnormalities in apoptotic functions contribute to the pathogenesis of colorectal cancer. In this study, molecular interactions behind the apoptotic regulation have been explored. For this purpose, enrichment analysis was performed considering microRNAs (miRNAs) that putatively target TP53 and altered during colon cancer. This revealed gene associated with both TP53 and miRNAs. Further analysis showed that a significant molecular interaction between the shortlisted candidates (TP53, miR-143, KRAS, BCL2, and PLK1) exists. Mutation study was conducted to confirm the clinical relevance of candidates. It showed that the mutation extent does not significantly alter survival in patients thus making these candidates suitable as drug targets. Overall, we showed the importance of interactions between TP53, miR-143, KRAS, BCL2, and PLK1 with respect to colorectal cancer using bioinformatics approach.

Pietilä M, Vijay GV, Soundararajan R, et al.
FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition.
Sci Rep. 2016; 6:23070 [PubMed] Free Access to Full Article Related Publications
Cancer cells with stem cell properties (CSCs) underpin the chemotherapy resistance and high therapeutic failure of triple-negative breast cancers (TNBCs). Even though CSCs are known to proliferate more slowly, they are sensitive to inhibitors of G2/M kinases such as polo-like kinase 1 (PLK1). Understanding the cell cycle regulatory mechanisms of CSCs will help target these cells more efficiently. Herein, we identify a novel role for the transcription factor FOXC2, which is mostly expressed in CSCs, in the regulation of cell cycle of CSC-enriched breast cancer cells. We demonstrate that FOXC2 expression is regulated in a cell cycle-dependent manner, with FOXC2 protein levels accumulating in G2, and rapidly decreasing during mitosis. Knockdown of FOXC2 in CSC-enriched TNBC cells delays mitotic entry without significantly affecting the overall proliferation rate of these cells. Moreover, PLK1 activity is important for FOXC2 protein stability, since PLK1 inhibition reduces FOXC2 protein levels. Indeed, FOXC2 expressing CSC-enriched TNBC cells are sensitive to PLK1 inhibition. Collectively, our findings demonstrate a novel role for FOXC2 as a regulator of the G2/M transition and elucidate the reason for the observed sensitivity of CSC-enriched breast cancer cells to PLK1 inhibitor.

Ji M, Li P, Sheng N, et al.
Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy.
ACS Appl Mater Interfaces. 2016; 8(15):9565-76 [PubMed] Related Publications
Small interference RNA (siRNA)-based therapy holds great potential for cancer treatment. However, its clinical application remains unsatisfied due to the lack of a safe and effective RNA delivery system. Aberrantly elevated sialyation on cell membrane has been reported as an attractive target for cancer diagnosis and therapy. In this study, phenylboronic acid (PBA) was conjugated onto low molecular weight polyethylenimine (PEI1.8k) to generate amphiphilic PBA-grafted PEI1.8k (PEI-PBA) nanovector, which was designed to facilitate cancer-targeted RNA delivery through the recognition of sialic structures on a cancer cell membrane. PEI-PBA simultaneously encapsulated siRNA to form PEI-PBA/siRNA nanocomplexes with great biocompatibility, serum stability and RNase resistance. The cell culture study showed that PEI-PBA/siRNA dramatically increased siRNA uptake up to 70-90% in several cancer cell lines, which relied on the interaction between PBA and sialic acid on cell membrane. Moreover, the PEI-PBA nanovector effectively promoted the lysosome escape of siRNA, decreasing the expression of target gene Polo-like kinase 1 (PLK-1) in cancer cells. The systemic administration of PEI-PBA/PLK-1 siRNA (PEI-PBA/siPLK1) nanocomplexes not only facilitated tumor-targeted siRNA delivery but also significantly decreased PLK-1 expression in tumors, thereby robustly inducing tumor apoptosis and cell cycle arrest. Additionally, the administration of PEI-PBA/siPLK1 did not cause significant systemic toxicity or immunotoxicity. Hence, sialic acid-targeted PEI-PBA could be a highly efficient and safe nanovector to improve the efficacy of cancer siRNA therapy.

Chen L, Ahmad N, Liu X
Combining p53 stabilizers with metformin induces synergistic apoptosis through regulation of energy metabolism in castration-resistant prostate cancer.
Cell Cycle. 2016; 15(6):840-9 [PubMed] Free Access to Full Article Related Publications
Since altered energy metabolism is a hallmark of cancer, many drugs targeting metabolic pathways are in active clinical trials. The tumor suppressor p53 is often inactivated in cancer, either through downregulation of protein or loss-of-function mutations. As such, stabilization of p53 is considered as one promising approach to treat those cancers carrying wild type (WT) p53. Herein, SIRT1 inhibitor Tenovin-1 and polo-like kinase 1 (Plk1) inhibitor BI2536 were used to stabilize p53. We found that both Tennovin-1 and BI2536 increased the anti-neoplastic activity of metformin, an inhibitor of oxidative phosphorylation, in a p53 dependent manner. Since p53 has also been shown to regulate metabolic pathways, we further analyzed glycolysis and oxidative phosphorylation upon drug treatments. We showed that both Tennovin-1 and BI2536 rescued metformin-induced glycolysis and that both Tennovin-1 and BI2536 potentiated metformin-associated inhibition of oxidative phosphorylation. Of significance, castration-resistant prostate cancer (CRPC) C4-2 cells show a much more robust response to the combination treatment than the parental androgen-dependent prostate cancer LNCaP cells, indicating that targeting energy metabolism with metformin plus p53 stabilizers might be a valid approach to treat CRPC carrying WT p53.

Kumar S, Sharma AR, Sharma G, et al.
PLK-1: Angel or devil for cell cycle progression.
Biochim Biophys Acta. 2016; 1865(2):190-203 [PubMed] Related Publications
PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target.

Chen NC, Chyau CC, Lee YJ, et al.
Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells.
Sci Rep. 2016; 6:20417 [PubMed] Free Access to Full Article Related Publications
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1 between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1 immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies.

Svenson S, Case RI, Cole RO, et al.
Tumor Selective Silencing Using an RNAi-Conjugated Polymeric Nanopharmaceutical.
Mol Pharm. 2016; 13(3):737-47 [PubMed] Related Publications
Small interfering RNA (siRNA) therapeutics have potential advantages over traditional small molecule drugs such as high specificity and the ability to inhibit otherwise "undruggable" targets. However, siRNAs have short plasma half-lives in vivo, can induce a cytokine response, and show poor cellular uptake. Formulating siRNA into nanoparticles offers two advantages: enhanced siRNA stability against nuclease degradation beyond what chemical modification alone can provide; and improved site-specific delivery that takes advantage of the enhanced permeability and retention (EPR) effect. Existing delivery systems generally suffer from poor delivery to tumors. Here we describe the formation and biological activity of polymeric nanopharmaceuticals (PNPs) based on biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) conjugated to siRNA via an intracellular cleavable disulfide linker (PLGA-siRNA). Additionally, these PNPs contain (1) PLGA conjugated to polyethylene glycol (PEG) for enhanced pharmacokinetics of the nanocarrier; (2) a cation for complexation of siRNA and charge compensation to avoid high negative zeta potential; and (3) neutral poly(vinyl alcohol) (PVA) to stabilize the PNPs and support the PEG shell to prevent particle aggregation and protein adsorption. The biological data demonstrate that these PNPs achieve prolonged circulation, tumor accumulation that is uniform throughout the tumor, and prolonged tumor-specific knockdown. PNPs employed in this study had no effect on body weight, blood cell count, serum chemistry, or cytokine response at doses >10 times the effective dose. PNPs, therefore, constitute a promising solution for achieving durable siRNA delivery and gene silencing in tumors.

Huang YH, Tseng YH, Lin WR, et al.
HBV polymerase overexpression due to large core gene deletion enhances hepatoma cell growth by binding inhibition of microRNA-100.
Oncotarget. 2016; 7(8):9448-61 [PubMed] Free Access to Full Article Related Publications
Different types of hepatitis B virus (HBV) core gene deletion mutants were identified in chronic hepatitis B patients. However, their clinical roles in different stages of natural chronic HBV infection remained unclear. To address this issue, HBV core genes were sequenced in three gender- and age-matched patient groups diagnosed as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), respectively. Functional analysis of the identified mutants was performed. A novel type of large-fragment core gene deletion (LFCD) was identified exclusively in HCC patients and significantly associated with unfavorable postoperative survival. The presence of LFCDs resulted in generation of precore-polymerase fusion protein or brought the polymerase reading frame under direct control of HBV precore/core promoter, leading to its over-expression. Enhanced cell proliferation and increased tumorigenicity in nude mice were found in hepatoma cells expressing LFCDs. Because of the epsilon-binding ability of HBV polymerase, we hypothesized that the over-expressed polymerase carrying aberrant amino-terminal sequence could bind to cellular microRNAs. Screening of a panel of microRNAs revealed physical association of a precore-polymerase fusion protein with microRNA-100. A binding inhibition effect on microRNA-100 by the precore-polymerase fusion protein with up-regulation of its target, polo-like kinase 1 (PLK1), was discovered. The binding inhibition and growth promoting effects could be reversed by overexpressing microRNA-100. Together, HCC patients carrying hepatitis B large-fragment core gene deletion mutants had an unfavorable postoperative prognosis. The growth promoting effect was partly due to polymerase overexpression, leading to binding inhibition of microRNA-100 and up-regulation of PLK1.

Srihari S, Kalimutho M, Lal S, et al.
Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach.
Mol Biosyst. 2016; 12(3):963-72 [PubMed] Related Publications
UNLABELLED: Copy number alterations (CNAs) are thought to account for 85% of the variation in gene expression observed among breast tumours. The expression of cis-associated genes is impacted by CNAs occurring at proximal loci of these genes, whereas the expression of trans-associated genes is impacted by CNAs occurring at distal loci. While a majority of these CNA-driven genes responsible for breast tumourigenesis are cis-associated, trans-associated genes are thought to further abet the development of cancer and influence disease outcomes in patients. Here we present a network-based approach that integrates copy-number and expression profiles to identify putative cis- and trans-associated genes in breast cancer pathogenesis. We validate these cis- and trans-associated genes by employing them to subtype a large cohort of breast tumours obtained from the METABRIC consortium, and demonstrate that these genes accurately reconstruct the ten subtypes of breast cancer. We observe that individual breast cancer subtypes are driven by distinct sets of cis- and trans-associated genes. Among the cis-associated genes, we recover several known drivers of breast cancer (e.g. CCND1, ERRB2, MDM2 and ZNF703) and some novel putative drivers (e.g. BRF2 and SF3B3). siRNA-mediated knockdown of BRF2 across a panel of breast cancer cell lines showed significant reduction in cell viability for ER-/HER2+ (MDA-MB-453) cells, but not in normal (MCF10A) cells thereby indicating that BRF2 could be a viable therapeutic target for estrogen receptor-negative/HER2-enriched (ER-/HER2+) cancers. Among the trans-associated genes, we identify modules of immune response (CD2, CD19, CD38 and CD79B), mitotic/cell-cycle kinases (e.g. AURKB, MELK, PLK1 and TTK), and DNA-damage response genes (e.g. RFC4 and FEN1). siRNA-mediated knockdown of RFC4 significantly reduced cell proliferation in ER-negative normal breast and cancer lines, thereby indicating that RFC4 is essential for both normal and cancer cell survival but could be a useful biomarker for aggressive (ER-negative) breast tumours.
AVAILABILITY: under NetStrat.

Fitzgerald KA, Malhotra M, Gooding M, et al.
A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor.
Int J Pharm. 2016; 499(1-2):131-45 [PubMed] Related Publications
Prostate cancer is a leading cause of cancer-related death in men and RNA interference (RNAi) has emerged as a potential therapeutic option. However, the absence of a safe and specific delivery vector remains a major obstacle to the clinical application of RNAi. Cyclodextrin derivatives are known to be efficient delivery systems with low toxicity in a variety of cell types. In this study, a cationic cyclodextrin derivative was synthesized to complex siRNA. The nanoparticle was then further modified by exploiting the ability of the β-cyclodextrin cavity to form an inclusion complex with the hydrophobic molecule adamantane. PEGylated adamantane derivatives were synthesized with and without the anisamide-targeting ligand on the terminal end of the PEG chain. Anisamide is known to bind specifically to the sigma receptor which is overexpressed on the surface of prostate cancer cells. The resulting nanocomplexes were slightly cationic and less than 300 nm in size. They successfully protected siRNA from serum-induced nuclease degradation and were non-toxic to prostate cancer cells. In addition, the targeted nanoparticles mediated high levels of siRNA cellular uptake and corresponding PLK1 gene knockdown in prostate cancer cells in vitro. To our knowledge, this is the first time that the ability of cyclodextrins to form inclusion complexes with adamantane derivatives has been exploited for the targeted delivery of siRNA to prostate cancer cells via the sigma receptor.

Shi L, Yu B, Cai CH, et al.
Combined prokaryotic-eukaryotic delivery and expression of therapeutic factors through a primed autocatalytic positive-feedback loop.
J Control Release. 2016; 222:130-40 [PubMed] Related Publications
Progress in bacterial therapy for cancer and infectious diseases is hampered by the absence of safe and efficient vectors. Sustained delivery and high gene expression levels are critical for the therapeutic efficacy. Here we developed a Salmonella typhimrium strain to maintain and safely deliver a plasmid vector to target tissues. This vector is designed to allow dual transcription of therapeutic factors, such as cytotoxic proteins, short hairpin RNAs or combinations, in the nucleus or cytoplasm of eukaryotic cells, with this expression sustained by an autocatalytic positive-feedback loop. Mechanisms to prime the system and maintain the plasmid in the bacterium are also provided. Synergistic effects of attenuated Salmonella and our inter-kingdom system allow the precise expression of Diphtheria toxin A chain (DTA) gene in tumor microenvironment and eradicate large established tumors in immunocompetent animals. In the experiments reported here, 26% of mice (n=5/19) with aggressive tumors were cured and the others all survived until the end of the experiment. We also demonstrated that ST4 packaged with shRNA-encoding plasmids has sustained knockdown effects in nude mice bearing human MDA-MB-231 xenografts. Three weeks after injection of 5×10(6) ST4/pIKT-shPlk, PLK1 transcript levels in tumors were 62.5±18.6% lower than the vector control group (P=0.015). The presence of PLK1 5' RACE-PCR cleavage products confirmed a sustained RNAi-mediated mechanism of action. This innovative technology provides an effective and versatile vehicle for efficient inter-kingdom gene delivery that can be applied to cancer therapy and other purposes.

Ferrarotto R, Goonatilake R, Young Yoo S, et al.
Epithelial-Mesenchymal Transition Predicts Polo-Like Kinase 1 Inhibitor-Mediated Apoptosis in Non-Small Cell Lung Cancer.
Clin Cancer Res. 2016; 22(7):1674-86 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
PURPOSE: To identify new therapeutic targets for non-small cell lung cancer (NSCLC), we systematically searched two cancer cell line databases for sensitivity data on a broad range of drugs. We identified polo-like kinase 1 (PLK1) as the most promising target for further investigation based on a subset of sensitive NSCLC cell lines and inhibitors that were in advanced clinical development.
EXPERIMENTAL DESIGN: To identify potential biomarkers of response of NSCLC to PLK1 inhibition and mechanisms of PLK1 inhibitor-induced apoptosis, integrated analysis of gene and protein expression, gene mutations, and drug sensitivity was performed using three PLK1 inhibitors (volasertib, BI2536, and GSK461364) with a large panel of NSCLC cell lines.
RESULTS: The NSCLC cell lines had different sensitivities to PLK1 inhibition, with a minority demonstrating sensitivity to all three inhibitors. PLK1 inhibition led to G2-M arrest, but only treatment-sensitive cell lines underwent substantial apoptosis following PLK1 inhibition. NSCLC lines with high epithelial-mesenchymal transition (EMT) gene signature scores (mesenchymal cell lines) were more sensitive to PLK1 inhibition than epithelial lines (P< 0.02). Likewise, proteomic profiling demonstrated that E-cadherin expression was higher in the resistant cell lines than in the sensitive ones (P< 0.01). Induction of an epithelial phenotype by expression of the miRNA miR-200 increased cellular resistance to PLK1 inhibition. Also, KRAS mutation and alterations in the tight-junction, ErbB, and Rho signaling pathways correlated with drug response of NSCLC.
CONCLUSIONS: In this first reported large-scale integrated analysis of PLK1 inhibitor sensitivity, we demonstrated that EMT leads to PLK1 inhibition sensitivity of NSCLC cells. Our findings have important clinical implications for mesenchymal NSCLC, a significant subtype of the disease that is associated with resistance to currently approved targeted therapies.

Fischer M, Quaas M, Nickel A, Engeland K
Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex.
Oncotarget. 2015; 6(39):41402-17 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1). Chromatin immunoprecipitation (ChIP) data indicate that promoter binding of B-MYB switches to binding of E2F4 and p130 resulting in a replacement of the MMB (Myb-MuvB) by the DREAM complex. We demonstrate that this replacement depends on p21. Furthermore, transcriptional repression by p53 requires intact DREAM binding sites in the target promoters. The CDE and CHR cell cycle promoter elements are the sites for DREAM binding. These elements as well as the p53 response of Survivin, CDC25C, and PLK1 are evolutionarily conserved. No binding of p53 to these genes is detected by ChIP and mutation of proposed p53 binding sites does not alter the p53 response. Thus, a mechanism for direct p53-dependent transcriptional repression is not supported by the data. In contrast, repression by DREAM is consistent with most previous findings and unifies models based on p21-, E2F4-, p130-, and CDE/CHR-dependent repression by p53. In conclusion, the presented data suggest that the p53-p21-DREAM-CDE/CHR pathway regulates p53-dependent repression of Survivin, CDC25C, and PLK1.

Dibb M, Han N, Choudhury J, et al.
FOXM1 and polo-like kinase 1 are co-ordinately overexpressed in patients with gastric adenocarcinomas.
BMC Res Notes. 2015; 8:676 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Gastric cancers present late in life with advanced disease and carry a poor prognosis. Polo-like Kinase 1 (PLK1) is a mitotic kinase with regulatory functions during G2/M and mitosis in the cell cycle. In mammalian cells, there is an intricate co-regulatory relationship between PLK1 and the forkhead transcription factor FOXM1. It has been demonstrated that individually either PLK1 or FOXM1 expression predicts poorer survival. However, the co-expression of both of these markers in gastric adenocarcinomas has not been reported previously.
METHODS: We aimed to assess the expression of PLK1 and FOXM1 in Gastric adenocarcinomas in a Western Population, to examine whether there is a relationship of PLK1 to FOXM1 in cancer samples. We assess both the protein and mRNA expression in this patient population by Tissue Microarray immunohistochemistry and RT-PCR.
RESULTS: Immunohistochemistry was performed on biopsy samples from 79 patients with gastric cancer. Paired normal controls were available in 47 patients. FOXM1 expression was significantly associated with gastric adenocarcinoma (p = 0.001). PLK1 and FOXM1 co-expression was demonstrated in 6/8 (75 %) tumours when analysed by RT-PCR. FOXM1 is overexpressed in a large proportion of gastric carcinomas at the protein level and FOXM1 and PLK1 are concomitantly overexpressed at the mRNA level in this cancer type.
CONCLUSIONS: This study has demonstrated that FOXM1 and its target gene PLK1 are coordinately overexpressed in a proportion of gastric adenocarcinomas. This suggests that chemotherapeutic treatments that target this pathway may be of clinical utility.

Xu C, Li S, Chen T, et al.
miR-296-5p suppresses cell viability by directly targeting PLK1 in non-small cell lung cancer.
Oncol Rep. 2016; 35(1):497-503 [PubMed] Related Publications
Polo-like kinase 1 (PLK1), a critical kinase for mitotic progression, is overexpressed in a wide range of cancers. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules and proposed to play important roles in the regulation of tumor progression and invasion. However, the relationship between PLK1 and miRNAs have remained unclear. In the present study, the association between PLK1 and miR-296-5p was investigated. The upregulation of PLK1 mRNA expression levels combined with the downregulation of miR-296-5p levels were detected in both non-small cell lung cancer (NSCLC) tissues and cell lines. Functional studies showed that knockdown of PLK1 by siRNA inhibited NSCLC cells proliferation. Impressively, overexpression of miR-296-5p showed the same phenocopy as the effect of PLK1 knockdown in NSCLC cells, indicating that PLK1 was a major target of miR-296-5p. Furthermore, using western blot analysis and luciferase reporter assay, PLK1 protein expression was proved to be regulated by miR-296-5p through binding to the putative binding sites in its 3'-untranslated region (3'-UTR). Taken together, the present study indicated that miR-296-5p regulated PLK1 expression and could function as a tumor suppressor in NSCLC progression, which provides a potential target for gene therapy of NSCLC.

Bhullar KS, Jha A, Rupasinghe HP
Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells.
Chem Biol Interact. 2015; 242:107-22 [PubMed] Related Publications
Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations.

Lee SB, Kim JJ, Nam HJ, et al.
Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.
Mol Cell. 2015; 60(1):21-34 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.

Rodríguez A, Torres L, Juárez U, et al.
Fanconi anemia cells with unrepaired DNA damage activate components of the checkpoint recovery process.
Theor Biol Med Model. 2015; 12:19 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage.
METHODS: We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot.
RESULTS: Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA.
CONCLUSIONS: Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.

Duan L, Rai G, Roggero C, et al.
KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes.
Chem Biol. 2015; 22(9):1185-96 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Histone lysine demethylase KDM4/JMJD2s are overexpressed in many human tumors including prostate cancer (PCa). KDM4s are co-activators of androgen receptor (AR) and are thus potential therapeutic targets. Yet to date few KDM4 inhibitors that have anti-prostate tumor activity in vivo have been developed. Here, we report the anti-tumor growth effect and molecular mechanisms of three novel KDM4 inhibitors (A1, I9, and B3). These inhibitors repressed the transcription of both AR and BMYB-regulated genes. Compound B3 is highly selective for a variety of cancer cell lines including PC3 cells that lack AR. B3 inhibited the in vivo growth of tumors derived from PC3 cells and ex vivo human PCa explants. We identified a novel mechanism by which KDM4B activates the transcription of Polo-like kinase 1 (PLK1). B3 blocked the binding of KDM4B to the PLK1 promoter. Our studies suggest a potential mechanism-based therapeutic strategy for PCa and tumors with elevated KDM4B/PLK1 expression.

Lv H, Gao G, Zhang L, Sun Y
Polo‑like kinase 3 inhibits osteosarcoma cell proliferation and tumorigenesis via cooperative interaction with p21.
Mol Med Rep. 2015; 12(5):6789-96 [PubMed] Related Publications
Polo‑like kinase 3 (Plk3) is a member of the Plk family. It is dysregulated in certain types of cancer, including colorectal and pancreatic cancer. However, the expression status and biological function of Plk3 in osteosarcoma (OS) remain poorly understood. Following evaluation of the role of Plk3 in OS, the present study indicates that Plk3 is downregulated in OS cell lines and tissues, and increased expression levels of Plk3 are associated with improved rates of overall survival of patients. In addition, to investigate the role of Plk3 in cell proliferation and tumorigenicity in vitro, two recombinant lentiviruses expressing Plk3 short hairpin RNA, as well as a recombinant plasmid carrying Plk3, were developed and transfected into Saos‑2 and U2OS cells, respectively. Cell cycle analysis by flow cytometry demonstrated the influence of Plk3 on the arrest of cell cycle progression at the G1 phase. Following knock down of Plk3, the growth and colony formation of Saos‑2 cells increased significantly, whereas the overexpression of Plk3 resulted in the opposite trend. Furthermore, a 5‑ethynyl‑2'‑deoxyuridine assay, using U2OS cell lines, indicated the same tendency. The in vivo interaction between Plk3 and p21 in Saos‑2 cells was detected and the protein level of p21 was observed to be consistent with that of Plk3. These results imply that Plk3 is involved in the inhibition of cell proliferation and tumorigenesis, which may occur via interactions with p21, thus, Plk3 may be considered as a potential candidate for targeted therapy of OS.

Palmisiano ND, Kasner MT
Polo-like kinase and its inhibitors: Ready for the match to start?
Am J Hematol. 2015; 90(11):1071-6 [PubMed] Related Publications
Polo-like kinases (Plks) plays a central role in the normal cell cycle and their upregulation has been shown to play a role in the pathogenesis of multiple human cancers. Preclinical work demonstrates that targeting Plk has a significant impact on the treatment of both solid and hematologic malignancies in vitro and in vivo. We review here the basic science and clinical work to date with the Plks as well as future directions with this novel class of mitotic inhibitors.

Gilboa-Geffen A, Hamar P, Le MT, et al.
Gene Knockdown by EpCAM Aptamer-siRNA Chimeras Suppresses Epithelial Breast Cancers and Their Tumor-Initiating Cells.
Mol Cancer Ther. 2015; 14(10):2279-91 [PubMed] Related Publications
Effective therapeutic strategies for in vivo siRNA delivery to knockdown genes in cells outside the liver are needed to harness RNA interference for treating cancer. EpCAM is a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells (TIC, also known as cancer stem cells). Here, we show that aptamer-siRNA chimeras (AsiC, an EpCAM aptamer linked to an siRNA sense strand and annealed to the siRNA antisense strand) are selectively taken up and knock down gene expression in EpCAM(+) cancer cells in vitro and in human cancer biopsy tissues. PLK1 EpCAM-AsiCs inhibit colony and mammosphere formation (in vitro TIC assays) and tumor initiation by EpCAM(+) luminal and basal-A triple-negative breast cancer (TNBC) cell lines, but not EpCAM(-) mesenchymal basal-B TNBCs, in nude mice. Subcutaneously administered EpCAM-AsiCs concentrate in EpCAM(+) Her2(+) and TNBC tumors and suppress their growth. Thus, EpCAM-AsiCs provide an attractive approach for treating epithelial cancer.

Watanabe G, Ishida T, Furuta A, et al.
Combined Immunohistochemistry of PLK1, p21, and p53 for Predicting TP53 Status: An Independent Prognostic Factor of Breast Cancer.
Am J Surg Pathol. 2015; 39(8):1026-34 [PubMed] Related Publications
It is difficult to predict the TP53 status by p53 immunohistochemistry (IHC). We aimed to improve the accuracy of p53 IHC with p53-regulated proteins for predicting the TP53 mutation status. TP53 mutations were detected in 19 of 38 breast cancer patients (50%). Five of 7 cases of protein-truncating mutation of TP53 were completely negative for p53 IHC, whereas 11 of 12 cases of TP53 point mutation were strongly positive for p53 IHC. Therefore, to avoid false negatives, we extracted p53-dependent universally downregulated genes using microarray analysis from 38 breast cancer patients and 2 p53-inducible cell lines. From 9 commonly repressed genes, we evaluated 3 genes, baculoviral IAP repeat-containing 5 (BIRC5), polo-like kinase 1 (PLK1), and BUB1 mitotic checkpoint serine/threonine kinase (BUB1), which were previously identified as p53-dependent repressed genes. PLK1≥Allred total score (TS) 5 showed the highest correlation with TP53 mutation. To decrease false positivity, we evaluated p21 IHC. Although strong staining of p21 was observed in 4 cases (10.5%), all 4 were wild-type TP53. Thus, p53 mutation-like (p53mt-like) IHC was identified by p53 TS7,8 with PLK1≥TS 5 and p21 TS≤6. p53 mt-like IHC correlated with TP53 mutation (predictive value=0.94). In other 157 breast cancer cases, p53 mt-like was an independent prognostic marker in multivariate analysis and a strong prognostic factor. Stratification with p53 mt-like IHC identified patients with a poorer prognosis. In conclusion, we identified reliable IHC conditions to predict the TP53 status of breast cancer patients.

O'Neil BH, Scott AJ, Ma WW, et al.
A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer.
Ann Oncol. 2015; 26(9):1923-9 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Rigosertib (ON 01910.Na), a first-in-class Ras mimetic and small-molecule inhibitor of multiple signaling pathways including polo-like kinase 1 (PLK1) and phosphoinositide 3-kinase (PI3K), has shown efficacy in preclinical pancreatic cancer models. In this study, rigosertib was assessed in combination with gemcitabine in patients with treatment-naïve metastatic pancreatic adenocarcinoma.
MATERIALS AND METHODS: Patients with metastatic pancreatic adenocarcinoma were randomized in a 2:1 fashion to gemcitabine 1000 mg/m(2) weekly for 3 weeks of a 4-week cycle plus rigosertib 1800 mg/m(2) via 2-h continuous IV infusions given twice weekly for 3 weeks of a 4-week cycle (RIG + GEM) versus gemcitabine 1000 mg/m(2) weekly for 3 weeks in a 4-week cycle (GEM).
RESULTS: A total of 160 patients were enrolled globally and randomly assigned to RIG + GEM (106 patients) or GEM (54). The most common grade 3 or higher adverse events were neutropenia (8% in the RIG + GEM group versus 6% in the GEM group), hyponatremia (17% versus 4%), and anemia (8% versus 4%). The median overall survival was 6.1 months for RIG + GEM versus 6.4 months for GEM [hazard ratio (HR), 1.24; 95% confidence interval (CI) 0.85-1.81]. The median progression-free survival was 3.4 months for both groups (HR = 0.96; 95% CI 0.68-1.36). The partial response rate was 19% versus 13% for RIG + GEM versus GEM, respectively. Of 64 tumor samples sent for molecular analysis, 47 were adequate for multiplex genetic testing and 41 were positive for mutations. The majority of cases had KRAS gene mutations (40 cases). Other mutations detected included TP53 (13 cases) and PIK3CA (1 case). No correlation between mutational status and efficacy was detected.
CONCLUSIONS: The combination of RIG + GEM failed to demonstrate an improvement in survival or response compared with GEM in patients with metastatic pancreatic adenocarcinoma. Rigosertib showed a similar safety profile to that seen in previous trials using the IV formulation.

Jin HY, Qiu XG, Yang B
The MicroRNA3686 Inhibits the Proliferation of Pancreas Carcinoma Cell Line by Targeting the Polo-Like Kinase 1.
Biomed Res Int. 2015; 2015:954870 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The Polo-like kinase 1 (PLK1) is one member of the so-called Polo-like kinase family which plays an important role in tumorigenesis. By analyzing the potential complementary microRNA (miRNA) targeting sequence of PLK1, we identified that miRNA-3686 (hereby and thereafter mir3696) could be the potential regulator for PLK1. Real-time PCR demonstrated that the mir3686 has a relatively higher expression in the immortalized pancreas cell HPDE6C7 than pancreas carcinoma derived cell line PANC1. The upregulation of mir3686 in HPDE6C7 cell corresponded with the low expression of PLK1 as well. Both luciferase based reporter assay and evaluation of endogenous PLK1 expression demonstrated that mir3686 regulated PLK1, which confirms our speculation. Moreover, we found that transfection of mir3686 in PANC1 cell could lead to proliferation inhibition and promote apoptosis. Further analysis demonstrated that mir3686 transfection in PANC1 cell also inhibited cell invasion, and clone formation in cell invasion assay and clonogenic cell survival assay, respectively. In contrast, inhibition of mir3686 expression in HPDE6C7 cell enhanced the capability of proliferation, cell invasion and clone formation. Taken together, our results indicated that mir3686 could target PLK1 to inhibit the cell proliferation in pancreas cancer derived cell line and mir3686 could be a new therapeutic target for pancreas cancer treatment.

Yuan X, Sun X, Shi X, et al.
USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo.
Oncol Rep. 2015; 34(2):823-32 [PubMed] Related Publications
Ubiquitin specific protease 39 (USP39) plays an important role in mRNA splicing. In the present study, we investigated the role of USP39 in regulating the growth of hepatocellular carcinoma (HCC). We detected USP39 expression in more than 100 HCC clinical samples. The USP39 expression was significantly higher in the tumor tissues compared to the adjacent normal tissues, and was strongly associated with the pathological grade of HCC. USP39 knockdown inhibited cell proliferation and colony formation in vitro in the HepG2 cells, while upregulation of USP39 promoted tumor cell growth. FCM assay showed that USP39 knockdown led to G2/M arrest and induced apoptosis in the HepG2 cells. USP39 knockdown by shRNA inhibited xenograft tumor growth in nude mice. Moreover, USP39 knockdown led to the upregulation of p-Cdc2 and downregulation of p-Cdc25c and p-myt1, while the expression of total Cdc2, Cdc25c and myt1 was not changed in the USP39-knockdown cells. We also found that p-Cdc2 was decreased in the USP39-overexpressing cells and was upregulated in the xenografted tumors derived from the HepG2/KD cells from nude mice. Meanwhile, the expression levels of FoxM1 and its target genes PLK1 and cyclin B1 were decreased in the USP39-knockdown cells. These results suggest that USP39 may contribute to FoxM1 splicing in HCC tumor cells. Our data indicate that USP39 knockdown inhibited the growth of HCC both in vitro and in vivo through G2/M arrest, which was partly achieved via the inhibition of FoxM1 splicing.

Shen Y, Li J, Nitta M, et al.
Orthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition.
Oncotarget. 2015; 6(14):11751-67 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
We identified a synthetic lethality between PLK1 silencing and the expression of an oncogenic Epidermal Growth Factor Receptor, EGFRvIII. PLK1 promoted homologous recombination (HR), mitigating EGFRvIII induced oncogenic stress resulting from DNA damage accumulation. Accordingly, PLK1 inhibition enhanced the cytotoxic effects of the DNA damaging agent, temozolomide (TMZ). This effect was significantly more pronounced in an Ink4a/Arf(-/-) EGFRvIII glioblastoma model relative to an Ink4a/Arf(-/-) PDGF-β model. The tumoricidal and TMZ-sensitizing effects of BI2536 were uniformly observed across Ink4a/Arf(-/-) EGFRvIII glioblastoma clones that acquired independent resistance mechanisms to EGFR inhibitors, suggesting these resistant clones retain oncogenic stress that required PLK1 compensation. Although BI2536 significantly augmented the anti-neoplastic effect of EGFR inhibitors in the Ink4a/Arf(-/-) EGFRvIII model, durable response was not achieved until TMZ was added. Our results suggest that optimal therapeutic effect against glioblastomas requires a "multi-orthogonal" combination tailored to the molecular physiology associated with the target cancer genome.

Guo C, Al-Jamal WT, Toma FM, et al.
Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication.
Bioconjug Chem. 2015; 26(7):1370-9 [PubMed] Related Publications
Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3(+) to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoral injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3(+) complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3(+) treated tumors by qRT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumorally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labeled, noncoding siRNA sequence complexed with MWNT-NH3(+), we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo.

Posch C, Cholewa BD, Vujic I, et al.
Combined Inhibition of MEK and Plk1 Has Synergistic Antitumor Activity in NRAS Mutant Melanoma.
J Invest Dermatol. 2015; 135(10):2475-83 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
About one-third of cancers harbor activating mutations in rat sarcoma viral oncogene homolog (RAS) oncogenes. In melanoma, aberrant neuroblastoma-RAS (NRAS) signaling fuels tumor progression in about 20% of patients. Current therapeutics for NRAS-driven malignancies barely affect overall survival. To date, pathway interference downstream of mutant NRAS seems to be the most promising approach. In this study, data revealed that mutant NRAS induced Polo-like kinase 1 (Plk1) expression, and pharmacologic inhibition of Plk1 stabilized the size of NRAS mutant melanoma xenografts. The combination of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and Plk1 inhibitors resulted in a significant growth reduction of NRAS mutant melanoma cells in vitro, and regression of xenografted NRAS mutant melanoma in vivo. Independent cell cycle arrest and increased induction of apoptosis underlies the synergistic effect of this combination. Data further suggest that the p53 signaling pathway is of key importance to the observed therapeutic efficacy. This study provides in vitro, in vivo, and first mechanistic data that an MEK/Plk1 inhibitor combination might be a promising treatment approach for patients with NRAS-driven melanoma. As mutant NRAS signaling is similar across different malignancies, this inhibitor combination could also offer a previously unreported treatment modality for NRAS mutant tumors of other cell origins.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PLK1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999