TACC3

Gene Summary

Gene:TACC3; transforming acidic coiled-coil containing protein 3
Aliases: ERIC1, ERIC-1
Location:4p16.3
Summary:This gene encodes a member of the transforming acidic colied-coil protein family. The encoded protein is a motor spindle protein that may play a role in stabilization of the mitotic spindle. This protein may also play a role in growth a differentiation of certain cancer cells. [provided by RefSeq, Nov 2011]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transforming acidic coiled-coil-containing protein 3
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TACC3 (cancer-related)

Katoh M
FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review).
Int J Mol Med. 2016; 38(1):3-15 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.

Schäfer N, Gielen GH, Kebir S, et al.
Phase I trial of dovitinib (TKI258) in recurrent glioblastoma.
J Cancer Res Clin Oncol. 2016; 142(7):1581-9 [PubMed] Related Publications
PURPOSE: Dovitinib (TKI258) is an oral multi-tyrosine kinase inhibitor of FGFR, VEGFR, PDGFR β, and c-Kit. Since dovitinib is able to cross the blood-brain barrier and targets brain tumor-relevant pathways, we conducted a phase I trial to demonstrate its safety in recurrent glioblastoma (GBM).
PATIENTS AND METHODS: Patients with first or second GBM recurrence started treatment with the maximal tolerated dose (MTD) previously established in systemic cancer patients (500 mg/d, 5 days on/2 days off). A modified 3 + 3 design in three cohorts (500, 400, 300 mg) was used.
RESULTS: Twelve patients were enrolled. Seventy-two adverse events (AEs) occurred and 16.7 % of AEs were classified as ≥CTC grade 3 toxicity, mainly including hepatotoxicity and hematotoxicity. Only one out of six patients of the 300-mg cohort showed grade 3 toxicity. The PFS-6 rate was 16.7 %, and it was not associated with detection of the FGFR-TACC gene fusion in the tumor.
CONCLUSION: Dovitinib is safe in patients with recurrent GBM and showed efficacy in only some patients unselected for target expression. The recommended phase II dose of 300 mg would be substantially lower than the recently established MTD in systemic cancer patients. Further personalized trials are recommended.

Jiang F, Kuang B, Que Y, et al.
The clinical significance of transforming acidic coiled-coil protein 3 expression in non-small cell lung cancer.
Oncol Rep. 2016; 35(1):436-46 [PubMed] Related Publications
The relationship between TACC3, a member of the transforming acidic coiled-coil proteins (TACCs) family, and lung carcinoma remains unclear. The present study was designed to explore the prognostic and clinical significance of TACC3 in non-small cell lung cancer (NSCLC). An immunohistochemistry (IHC) assay was performed to analyze the expression of TACC3 in 195 lung cancer cases. The mRNA and protein levels of TACC3 were examined by quantitative reverse transcription-PCR or western blotting. The correlation between TACC3 expression and clinicopathological factors was analyzed by χ2 analysis and Fisher's exact test. Kaplan-Meier analysis and the Cox proportional hazards model were used to examine the correlation of prognostic outcomes with TACC3. The results showed that the levels of TACC3 mRNA and total protein were higher in lung cancer lesions than paired non-cancerous tissues. IHC analysis revealed that TACC3 was highly expressed in 94 (48.2%) cases. The expression of TACC3 was strongly correlated with smoking status, histological classification, differentiation, cytokeratin 19 fragment levels, T stage and the clinical stage of NSCLC patients. Univariate and multivariate analyses demonstrated that TACC3 is a useful biomarker for NSCLC prognosis. The low TACC3 expression group exhibited better progression-free survival (PFS) among patients who received anti-microtubule chemotherapy. In conclusion, the results showed that a high level of TACC3 expression was correlated with advanced clinicopathological classifications, poor overall survival (OS) and poor recurrence-free survival (RFS) in NSCLC patients. Our findings indicate that TACC3 is a potential prognostic marker and therapeutic target for NSCLC.

Figueroa JD, Koutros S, Colt JS, et al.
Modification of Occupational Exposures on Bladder Cancer Risk by Common Genetic Polymorphisms.
J Natl Cancer Inst. 2015; 107(11) [PubMed] Free Access to Full Article Related Publications
Few studies have demonstrated gene/environment interactions in cancer research. Using data on high-risk occupations for 2258 case patients and 2410 control patients from two bladder cancer studies, we observed that three of 16 known or candidate bladder cancer susceptibility variants displayed statistically significant and consistent evidence of additive interactions; specifically, the GSTM1 deletion polymorphism (P interaction ≤ .001), rs11892031 (UGT1A, P interaction = .01), and rs798766 (TMEM129-TACC3-FGFR3, P interaction = .03). There was limited evidence for multiplicative interactions. When we examined detailed data on a prevalent occupational exposure associated with increased bladder cancer risk, straight metalworking fluids, we also observed statistically significant additive interaction for rs798766 (TMEM129-TACC3-FGFR3, P interaction = .02), with the interaction more apparent in patients with tumors positive for FGFR3 expression. All statistical tests were two-sided. The interaction we observed for rs798766 (TMEM129-TACC3-FGFR3) with specific exposure to straight metalworking fluids illustrates the value of integrating germline genetic variation, environmental exposures, and tumor marker data to provide insight into the mechanisms of bladder carcinogenesis.

Nahm JH, Kim H, Lee H, et al.
Transforming acidic coiled-coil-containing protein 3 (TACC3) overexpression in hepatocellular carcinomas is associated with "stemness" and epithelial-mesenchymal transition-related marker expression and a poor prognosis.
Tumour Biol. 2016; 37(1):393-403 [PubMed] Related Publications
There is accumulating evidence that hepatocellular carcinomas (HCCs) expressing "stemness"-related markers, e.g., keratin 19 (K19) and epithelial cell adhesion molecule (EpCAM), are associated with aggressive biological behavior. In order to further investigate the molecular characteristics of this subgroup of HCCs, we examined copy number alterations of K19-positive and K19-negative HCCs and found frequent amplifications of the 4p16.3 locus containing the TACC3 gene, which has previously not been described in HCCs. We performed an immunohistochemical analysis of transforming acidic coiled-coil-containing protein 3 (TACC3) expression in HCCs in whole tissue sections and tissue microarrays and examined the clinicopathological characteristics of TACC3-overexpressing HCCs in relation to stemness-related marker (K19, EpCAM) expression, epithelial-mesenchymal transition (EMT)-related proteins, and survival. Cytoplasmic TACC3 protein expression was seen in 7/7 whole tissue sections of K19-positive HCCs, while TACC3 expression was negative or patchy in K19-negative cases. In the tissue microarray cohort, TACC3 was overexpressed in 105/188 (55.9 %) HCCs and was associated with poor differentiation (p = 0.028), major vascular invasion (p = 0.039), higher tumor stages (p = 0.015), younger age (p = 0.003), higher proliferative activity (p < 0.001), and more frequent multipolar mitoses (p < 0.001). TACC3 expression was significantly correlated with K19 (p = 0.010) and EpCAM (p < 0.001) positivity. In addition, TACC3 overexpression was associated with frequent expression of S100A4, uPAR, and ezrin (p < 0.001, all) and loss of E-cadherin expression (p = 0.014), and overall survival was significantly decreased in patients with TACC3-positive HCCs (p = 0.014). In conclusion, TACC3 overexpression was associated with clinicopathological features of aggressiveness, increased EMT-related protein expression, and poor survival, suggesting a potential role for TACC3 as a prognostic biomarker and therapeutic target in HCC.

Zhou DS, Wang HB, Zhou ZG, et al.
TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma.
Oncotarget. 2015; 6(27):24163-77 [PubMed] Free Access to Full Article Related Publications
Transforming acidic coiled-coil protein 3 (TACC3) is essential for cell mitosis and transcriptional functions. In the present study, we first demonstrated that both TACC3 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue biopsies according to western blot analyses, immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays. Moreover, high TACC3 expression was positively correlated with poor overall survival (OS) and disease-free survival (DFS) (p < 0.001). Using HCC cell lines, we then demonstrated that either TACC3 knockdown or treatment with the potential TACC3 inhibitor KHS101 suppressed cell growth and sphere formation as well as the expression of stem cell transcription factors, including Bmi1, c-Myc and Nanog. Silencing TACC3 may suppress the Wnt/β-catenin and PI3K/AKT signaling pathways, which regulate cancer stem cell-like characteristics. Taken together, these data suggest that TACC3 is enriched in HCC and that TACC3 down-regulation inhibits the proliferation, clonogenicity, and cancer stem cell-like phenotype of HCC cells. KHS101, a TACC3 inhibitor, may serve as a novel therapeutic agent for HCC patients with tumors characterized by high TACC3 expression.

Javle M, Churi C, Kang HC, et al.
HER2/neu-directed therapy for biliary tract cancer.
J Hematol Oncol. 2015; 8:58 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Biliary cancers are highly aggressive tumors that are often diagnosed an advanced disease stage and have a poor outcome with systemic therapy. Recent efforts towards molecular characterization have identified a subset of biliary patients that have HER2/neu amplification or mutation. HER2/neu amplification is associated with response to HER2/neu-directed therapy in breast and gastric cancers. However, the efficacy of HER2/neu-targeted therapy in biliary cancers is unknown.
PATIENTS AND METHODS: We retrospectively reviewed cases of advanced gallbladder cancer and cholangiocarcinoma with HER2/neu genetic aberrations or protein overexpression who received HER2/neu-directed therapy between 2007 and 2014. Clinical data were retrieved from medical records, and imaging studies were independently reviewed.
RESULTS: Nine patients with gallbladder cancer and five patients with cholangiocarcinoma had received HER2/neu-directed therapy (trastuzumab, lapatinib, or pertuzumab) during the study period. In the gallbladder cancer group, HER2/neu gene amplification or overexpression was detected in eight cases. These patients experienced disease stability (n = 3), partial response (n = 4), or complete response (n = 1) with HER2/neu-directed therapy. One patient had HER2/neu mutation and experienced a mixed response after lapatinib therapy. The duration of response varied from 8+ to 168 weeks (median 40 weeks), and three patients are still on therapy. One patient developed HER2/neu amplification as a secondary event after FGFR-directed therapy for FGF3-TACC3 gene fusion. The cholangiocarcinoma cases treated in this series had a higher proportion of HER2/neu mutations, and no radiological responses were seen in these patients despite HER2/neu-directed therapy.
CONCLUSIONS: HER2/neu blockade is a promising treatment strategy for gallbladder cancer patients with gene amplification and deserves further exploration in a multi-center study.

Parish A, Schwaederle M, Daniels G, et al.
Fibroblast growth factor family aberrations in cancers: clinical and molecular characteristics.
Cell Cycle. 2015; 14(13):2121-8 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factor ligands and receptors (FGF and FGFR) play critical roles in tumorigenesis, and several drugs have been developed to target them. We report the biologic correlates of FGF/FGFR abnormalities in diverse malignancies. The medical records of patients with cancers that underwent targeted next generation sequencing (182 or 236 cancer-related genes) were reviewed. The following FGF/FGFR genes were tested: FGF3, 4, 6, 7, 10, 12, 14, 19, 23 and FGFR1, 2, 3, and 4. Of 391 patients, 56 (14.3%) had aberrant FGF (N = 38, all amplifications) and/or FGFR (N = 22 including 5 mutations and one FGFR3-TACC3 fusion). FGF/FGFR aberrations were most frequent in breast cancers (26/81, 32.1%, p = 0.0003). In multivariate analysis, FGF/FGFR abnormalities were independently associated with CCND1/2, RICTOR, ZNF703, RPTOR, AKT2, and CDK8 alterations (all P < 0.02), as well as with an increased median number of alterations (P < 0.0001). FGF3, FGF4, FGF19 and CCND1 were co-amplified in 22 of 391 patients (5.6%, P < 0.0001), most likely because they co-localize on the same chromosomal region (11q13). There was no significant difference in time to metastasis or overall survival when comparing patients harboring FGF/FGFR alterations versus those not. Overall, FGF/FGFR was one of the most frequently aberrant pathways in our population comprising patients with diverse malignancies. These aberrations frequently co-exist with anomalies in a variety of other genes, suggesting that tailored combination therapy may be necessary in these patients.

Huang ZL, Lin ZR, Xiao YR, et al.
High expression of TACC3 in esophageal squamous cell carcinoma correlates with poor prognosis.
Oncotarget. 2015; 6(9):6850-61 [PubMed] Free Access to Full Article Related Publications
To analyze the expression of the transforming acidic coiled-coil protein 3 (TACC3) in esophageal squamous cell carcinoma (ESCC) samples, and to identify whether TACC3 can serve as a biomarker for the diagnosis and prognosis of ESCC, qPCR, western blotting and immunohistochemistry staining (IHC) were utilized to detect the expression of TACC3. Furthermore, cell growth, colony formation, migration ability and the epithelial-mesenchymal transition markers of ESCC cells in which TACC3 were knocked-down were measured. The mRNA and protein levels of TACC3 were higher in ESCC specimens compared to non-tumorous esophageal epithelial tissues. IHC results revealed TACC3 expression was significantly correlated to differentiation (p = 0.017) and lymphoid nodal status (p = 0.028). The patients with high-expression of TACC3 had a significantly poor prognosis compared to those of low-expression (p = 0.017), especially in the patients at stages I-II (p = 0.028). Multivariate analysis indicated that TACC3 expression was an independent prognostic factor for ESCC patients (p = 0.025). Knockdown of TACC3 inhibited the ability of cell proliferation, colony formation and migration. This study first identifies TACC3 not only as a useful biomarker for diagnose and prognosis of ESCC, but also as a potential therapeutic target for patients with ESCC.

Xiang L, Li J, Jiang W, et al.
Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers.
Oncotarget. 2015; 6(7):4968-75 [PubMed] Free Access to Full Article Related Publications
Mutations in 16 targetable oncogenic genes were examined using reverse transcription polymerase chain reaction (RT-PCR) and direct sequencing in 285 Chinese cervical cancers. Their clinicopathological relevance and prognostic significance was assessed. Ninety-two nonsynonymous somatic mutations were identified in 29.8% of the cancers. The mutation rates were as follows: PIK3CA (12.3%), KRAS (5.3%), HER2 (4.2%), FGFR3-TACC3 fusions (3.9%), PTEN (2.8%), FGFR2 (1.8%), FGFR3 (0.7%), NRAS (0.7%), HRAS (0.4%) and EGFR (0.4%). No mutations were detected in AKT1 or BRAF, and the fusions FGFR1-TACC1, EML4-ALK, CCDC6-RET and KIF5B-RET were not found in any of the cancers. RTK and RAS mutations were more common in non-squamous carcinomas than in squamous carcinomas (P=0.043 and P=0.042, respectively). RAS mutations were more common in young patients (<45 years) (13.7% vs. 7.7%, P=0.027). RTK mutations tended to be more common in young patients, whereas PIK3CA/PTEN/AKT mutations tended to be more common in old patients. RAS mutations were significantly associated with disease relapse. To our knowledge, this is the first comprehensive analysis of major targetable oncogenic mutations in a large cohort of cervical cancer cases. Our data reveal that a considerable proportion of patients with cervical cancers harbor known druggable mutations and might benefit from targeted therapy.

Yuan L, Liu ZH, Lin ZR, et al.
Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma.
Cancer Biol Ther. 2014; 15(12):1613-21 [PubMed] Free Access to Full Article Related Publications
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies and exhibits regional differences in incidence. Because many fusion genes have been discovered in different types of tumors over the past few years, we aimed to investigate the existence of a fusion gene in primary NPC patients using RNA-seq. In this study, for the first time, we found that fibroblast growth factor receptor 3-transforming acidic coiled-coil-containing protein 3 (FGFR3-TACC3) fusion transcripts are recurrently detected in NPC. The presence of this fusion gene was also detected in head and neck cancer, esophageal squamous cell carcinoma (ESCC), and lung cancer. Furthermore, we found certain new isoforms of the FGFR3-TACC3 fusion transcripts, such as a gene fusion between exon 18 of FGFR3 and exon 6 or exon 14 of TACC3 and agene fusion between exon 19 of FGFR3 and exon 11 of TACC3. In addition, we showed that the FGFR3-TACC3 fusion gene promotes cell proliferation, colony formation, and transforming ability in vitro, whereas the FGFR3-TACC3 K508M mutant or treatment with the FGFR inhibitor PD173074 abrogates these effects, suggesting that FGFR3-TACC3 most likely exerts its effects through activation of FGFR kinase activity. This activation likely leads to the development of NPC. Additionally, FGFR3-TACC3 could trigger activation of the ERK and Akt signaling pathways, whereas FGFR3-TACC3 K508M mutant could not, suggesting that these 2 signaling pathways might be involved in the function of FGFR3-TACC3. Taken together, our data demonstrated the oncogenic role of FGFR3-TACC3 in vitro, indicating that FGFR3-TACC3 may be useful as a diagnostic marker and therapeutic target in cancers.

Capelletti M, Dodge ME, Ercan D, et al.
Identification of recurrent FGFR3-TACC3 fusion oncogenes from lung adenocarcinoma.
Clin Cancer Res. 2014; 20(24):6551-8 [PubMed] Related Publications
PURPOSE: Targetable oncogenic alterations are detected more commonly in patients with non-small cell lung cancer (NSCLC) who never smoked cigarettes. For such patients, specific kinase inhibitors have emerged as effective clinical treatments. However, the currently known oncogenic alterations do not account for all never smokers who develop NSCLC. We sought to identify additional oncogenic alterations from patients with NSCLC to define additional treatment options.
EXPERIMENTAL DESIGN: We analyzed 576 lung adenocarcinomas from patients of Asian and Caucasian ethnicity. We identified a subset of cancers that did not harbor any known oncogenic alteration. We performed targeted next-generation sequencing (NGS) assay on 24 patients from this set with >75% tumor cell content.
RESULTS: EGFR mutations were the most common oncogenic alteration from both Asian (53%) and Caucasian (41.6%) patients. No known oncogenic alterations were present in 25.7% of Asian and 31% of Caucasian tumor specimens. We identified a FGFR3-TACC3 fusion event in one of 24 patients from this subset using targeted NGS. Two additional patients harboring FGFR3-TACC3 were identified by screening our entire cohort (overall prevalence, 0.5%). Expression of FGFR3-TACC3 led to IL3 independent growth in Ba/F3 cells. These cells were sensitive to pan-fibroblast growth factor receptor (pan-FGFR) inhibitors but not the epidermal growth factor (EGFR) inhibitor gefitinib.
CONCLUSIONS: FGFR3-TACC3 rearrangements occur in a subset of patients with lung adenocarcinoma. Such patients should be considered for clinical trials featuring FGFR inhibitors.

Takahashi A, Nakayama R, Ishibashi N, et al.
Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics.
PLoS One. 2014; 9(9):e106801 [PubMed] Free Access to Full Article Related Publications
The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84 × 10(-6) and adjusted p value 2.99 × 10(-3) after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.

Pattison S, Zalcberg JR
Bespoke treatment: drivers beware!
Asia Pac J Clin Oncol. 2014; 10(4):378-80 [PubMed] Related Publications
Significant progress has been made in the identification of molecular targets and targeted therapy is becoming a realistic option for patients with tumors for which potential driver mutations are identified. We present a case that highlights that the identification of a potential driver mutation does not confirm it as a key mutational event in every case and emphasizes the need for ongoing research to enable therapy to be more accurately directed for the benefit of patients.

Bao ZS, Chen HM, Yang MY, et al.
RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas.
Genome Res. 2014; 24(11):1765-73 [PubMed] Free Access to Full Article Related Publications
Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs.

Wang R, Wang L, Li Y, et al.
FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer.
Clin Cancer Res. 2014; 20(15):4107-14 [PubMed] Related Publications
PURPOSE: The fibroblast growth factor receptor (FGFR)-3 fusion genes have been recently demonstrated in a subset of non-small cell lung cancer (NSCLC). To aid in identification and treatment of these patients, we examined the frequency, clinicopathologic characteristics, and treatment outcomes of patients who had NSCLC with or without FGFR fusions.
EXPERIMENTAL DESIGN: Fourteen known FGFR fusion variants, including FGFR1, FGFR2, and FGFR3, were detected by RT-PCR and verified by direct sequencing in 1,328 patients with NSCLC. All patients were also analyzed for mutations in EGFR, KRAS, HER2, BRAF, ALK, RET, and ROS1. Clinical characteristics, including age, sex, smoking status, stage, subtypes of lung adenocarcinoma, relapse-free survival, and overall survival, were collected.
RESULTS: Of 1,328 tumors screened, two (0.2%) were BAG4-FGFR1 fusion and 15 (1.1%) were FGFR3-TACC3 fusion. Six of 1,016 patients with lung adenocarcinoma were FGFR3-TACC3 fusions and 11 of 312 lung squamous cell carcinoma harbored BAG4-FGFR1 or FGFR3-TACC3 fusions. Compared with the FGFR fusion-negative group, patients with FGFR fusions were more likely to be smokers (94.1%, 16 of 17 patients, P < 0.001), significantly associated with larger tumor (>3 cm; 88.2%, 15 of 17 patients, P < 0.001) and with a tendency to be more poorly differentiated (53.9%, nine of 17 patients, P = 0.095).
CONCLUSIONS: FGFR fusions define a molecular subset of NSCLC with distinct clinical characteristics. FGFR is a druggable target and patients with FGFR fusions may benefit from FGFR-targeted therapy, which needs further clinical investigation.

Acquaviva J, He S, Zhang C, et al.
FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism.
Mol Cancer Res. 2014; 12(7):1042-54 [PubMed] Related Publications
UNLABELLED: Activating mutations and/or overexpression of FGFR3 are common in bladder cancer, making FGFR3 an attractive therapeutic target in this disease. In addition, FGFR3 gene rearrangements have recently been described that define a unique subset of bladder tumors. Here, a selective HSP90 inhibitor, ganetespib, induced loss of FGFR3-TACC3 fusion protein expression and depletion of multiple oncogenic signaling proteins in RT112 bladder cells, resulting in potent cytotoxicity comparable with the pan-FGFR tyrosine kinase inhibitor BGJ398. However, in contrast to BGJ398, ganetespib exerted pleiotropic effects on additional mitogenic and survival pathways and could overcome the FGFR inhibitor-resistant phenotype of FGFR3 mutant-expressing 97-7 and MHG-U3 cells. Combinatorial benefit was observed when ganetespib was used with BGJ398 both in vitro and in vivo. Interestingly, two additional FGFR3 fusion-positive lines (RT4 and SW480) retained sensitivity to HSP90 inhibitor treatment by the ansamycins 17-AAG and 17-DMAG yet displayed intrinsic resistance to ganetespib or AUY922, both second-generation resorcinol-based compounds. Both cell lines, compared with RT112, expressed considerably higher levels of endogenous UGT1A enzyme; this phenotype resulted in a rapid glucuronidation-dependent metabolism and subsequent efflux of ganetespib from SW780 cells, thus providing a mechanism to account for the lack of bioactivity.
IMPLICATIONS: Pharmacologic blockade of the molecular chaperone HSP90 represents a promising approach for treating bladder tumors driven by oncogenic gene rearrangements of FGFR3. Furthermore, UDP-glucuronosyltransferase enzyme expression may serve as a predictive factor for clinical response to resorcinol-based HSP90 inhibitors.

Ross JS, Wang K, Gay L, et al.
New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing.
Oncologist. 2014; 19(3):235-42 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a subtype of primary liver cancer that is rarely curable by surgery and is rapidly increasing in incidence. Relapsed ICC has a poor prognosis, and current systemic nontargeted therapies are commonly extrapolated from those used in other gastrointestinal malignancies. We hypothesized that genomic profiling of clinical ICC samples would identify genomic alterations that are linked to targeted therapies and that could facilitate a personalized approach to therapy.
METHODS: DNA sequencing of hybridization-captured libraries was performed for 3,320 exons of 182 cancer-related genes and 36 introns of 14 genes frequently rearranged in cancer. Sample DNA was isolated from 40 μm of 28 formalin-fixed paraffin-embedded ICC specimens and sequenced to high coverage.
RESULTS: The most commonly observed alterations were within ARID1A (36%), IDH1/2 (36%), and TP53 (36%) as well as amplification of MCL1 (21%). Twenty cases (71%) harbored at least one potentially actionable alteration, including FGFR2 (14%), KRAS (11%), PTEN (11%), CDKN2A (7%), CDK6 (7%), ERBB3 (7%), MET (7%), NRAS (7%), BRCA1 (4%), BRCA2 (4%), NF1 (4%), PIK3CA (4%), PTCH1 (4%), and TSC1 (4%). Four (14%) of the ICC cases featured novel gene fusions involving the tyrosine kinases FGFR2 and NTRK1 (FGFR2-KIAA1598, FGFR2-BICC1, FGFR2-TACC3, and RABGAP1L-NTRK1).
CONCLUSION: Two thirds of patients in this study harbored genomic alterations that are associated with targeted therapies and that have the potential to personalize therapy selection for to individual patients.


Comprehensive molecular characterization of urothelial bladder carcinoma.
Nature. 2014; 507(7492):315-22 [PubMed] Free Access to Full Article Related Publications
Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. So far, no molecularly targeted agents have been approved for treatment of the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive landscape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple genes involved in cell-cycle regulation, chromatin regulation, and kinase signalling pathways, as well as 9 genes not previously reported as significantly mutated in any cancer. RNA sequencing revealed four expression subtypes, two of which (papillary-like and basal/squamous-like) were also evident in microRNA sequencing and protein data. Whole-genome and RNA sequencing identified recurrent in-frame activating FGFR3-TACC3 fusions and expression or integration of several viruses (including HPV16) that are associated with gene inactivation. Our analyses identified potential therapeutic targets in 69% of the tumours, including 42% with targets in the phosphatidylinositol-3-OH kinase/AKT/mTOR pathway and 45% with targets (including ERBB2) in the RTK/MAPK pathway. Chromatin regulatory genes were more frequently mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of targeted therapy for chromatin abnormalities.

Shinmura K, Kato H, Matsuura S, et al.
A novel somatic FGFR3 mutation in primary lung cancer.
Oncol Rep. 2014; 31(3):1219-24 [PubMed] Related Publications
The recent discovery of mutations and fusions of oncokinase genes in a subset of lung cancers (LCs) is of considerable clinical interest, since LCs containing such mutations or fusion transcripts are reportedly sensitive to kinase inhibitors. To better understand the role of the recently identified fibroblast growth factor receptor 3 (FGFR3) mutations and fusions in pulmonary carcinogenesis, we examined 214 LCs for mutations in the mutation cluster region of the FGFR3 gene using sequencing analysis. We also examined 190 LCs for the FGFR3-TACC3 and FGFR3-BAIAP2L1 fusion transcripts using reverse transcription-polymerase chain reaction (RT-PCR) analysis. Although the expression of FGFR3-TACC3 and FGFR3-BAIAP2L1 fusion transcripts was not detected in any of the carcinomas, somatic FGFR3 mutations were detected in two (0.9%) LCs. The two mutations were the same, i.e., p.R248H. That was a novel mutation occurring in the same codon as p.R248C, for which an oncogenic potential has previously been shown. Increased FGFR3 expression was shown in the two LCs containing the FGFR3 p.R248H mutation using qPCR. Histologically, both carcinomas were squamous cell carcinomas, therefore the incidence of the FGFR3 mutation among the squamous cell carcinoma cases was calculated as 3.2% (2/63). When we examined other co-occurring genetic abnormalities, one case exhibited a p53 p.R273C mutation, while the other case exhibited PIK3CA and SOX2 amplifications. The above results suggest that an FGFR3 p.R248H mutation is involved in the carcinogenesis of a subset of LCs and may contribute to the elucidation of the characteristics of FGFR3 mutation-positive LCs in the future.

Kim Y, Hammerman PS, Kim J, et al.
Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients.
J Clin Oncol. 2014; 32(2):121-8 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Lung squamous cell carcinoma (SCC) is the second most prevalent type of lung cancer. Currently, no targeted therapeutics are approved for treatment of this cancer, largely because of a lack of systematic understanding of the molecular pathogenesis of the disease. To identify therapeutic targets and perform comparative analyses of lung SCC, we probed somatic genome alterations of lung SCC by using samples from Korean patients.
PATIENTS AND METHODS: We performed whole-exome sequencing of DNA from 104 lung SCC samples from Korean patients and matched normal DNA. In addition, copy-number analysis and transcriptome analysis were conducted for a subset of these samples. Clinical association with cancer-specific somatic alterations was investigated.
RESULTS: This cancer cohort is characterized by a high mutational burden with an average of 261 somatic exonic mutations per tumor and a mutational spectrum showing a signature of exposure to cigarette smoke. Seven genes demonstrated statistical enrichment for mutation: TP53, RB1, PTEN, NFE2L2, KEAP1, MLL2, and PIK3CA). Comparative analysis between Korean and North American lung SCC samples demonstrated a similar spectrum of alterations in these two populations in contrast to the differences seen in lung adenocarcinoma. We also uncovered recurrent occurrence of therapeutically actionable FGFR3-TACC3 fusion in lung SCC.
CONCLUSION: These findings provide new steps toward the identification of genomic target candidates for precision medicine in lung SCC, a disease with significant unmet medical needs.

Wang P, Ye D, Guo J, et al.
Genetic score of multiple risk-associated single nucleotide polymorphisms is a marker for genetic susceptibility to bladder cancer.
Genes Chromosomes Cancer. 2014; 53(1):98-105 [PubMed] Related Publications
Genome-wide association studies have identified 13 single nucleotide polymorphisms (SNPs) that are associated with bladder cancer; three of these SNPs were validated in the Chinese population. This study assessed the performance of these three SNPs, in combination, to predict genetic susceptibility to bladder cancer in Chinese. Three previously established bladder cancer risk-associated SNPs (rs798766 in TACC3, rs9642880 in MYC, and rs2294008 in PSCA) were genotyped in 1,210 bladder cancer patients and 1,008 control subjects in Shanghai, China. A genetic score was calculated for each subject based on these three SNPs. Each of these three SNPs was significantly associated with bladder cancer risk in this independent study population, P < 0.05. The genetic score based on these three SNPs was significantly higher in cases than controls, with a mean of 1.05 and 0.99, respectively, P = 1.03E-05. Compared with subjects with a genetic score <= 1.00, subjects with an elevated genetic score (>1.00) had a significantly increased risk for bladder cancer after adjusting for age, gender, and smoking status, OR = 1.58, 95% Confidence Interval (CI) = 1.21 - 2.06, P = 0.0007. When tested separately for lower (Ta) or higher (Tis, T1-T4) tumor stage, the association was significantly stronger for lower (OR = 2.24, 95% CI = 1.66 - 3.01, P = 1.02E-07) than higher tumor stage (OR = 1.33, 95% CI = 1.00 - 1.78, P = 0.05), P = 0.001. In conclusion, A combination of three previously implicated bladder cancer risk-associated SNPs is a significant predictor of genetic susceptibility to bladder cancer in Chinese.

Guo G, Sun X, Chen C, et al.
Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation.
Nat Genet. 2013; 45(12):1459-63 [PubMed] Related Publications
Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.

Garbers C, Kuck F, Aparicio-Siegmund S, et al.
Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR).
Cell Cycle. 2013; 12(21):3421-32 [PubMed] Free Access to Full Article Related Publications
Interleukin 6 (IL-6) signaling plays a role in inflammation, cancer, and senescence. Here, we identified soluble IL-6 receptor (sIL-6R) as a member of the senescence-associated secretory phenotype (SASP). Senescence-associated sIL-6R upregulation was mediated by mammalian target of rapamycin (mTOR). sIL-6R was mainly generated by a disintegrin and metalloprotease 10 (ADAM10)-dependent ectodomain shedding to enable IL-6 trans-signaling. In vivo, heterozygous PTEN-knockout mice exhibited higher mTOR activity and increased sIL-6R levels. Moreover, aberrant EGF receptor (EGFR) activation triggered IL-6 synthesis. In analogy to senescence, EGFR-induced activation of mTOR also induced IL-6R expression and sIL-6R generation. Hence, mTOR activation reprograms IL-6 non-responder cells into IL-6 responder cells. Our data suggest that mTOR serves as a central molecular switch to facilitate cellular IL-6 classic and trans-signaling via IL-6R upregulation with direct implications for cellular senescence and tumor development.

Ha GH, Kim JL, Breuer EK, Breuer EK
TACC3 is essential for EGF-mediated EMT in cervical cancer.
PLoS One. 2013; 8(8):e70353 [PubMed] Free Access to Full Article Related Publications
The third member of transforming acidic coiled-coil protein (TACC) family, TACC3, has been shown to be an important player in the regulation of centrosome/microtubule dynamics during mitosis and found to be deregulated in a variety of human malignancies. Our previous studies have suggested that TACC3 may be involved in cervical cancer progression and chemoresistance, and its overexpression can induce epithelial-mesenchymal transition (EMT) by activating the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinases (ERKs) signal transduction pathways. However, the upstream mechanisms of TACC3-mediated EMT and its functional/clinical importance in human cervical cancer remain elusive. Epidermal growth factor (EGF) has been shown to be a potent inducer of EMT in cervical cancer and associated with tumor invasion and metastasis. In this study, we found that TACC3 is overexpressed in cervical cancer and can be induced upon EGF stimulation. The induction of TACC3 by EGF is dependent on the tyrosine kinase activity of the EGF receptor (EGFR). Intriguingly, depletion of TACC3 abolishes EGF-mediated EMT, suggesting that TACC3 is required for EGF/EGFR-driven EMT process. Moreover, Snail, a key player in EGF-mediated EMT, is found to be correlated with the expression of TACC3 in cervical cancer. Collectively, our study highlights a novel function for TACC3 in EGF-mediated EMT process and suggests that targeting of TACC3 may be an attractive strategy to treat cervical cancers driven by EGF/EGFR signaling pathways.

Katoh M, Nakagama H
FGF receptors: cancer biology and therapeutics.
Med Res Rev. 2014; 34(2):280-300 [PubMed] Related Publications
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.

Majewski IJ, Mittempergher L, Davidson NM, et al.
Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing.
J Pathol. 2013; 230(3):270-6 [PubMed] Related Publications
Oncogenic fusion genes that involve kinases have proven to be effective targets for therapy in a wide range of cancers. Unfortunately, the diagnostic approaches required to identify these events are struggling to keep pace with the diverse array of genetic alterations that occur in cancer. Diagnostic screening in solid tumours is particularly challenging, as many fusion genes occur with a low frequency. To overcome these limitations, we developed a capture enrichment strategy to enable high-throughput transcript sequencing of the human kinome. This approach provides a global overview of kinase fusion events, irrespective of the identity of the fusion partner. To demonstrate the utility of this system, we profiled 100 non-small cell lung cancers and identified numerous genetic alterations impacting fibroblast growth factor receptor 3 (FGFR3) in lung squamous cell carcinoma and a novel ALK fusion partner in lung adenocarcinoma.

Ha GH, Kim JL, Breuer EK
Transforming acidic coiled-coil proteins (TACCs) in human cancer.
Cancer Lett. 2013; 336(1):24-33 [PubMed] Related Publications
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.

Dementyeva E, Kryukov F, Kubiczkova L, et al.
Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma.
J Transl Med. 2013; 11:77 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple myeloma (MM) is a low proliferative tumor of postgerminal center plasma cell (PC). Centrosome amplification (CA) is supposed to be one of the mechanisms leading to chromosomal instability. Also, CA is associated with deregulation of cell cycle, mitosis, DNA repair and proliferation. The aim of our study was to evaluate the prognostic significance and possible role of CA in pathogenesis and analysis of mitotic genes as mitotic disruption markers.
DESIGN AND METHODS: A total of 173 patients were evaluated for this study. CD138+ cells were separated by MACS. Immunofluorescent labeling of centrin was used for evaluation of centrosome amplification in PCs. Interphase FISH with cytoplasmic immunoglobulin light chain staining (cIg FISH) and qRT-PCR were performed on PCs.
RESULTS: Based on the immunofluorescent staining results, all patients were divided into two groups: CA positive (38.2%) and CA negative (61.8%). Among the newly diagnosed patients, worse overall survival was indicated in the CA negative group (44/74) in comparison to the CA positive group (30/74) (P = 0.019). Gene expression was significantly down-regulated in the CA positive group in comparison to CA negative in the following genes: AURKB, PLK4, TUBG1 (P < 0.05). Gene expression was significantly down-regulated in newly diagnosed in comparison to relapsed patients in the following genes: AURKA, AURKB, CCNB1, CCNB2, CETN2, HMMR, PLK4, PCNT, and TACC3 (P < 0.05).
CONCLUSIONS: Our findings indicate better prognosis for CA positive newly diagnosed patients. Considering revealed clinical and gene expression heterogeneity between CA negative and CA positive patients, there is a possibility to characterize centrosome amplification as a notable event in multiple myeloma pathogenesis.

Horak CE, Pusztai L, Xing G, et al.
Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer.
Clin Cancer Res. 2013; 19(6):1587-95 [PubMed] Related Publications
PURPOSE: Predictive biomarkers offer the potential to improve the benefit:risk ratio of a therapeutic agent. Ixabepilone achieves comparable pathologic complete response (pCR) rates to other active drugs in the neoadjuvant setting. This phase II trial was designed to investigate potential biomarkers that differentiate response to this agent.
EXPERIMENTAL DESIGN: Women with untreated, histologically confirmed primary invasive breast adenocarcinoma received neoadjuvant doxorubicin/cyclophosphamide, followed by 1:1 randomization to ixabepilone (n = 148) or paclitaxel (n = 147). Rates of pCR were compared between treatment arms based on predefined biomarker sets: TUBB3, TACC3, and CAPG gene expression, a 20- and 26-gene expression model, MDR1 protein expression, and other potential markers of sensitivity. βIII-tubulin protein expression is reported separately but is referred to here for completeness. All patients underwent a core needle biopsy of the primary cancer for molecular marker analysis before chemotherapy. Gene expression profiling data were used for molecular subtyping.
RESULTS: There was no significant difference in the rate of pCR in both treatment arms in βIII-tubulin-positive patients. Higher pCR rates were observed among βIII-tubulin-positive patients than in βIII-tubulin-negative patients. Furthermore, no correlation was evident between TUBB3, TACC3, and CAPG gene expression, MDR1 protein expression, multi-gene expression models, and the efficacy of ixabepilone or paclitaxel, even within the estrogen receptor-negative subset.
CONCLUSION: These results indicate that βIII-tubulin protein and mRNA expression, MDR1 protein expression, TACC3 and CAPG gene expression, and multigene expression models (20- and 26-gene) are not predictive markers for differentiating treatment benefit between ixabepilone and paclitaxel in early-stage breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TACC3, Cancer Genetics Web: http://www.cancer-genetics.org/TACC3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999