PVT1

Gene Summary

Gene:PVT1; Pvt1 oncogene (non-protein coding)
Aliases: MYC, LINC00079, NCRNA00079, onco-lncRNA-100
Location:8q24.21
Summary:This gene represents a long non-coding RNA locus that has been identified as a candidate oncogene. Increased copy number and overexpression of this gene are associated with many types of cancers including breast and ovarian cancers, acute myeloid leukemia and Hodgkin lymphoma. Allelic variants of this gene are also associated with end-stage renal disease attributed to type 1 diabetes. Consistent with its association with various types of cancer, transcription of this gene is regulated by the tumor suppressor p53 through a canonical p53-binding site, and it has been implicated in regulating levels of the proto-oncogene MYC to promote tumorigenesis. [provided by RefSeq, Sep 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 15 March, 2017

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA Copy Number Variations
  • RTPCR
  • Cancer Gene Expression Regulation
  • Retinoic Acid
  • myc Genes
  • Genetic Predisposition
  • Chromosome Aberrations
  • Chromosomes, Human
  • Transcriptome
  • Genotype
  • Chromosome Mapping
  • Biomarkers, Tumor
  • Pancreatic Cancer
  • Cell Proliferation
  • Transfection
  • Reproducibility of Results
  • Translocation
  • Proteins
  • Sequence Analysis, RNA
  • FISH
  • Up-Regulation
  • Apoptosis
  • Phosphoproteins
  • Single Nucleotide Polymorphism
  • Case-Control Studies
  • Proto-Oncogene Proteins c-myc
  • DNA Sequence Analysis
  • Stomach Cancer
  • Breast Cancer
  • Genetic Loci
  • Gene Amplification
  • Genome, Human
  • Genome-Wide Association Study
  • Messenger RNA
  • Gene Dosage
  • MicroRNAs
  • siRNA
  • Prostate Cancer
  • Chromosome 8
  • Gene Expression Profiling
  • Lung Cancer
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PVT1 (cancer-related)

Chen X, Gao G, Liu S, et al.
Long Noncoding RNA PVT1 as a Novel Diagnostic Biomarker and Therapeutic Target for Melanoma.
Biomed Res Int. 2017; 2017:7038579 [PubMed] Free Access to Full Article Related Publications
Accumulating evidences indicated that plasmacytoma variant translocation 1 (PVT1) plays vital roles in several cancers. However, the expression, functions, and clinical values of PVT1 in melanoma are still unknown. In this study we measured the expression of PVT1 in clinical tissues and serum samples and explored the diagnostic value of PVT1 for melanoma and the effects of PVT1 on melanoma cell proliferation, cell cycle, and migration. Our results, combined with publicly available PVT1 expression data, revealed that PVT1 is upregulated in melanoma tissues compared with nonneoplastic nevi tissues. Serum PVT1 level is significantly increased in melanoma patients compared with age and gender-matched nonmelanoma controls with melanocytic nevus. Receiver operating characteristic curve analyses revealed that serum PVT1 level could sensitively discriminate melanoma patients from controls. Furthermore, serum PVT1 level indicted melanoma dynamics. Functional experiments showed that overexpression of PVT1 promotes melanoma cells proliferation, cell cycle progression, and migration, while depletion of PVT1 significantly inhibits melanoma cells proliferation, cell cycle progression, and migration. Collectively, our results indicate that PVT1 functions as an oncogene in melanoma and could be a potential diagnostic biomarker and therapeutic target for melanoma.

Chou ST, Hsiang CY, Lo HY, et al.
Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice.
BMC Complement Altern Med. 2017; 17(1):121 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Zuo-Jin-Wan (ZJW), a two-herb formula consisting of Coptis chinensis (CC) and Evodia rutaecarpa (ER), is commonly used in traditional Chinese medicine for the treatment of cancers. However, the efficacies and mechanisms of ZJW and its alkaloid components on cancers are still unclear.
METHODS: Here we investigated the anti-cancer effects and mechanisms of ZJW, CC, ER, berberine, and evodiamine in cells and in intrahepatic xenograft mice.
RESULTS: Treatment of HepG2 cells with ZJW, CC, ER, berberine, and evodiamine significantly displayed cytotoxic effects in a dose- and time-dependent manner. Hierarchical cluster analysis of gene expression profiles showed that CC and ZJW shared a similar mechanism for the cytotoxic effects, suggesting that CC was the active ingredient of ZJW for anti-cancer activity. Network analysis further showed that c-myc was the likely key molecule involved in the regulation of ZJW-affected gene expression. A human hepatoma xenograft model was established by intrahepatic injection of HepG2 cells containing nuclear factor-κB-driven luciferase genes in immunocompetent mice. In vivo bioluminescence imaging showed that cells had been successfully transplanted in mouse liver. Oral administration of ZJW for 28 consecutive days led to a significant decrease in the accumulation of ascites, the ratio of tumor-to-liver, and the number of transplanted cells in livers.
CONCLUSIONS: In conclusion, our findings suggested for the first time that ZJW significantly suppressed human cancer cell growth in orthotopic HepG2 xenograft-bearing immunocompetent mice. Moreover, c-myc might play a potent role in the cytotoxic mechanisms of ZJW, CC, ER, berberine, and evodiamine.

Xia S, Ji R, Zhan W
Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) inhibits proliferation and invasion of glioma cells by suppressing the Wnt/β-catenin signaling pathway.
BMC Neurol. 2017; 17(1):30 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The dysregulation of long noncoding RNAs (lncRNAs) has been identified in a variety of cancers. An increasing number of studies have found the critical role of lncRNAs in the regulation of cellular processes, such as proliferation, invasion and differentiation. Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) is a novel lncRNA that was primarily detected in papillary thyroid carcinoma. However, the biological function and molecular mechanism of lncRNA PTCSC3 in glioma are still unknown.
METHODS: The expression level of lncRNA PTCSC3 in human microglia and glioma cell lines was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The influence of lncRNA PTCSC3 on cell proliferation were studied using the cell counting kit-8, and cell cycle and apoptosis were analyzed by flow cytometry assays. The migration and invasion abilities were investigated by transwell and wound healing assays. The target genes of lncRNA PTCSC3 were explored by qRT-PCR, immunofluorescence and western blot.
RESULTS: LncRNA PTCSC3 was significantly downregulated in glioma cell lines. The overexpression of lncRNA PTCSC3 suppressed proliferation and induced apoptosis in U87 and U251 cells. Additionally, the overexpression of lncRNA PTCSC3 inhibited the migration and invasion of U87 and U251 cells. Moreover, lncRNA PTCSC3 inhibited the epithelial-mesenchymal transition of U87 cells. The study also demonstrated that LRP6, as a receptor of the Wnt/β-catenin pathway, was a target of lncRNA PTCSC3. By evaluating the expression levels of Axin1, active β-catenin, c-myc, and cyclin D1, the study indicated that lncRNA PTCSC3 inhibited the activation of the Wnt/β-cateninpathway through targeting LRP6.
CONCLUSIONS: LncRNA PTCSC3 inhibits the proliferation and migration of glioma cells and suppresses Wnt/β-catenin signaling pathway by targeting LRP6. LncRNA PTCSC3 is a potential therapeutic target for treatment of glioma.

Ryu SH, Heo SH, Park EY, et al.
Selumetinib Inhibits Melanoma Metastasis to Mouse Liver via Suppression of EMT-targeted Genes.
Anticancer Res. 2017; 37(2):607-614 [PubMed] Related Publications
AIM: We investigated the therapeutic effects of a mitogen-activated protein (MEK) inhibitor, selumetinib, in a hepatic melanoma metastasis model and studied its possible mechanism of action.
MATERIALS AND METHODS: Melanoma cell lines were exposed to selumetinib under different experimental conditions. We established a mouse model of liver metastasis and treated mice orally with vehicle or selumetinib and then evaluated metastasis progress.
RESULTS: Growth inhibition was observed in melanoma cells as a consequence of G1-phase cell-cycle arrest and the subsequent induction of apoptosis in a dose- and time-dependent manner. Mice with established liver metastases that were treated with selumetinib exhibited significantly less tumor progression than vehicle-treated mice. c-Myc expression in metastasized liver tissues were suppressed by selumetinib. Moreover, oral treatment with selumetinib modulated expression of epithelial-to-mesenchymal transition- and metastasis-related genes, including integrin alpha-5 (ITGA5), jagged 1 (JAG1), zinc finger E-box-binding homeobox 1 (ZEB1), NOTCH, and serpin peptidase inhibitor clade E (SERPINE1).
CONCLUSION: We established a mouse model of hepatic metastasis using a human melanoma cell line, such models are essential in elucidating the therapeutic effects of anti-metastatic drugs. Our data suggest the possibility that selumetinib presents a new strategy to treat liver metastasis in patients with melanoma by suppressing epithelial-to-mesenchymal transition-related genes.

Veigas B, Pinto J, Vinhas R, et al.
Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform.
Biosens Bioelectron. 2017; 91:788-795 [PubMed] Related Publications
Ion sensitive field-effect transistors (ISFET) are the basis of radical new sensing approaches. Reliable molecular characterization of specific detection of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. Devices and strategies for biomolecular recognition and detection should be developed into reliable and inexpensive platforms. Here, we describe the development of a flexible thin-film sensor for label free gene expression analysis. A charge modulated ISFET based sensor was integrated with real-time DNA/RNA isothermal nucleic acid amplification: Loop-mediated isothermal amplification (LAMP) and Rolling Circle Amplification (RCA) techniques for c-MYC and BCR-ABL1 genes, allowing for the real-time quantification of template. Also, RCA allowed the direct quantification of RNA targets at room temperature, eliminating the requirement for external temperature controllers and overall complexity of the molecular diagnostic approach. This integration between the biological and the sensor/electronic approaches enabled the development of an inexpensive and direct gene expression-profiling platform.

Liang S, Zhang S, Wang P, et al.
LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling.
Gene. 2017; 608:49-57 [PubMed] Related Publications
Oral squamous cell carcinoma (OSCC) is one the most common cancer affecting the head and neck region, and the molecular mechanisms underlying OSCC development is largely unknown. Long non-coding RNAs (lncRNAs) are emerging as key regulators in tumor development. The present study aimed to investigate the role of lncRNA, taurine upregulated gene 1 (TUG1) in OSCC development. The mRNA and protein expression levels were determined by qRT-PCR and western blotting; flow cytometry and ELISA experiments were employed to examine the cell apoptosis; CCK-8 assay, MTT assay, colony formation assay, and cell invasion assay was used to determine cell growth, cell proliferation and cell invasion, respectively. qRT-PCR results showed that TUG1 was up-regulated in both OSCC tissues and cell lines. The high expression level of TUG1 was significantly correlated with TNM stage, lymph node metastasis and tumor grade in OSCC patients. CCK-8 assay, MTT assay, colony formation assay, and cell invasion assay results showed that knock-down of TUG1 by siRNA transfection suppressed cell growth, cell proliferation, and cell invasion in OSCC cell lines (Tca8113 and TSCCA). The cell apoptosis was induced in Tca8113 and TSCCA cells transfected with TUG1 siRNA. In addition, knock-down of TUG1 in Tca8113 and TSCCA cells significantly suppressed the mRNA and protein expression levels of β-catenin, cyclin D1, and c-myc. Wnt/β-catenin pathway activator (LiCl) reversed the TUG1 knock-down effect on cell proliferation, cell invasion and cell apoptosis in Tca8113 and TSCCA cells. In summary, knock-down of TUG1 suppressed cell growth, proliferation and invasion, and also induced apoptosis of OSCC possibly via targeting Wnt/β-catenin signaling. Our data suggest that knock-down of TUG1 may represent a novel therapeutic target for the management of OSCC.

Kumar Mongre R, Sharma N, Singh Sodhi S, et al.
Novel phyto-derivative BRM270 inhibits hepatocellular carcinoma cells proliferation by inducing G2/M phase cell cycle arrest and apoptosis in xenograft mice model.
Biomed Pharmacother. 2017; 87:741-754 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a major threat to human health worldwide and development of novel antineoplastic drug is demanding task. BRM270 is a proprietary combination of traditional medicinal herbs, has been shown to be effective against a wide range of stem-like cancer initiating cells (SLCICs). However, the underlying mechanism and antitumor efficacy of BRM270 in human hepatocellular carcinoma (HCC) cells have not been well elucidated till date. Here we studied the tumoricidal effect of BRM270 on human-CD133(+) expressing stem-like HepG-2 and SNU-398 cells. Gene expression profiling by qPCR and specific cellular protein expressions was measured using immunocytochemistry/western blot analysis. In vivo efficacy of BRM270 has been elucidated in the SLCICs induced xenograft model. In addition, 2DG-(2-Deoxy-d-Glucose) optical-probe guided tumor monitoring was performed to delineate the size and extent of metastasized tumor. Significant (P<0.05) induction of Annexin-V positive cell population and dose-dependent upregulation of caspase-3 confirmed apoptotic cell death by pre/late apoptosis. In addition, bright field and fluorescence microscopy of treated cells revealed apoptotic morphology and DNA fragmentation in Hoechst33342 staining. Levels of c-Myc, Bcl-2 and c-Jun as invasive potential apoptotic marker were detected using qPCR/Western blot. Moreover, BRM270 significantly (P<0.05) increased survival rate that observed by Kaplan-Meier log rank test. In conclusion, these results indicate that BRM270 can effectively inhibit proliferation and induce apoptosis in hepatoma cells by down-regulating CyclinD1/Bcl2 mediated c-Jun apoptotic pathway.

Lu Y, Li Y, Chai X, et al.
Long noncoding RNA HULC promotes cell proliferation by regulating PI3K/AKT signaling pathway in chronic myeloid leukemia.
Gene. 2017; 607:41-46 [PubMed] Related Publications
Aberrant expression of long noncoding RNA (lncRNA) HULC is associated with various human cancers. However, the role of HULC in chronic myeloid leukemia (CML) is unknown. In this study, we found that HULC was remarkably overexpressed in both leukemia cell lines and primary hematopoietic cells derived from CML patients. The increase in HULC expression was positively correlated with clinical stages in CML. Moreover, the knockdown of HULC significantly inhibited CML cell proliferation and induced apoptosis by repressing c-Myc and Bcl-2. Furthermore, inhibition of HULC enhanced imatinib-induced apoptosis of CML cells. Further experiments demonstrated that HULC silencing markedly suppressed the phosphorylation of PI3K and AKT, indicating that enhancement of imatinib-induced apoptosis by HULC inhibition is related with the reduction of c-Myc expression and inhibition of PI3K/Akt pathway activity. Furthermore, HULC could modulate c-Myc and Bcl-2 by miR-200a as an endogenous sponge. Taken together, these results reveal that HULC promotes oncogenesis in CML and suggest a potential strategy for the CML treatment.

Zamani-Ahmadmahmudi M, Aghasharif S, Ilbeigi K
Prognostic efficacy of the human B-cell lymphoma prognostic genes in predicting disease-free survival (DFS) in the canine counterpart.
BMC Vet Res. 2017; 13(1):17 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Canine B-cell lymphoma is deemed an ideal model of human non-Hodgkin's lymphoma where the lymphomas of both species share similar clinical features and biological behaviors. However there are some differences between tumor features in both species. In the current study, we sought to evaluate the prognostic efficacy of human B-cell lymphoma prognostic gene signatures in canine B-cell lymphoma.
METHODS: The corresponding probe sets of 36 human B-cell lymphoma prognostic genes were retrieved from 2 canine B-cell lymphoma microarray datasets (GSE43664 and GSE39365) (76 samples), and prognostic probe sets were thereafter detected using the univariate and multivariate Cox proportional-hazard model and the Kaplan-Meier analysis. The two datasets were employed both as training sets and as external validation sets for each other. Results were confirmed using quantitative real-time PCR (qRT-PCR) analysis.
RESULTS: In the univariate analysis, CCND1, CCND2, PAX5, CR2, LMO2, HLA-DQA1, P53, CD38, MYC-N, MYBL1, and BIRCS5 were associated with longer disease-free survival (DFS), while CD44, PLAU, and FN1 were allied to shorter DFS. However, the multivariate Cox proportional-hazard analysis confirmed CCND1 and BIRCS5 as prognostic genes for canine B-cell lymphoma. qRT-PCR used for verification of results indicated that expression level of CCND1 was significantly higher in B-cell lymphoma patients with the long DFS than ones with the short DFS, while expression level of BIRCS5 wasn't significantly different between two groups.
CONCLUSION: Our results confirmed CCND1 as important gene that can be used as a potential predictor in this tumor type.

Xu W, Chang J, Liu G, et al.
Knockdown of FOXR2 suppresses the tumorigenesis, growth and metastasis of prostate cancer.
Biomed Pharmacother. 2017; 87:471-475 [PubMed] Related Publications
Fork-head box R2 (FOXR2), a member of FOX protein family, was reported to play important roles in the development and progression of cancers. However, the expression and function of FOXR2 in prostate cancer remain unclear. In this study, we investigated the role of FOXR2 in prostate cancer and cancer progression including the molecular mechanism that drives FOXR2-mediated oncogenesis. Our results showed that FOXR2 was overexpressed in prostate cancer cell lines. The in vitro experiments demonstrated that knockdown of FOXR2 significantly repressed the proliferation, migration and invasiveness of prostate cancer cells. Furthermore, the in vivo experiments indicated that knockdown of FOXR2 significantly attenuated prostate cancer growth. Finally, knockdown of FOXR2 significantly down-regulated the protein expression levels of β-catenin, cyclinD1 and c-Myc in DU-145 cells. Taken together, our results demonstrated for the first time that FOXR2 plays a critical role in cell proliferation and invasion, at least in part, through inhibiting the Wnt/β-catenin signaling pathway during prostate cancer progression. Thus, FOXR2 may be an attractive therapeutic target for the treatment of prostate cancer.

Oliveira CC, Maciel-Guerra H, Kucko L, et al.
Double-hit lymphomas: clinical, morphological, immunohistochemical and cytogenetic study in a series of Brazilian patients with high-grade non-Hodgkin lymphoma.
Diagn Pathol. 2017; 12(1):3 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Double-hit lymphomas (DHL) are rare high-grade neoplasms characterized by two translocations: one involving the gene MYC and another involving genes BCL2 or BCL6, whose diagnosis depends on cytogenetic examination. This research studied DHL and morphological and/or immunophenotypic factors associated with the detection of these translocations in a group of high-grade non-Hodgkin lymphoma cases.
METHOD: Clinical and morphological reviews of 120 cases diagnosed with diffuse large B-cell lymphoma and Burkitt lymphoma were conducted. Immunohistochemistry (CD20, CD79a, PAX5, CD10, Bcl6, Bcl2, MUM1, TDT and Myc) and fluorescence in situ hybridization for detection of MYC, BCL2 and BCL6 gene translocations were performed in a tissue microarray platform.
RESULTS: Three cases of DHL were detected: two with translocations of MYC and BCL2 and one with translocations of MYC and BCL6, all leading to death in less than six months. Among 90 cytogenetically evaluable biopsies, associations were determined between immunohistochemistry and fluorescence in situ hybridization for MYC (p = 0.036) and BCL2 (p = 0.001). However, these showed only regular agreement, indicated by Kappa values of 0.23 [0.0;0.49] and 0.35 [0.13;0.56], respectively. "Starry sky" morphology was strongly associated with MYC positivity (p = 0.01). The detection of three cases of DHL, all resulting in death, confirms the rarity and aggressiveness of this neoplasm.
CONCLUSIONS: The "starry sky" morphological pattern and immunohistochemical expression of Myc and Bcl2 represent possible selection factors for additional cytogenetic diagnostic testing.

Miao Y, Lin P, Wang W, et al.
CCND1-IGH Fusion-Amplification and MYC Copy Number Gain in a Case of Pleomorphic Variant Mantle Cell Lymphoma.
Am J Clin Pathol. 2016; 146(6):747-752 [PubMed] Related Publications
OBJECTIVES: Mantle cell lymphoma (MCL) may present de novo or undergo progression to a clinically aggressive variant, known as a blastoid or pleomorphic variant. We report an unusual case of classic MCL in a 78-year-old man with a typical immunophenotype, including CD5 positivity, who subsequently relapsed with CD5-negative pleomorphic variant MCL.
METHODS: Biopsy specimens were evaluated using Wright-Giemsa-stained or H&E-stained sections, flow cytometry, immunohistochemistry, conventional cytogenetic, next-generation sequencing, and fluorescence in situ hybridization.
RESULTS: The patient continued to be refractory to intensive chemotherapy and radiation therapy. Initial conventional cytogenetic analysis showed a complex karyotype with amplification of the CCND1-IGH fusion gene on the der(14): 44, Y, t(X;2)(p22.3;q21), del(2)(p21), del(6)(p23), add(7)(p22),-9, del(9)(p22), add(11)(q13),-13, add(14)(p11.2), der(14)t(11;14)(q13;q32)hsr(14)(q32), add(18)(q23), add(21)(p11.1),-22,+mar[12]. A repeat biopsy revealed MCL, pleomorphic variant, with loss of CD5 expression and extra copies of the MYC CONCLUSIONS: CCND1-IGH fusion-amplification with MYC copy number gain is extremely rare and may play a role in disease progression in a subset of MCL cases.

Rodriguez-Salas N, Dominguez G, Barderas R, et al.
Clinical relevance of colorectal cancer molecular subtypes.
Crit Rev Oncol Hematol. 2017; 109:9-19 [PubMed] Related Publications
Colorectal cancer (CRC) is characterized by alteration of critical pathways such TP53 inactivation, BRAF, PI3CA mutations, APC inactivation, KRAS, TGF-β, CTNNB mutations, disregulation of Epithelial to mesnechymal transition (EMT) genes, WNT signaling activation, MYC amplification, and others. Differences in these molecular events results in differences in phenotypic characteristics of CRC, that have been studied and classified by different models of molecular subtypes. It could have potential applications to prognosis, but also to therapeutical approaches of the CRC patients. We review and summarized the different molecular classifications and try to clarify their clinical and therapeutical relevance.

Zhang H, Zhao JH, Suo ZM
Knockdown of HOXA5 inhibits the tumorigenesis in esophageal squamous cell cancer.
Biomed Pharmacother. 2017; 86:149-154 [PubMed] Related Publications
Homeobox A5 (HOXA5) is a member of the homeobox (HOX) family and was upregulated in many types of tumors. However, its expression and role in esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, the aim of this study was to investigate the expression and function of HOXA5 in ESCC. Our results showed that HOXA5 was highly expressed in ESCC cell lines. The in vitro experiments demonstrated that knockdown of HOXA5 significantly inhibited the proliferation, migration and invasion of ESCC cells. Furthermore, the in vivo experiments showed that knockdown of HOXA5 significantly inhibited the tumor growth of ESCC in mice xenograft model. Finally, sh-HOXA5 inhibited the expression of β-catenin, cyclin D1 and c-Myc in ESCC cells. Taken together, these data revealed that knockdown of HOXA5 suppressed the proliferation and metastasis partly by interfering with Wnt/β-catenin signaling pathway in ESCC cells. Therefore, these findings suggest that HOXA5 may be a potential therapeutic target for the treatment of ESCC.

Pectasides D, Kotoula V, Papaxoinis G, et al.
Expression Patterns of Growth and Survival Genes with Prognostic Implications in Advanced Pancreatic Cancer.
Anticancer Res. 2016; 36(12):6347-6356 [PubMed] Related Publications
AIM: The aim of this study was to evaluate the mRNA expression pattern of growth- and survival-related genes and assess their prognostic significance in patients with advanced pancreatic cancer.
PATIENTS AND METHODS: In total, 98 patients were included in this retrospective translational research study and were evaluated for Kirsten rat sarcoma viral oncogene homolog (KRAS) mutational status, and v-akt murine thymoma viral oncogene homolog 1 (AKT1), AKT serine/threonine kinase 2 (AKT2), AKT serine/threonine kinase 3 (AKT3), cyclin D1 (CCND1), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), hepatocellular growth factor receptor (MET), avian myelomatosis viral oncogene homolog (MYC), nuclear factor kappa B subunit 1 (NFKb1), phosphatase and tensin homolog (PTEN) and mechanistic target of rapamycin (FRAP1) genes mRNA expression. Among these patients, 73 received first-line gemcitabine combined with erlotinib (N=57) or gefitinib (N=16).
RESULTS: KRAS mutation did not correlate with mRNA gene expression. Unsupervised hierarchical clustering according to mRNA gene expression successfully distinguished four prognostically distinct groups of tumors. Overexpression of all genes was associated with best prognosis, while suppression or heterogeneous expression patterns of the examined genes were associated with expression patterns of growth- and survival-related genes, classifying pancreatic tumors into distinct groups with possibly different outcomes.

Olofson AM, Loo EY, Hill PA, Liu X
Plasmablastic lymphoma mimicking carcinomatosis: A case report and review of the literature.
Diagn Cytopathol. 2017; 45(3):243-246 [PubMed] Related Publications
First identified as a distinct disease entity in HIV-positive patients, plasmablastic lymphoma is a rare aggressive disease which arises predominantly in men and is associated with immunodeficiency of all causes. Although its exact etiology is poorly understood, Epstein-Barr virus infection and MYC gene aberrations have been implicated in its development in both HIV-positive and HIV-negative patients. The disease typically involves extranodal sites with a predilection for the oral cavity but may occur in other locations. Here we present a case of plasmablastic lymphoma diffusely involving the omentum and peritoneal cavity of an immunocompetent woman, clinically mimicking an ovarian carcinomatosis. To the best of our knowledge, this is the first case in which plasmablastic lymphoma has presented as peritoneal lymphomatosis. Diagn. Cytopathol. 2017;45:243-246. © 2016 Wiley Periodicals, Inc.

Zhang D, Zhao Q, Sun H, et al.
Defective autophagy leads to the suppression of stem-like features of CD271(+) osteosarcoma cells.
J Biomed Sci. 2016; 23(1):82 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: As an important stress-response mechanism, autophagy plays crucial role in the tumor formation and drug resistance of cancer cells including osteosarcoma (OS). OS cancer stem cells (CSCs) also are considered a key factor of tumorigenesis, drug resistance and tumor recurrence. However, the relationship between autophagy and OS CSCs still remains unclear.
METHODS: CD271+ OS CSCs and CD271- OS cells were isolated by magnetic activated cell sorting. The autophagy level was evaluated by the mRNA expression of autophagy genes, the protein level of LC3II and p62, and the mean number of GFP-LC3 dot per cell. Lentivirus-delivered specific shRNA was utilized to inhibit the corresponding gene expression. The cell viability was examined with CCK8 assay. The cell proliferation level was detected with BrdU staining assay. Cell death was determined by Annexin V/PI double staining of fluorescence activated cell sorting, lactate dehydrogenase release and caspase-3 activity. Tumorigenicity ability was evaluated by colony and sphere formation assay, the protein expression of stemness markers and tumor formation in nude mice.
RESULTS: Our data indicated that CD271+ OS CSCs had a similar basic autophagy level with CD271- OS cells. Autophagy deficiency had no observable effects on the levels of cell proliferation and death both in CD271+ and CD271- OS cells under normal condition. However, CD271+ OS cells showed a higher autophagy activity than CD271- OS cells under hypoxia and low nutrient (LH) condition. Moreover, autophagy-deficient CD271+ OS cells lost the advantage of tolerance to LH condition compared to CD271- OS cells. Meanwhile, autophagy deficiency enhanced the sensitivity to chemotherapeutics in the CD271+ cells to the comparable level in the CD271- cells. More importantly, deficient-autophagy decreased the protein expression of stemness markers and caused the disappearance of the superiority in tumorigenicity in vitro and vivo in CD271+ OS cells.
CONCLUSION: The results above demonstrated that autophagy contributes to the stem-like features of CD271+ OS CSCs. Inhibition of autophagy is a promising strategy in the CSCs-targeting OS therapy.

Wyrwas M, Michel J, Guibaud I, et al.
Burkitt cells on a peripheral blood smear: how to deal with?
Ann Biol Clin (Paris). 2016; 74(6):697-703 [PubMed] Related Publications
The diagnosis of double hit lymphoma remains a challenge for the biologist for a good management of the patient. This new category of lymphoma "double hit" (DH) is part of a new entity of the WHO classification 2008: « Unclassifiable B lymphoma with features intermediate between diffuse large cell B lymphoma and Burkitt's lymphoma ». It is defined by the presence of a breakpoint at the locus 8q24 of the c-MYC gene associated with a recurrent translocation involving BCL2 genes primarily BCL6 or more rarely CCDN1 or BCL3 genes. These chromosomal alterations are not systematically screened at diagnosis, which can cause misdiagnosis and poor therapy management. These lymphomas DH have variable cytology and may be confused with Burkitt lymphoma (BL) or with diffuse large B-cell lymphoma (DLBCL). They have a very poor prognosis and are often resistant to chemotherapy. Their therapy and their prognosis are different from those of the BL or the DLBCL. This entity and its morphology as well as histology either immunophenotypic or cytogenetic characteristics must therefore be known to biologists, pathologists, and clinicians. Cooperation between the various actors in these disciplines is essential in case of atypical BL or DLBCL to lead to a precise classification of the pathology.

Lei ST, Shen F, Chen JW, et al.
MiR-639 promoted cell proliferation and cell cycle in human thyroid cancer by suppressing CDKN1A expression.
Biomed Pharmacother. 2016; 84:1834-1840 [PubMed] Related Publications
Accumulating evidence has indicated that aberrantly expressed microRNAs (miRs) are extensively involved in cancer development and progression. MiR-639 has been reported to act as tumor promoter in various types of cancer. However, the biological function and underlying molecular mechanism of miR-639 in thyroid carcinoma (TC) have not been intensively investigated. Herein the present study aimed to investigate the functional role of miR-639 in TC. We found that miR-639 expression was upregulated in TC cells and clinical tissues. Overexpression of miR-639 promoted TC cell proliferation and cell cycle, with increased expression of CyclinE and c-myc, whereas miR-639-in reverses the function. Using prediction software and luciferase reporter assay, we found that CDKN1A was a target of miR-639. CDKN1A small interfering RNA (siRNA) abrogated the role of miR-639-in on cell proliferation of TC. In summary, our data demonstrated that miR-639 upregulation was associated with development of TC, miR-639 promoted cell proliferation and cell cycle by targeting CDKN1A in TC.

Rahman FU, Ali A, Khan IU, et al.
Novel phenylenediamine bridged mixed ligands dimetallic square planner Pt(II) complex inhibits MMPs expression via p53 and caspase-dependent signaling and suppress cancer metastasis and invasion.
Eur J Med Chem. 2017; 125:1064-1075 [PubMed] Related Publications
Novel phenylenediamine bridged mixed ligands dimetallic square planner Pt(II) complex (L-Pt-Py) was synthesized from simple commercially available precursors in good yield and characterized by (1)H, (13)C, 2D NOESY NMR and high resolution mass spectrometry (HR-ESI-MS). The stability of L-Pt-Py was checked by (1)H NMR in mixed DMSO-d6/D2O solvents. L-Pt-Py showed considerable in vitro cytotoxicity in lung (A549), breast (MCF-7) and liver (HepG2) cancer cell lines and strong in vivo growth inhibition in Escherichia coli (E. coli). These results were compared to the well-known market available platinum anticancer drug cisplatin. L-Pt-Py has strong ability to suppress the growth of multiple cancer cells. Mechanistically, it enhanced p53 protein expression and regulated p53-dependent genes expression such as p21, PUMA, MYC and hTERT. The TUNEL assay showed that L-Pt-Py induced cell death in cancer cells. Inhibition of caspase signaling with caspase inhibitor Z-VAD-FMK suggested that cell death induced by this complex was caspase-dependent. Importantly, L-Pt-Py has the ability to suppress the invasion and migration of human lung and luminal-like breast cancer cells. Similarly L-Pt-Py suppressed the expression of several matrix metalloproteinases (MMPs) such as MMP-1, MMP-2, MMP-3, MMP-7 and MMP-9 to inhibit lung and breast cancer cell metastasis. L-Pt-Py showed stronger inhibitory effects on bacterial growth and also resulted in filamentous morphology of bacterial cells. The gel electrophoresis study of DNA migration revealed the strong interaction of L-Pt-Py with DNA. Taken altogether, L-Pt-Py was highly stable and the in vitro and in vivo biological study results corroborated this complex to be effective anticancer agent.

Wang Y, Chen C, Wang X, et al.
Lower DSC1 expression is related to the poor differentiation and prognosis of head and neck squamous cell carcinoma (HNSCC).
J Cancer Res Clin Oncol. 2016; 142(12):2461-2468 [PubMed] Related Publications
PURPOSE: Although desmocollins have an important position in cancer-related research, there are little reports about the relations between cancers and desmocollin 1 (DSC1). The present study was designed to investigate the correlations between DSC1 and head and neck squamous cell carcinoma (HNSCC).
METHODS: First we analyzed the GEO database; then, HNSCC and pericarcinous tissues were collected to verify the results. DSC1 expression was detected by western blot and real-time PCR. The co-expression genes of DSC1 were extracted from Cancer Cell Line Encyclopedia database (CCLE database), and their correlation was analyzed in The Cancer Genome Atlas HNSCC database (TCGA HNSCC database). Next the gene ontology analysis (GO) was carried out. Moreover, we suppressed DSC1 in FaDu cell to investigate the internal mechanism.
RESULTS: GEO database showed that DSC1 was higher in HNSCC and patients with higher DSC1 had unfavorable prognosis. The results of the samples showed that DSC1 was significantly higher in HNSCC than in normal tissue, which was consistent with the results of GEO database. The co-expression genes of DSC1 were extracted from CCLE database and verified in TCGA HNSCC database. It revealed that DSC1 was related to cell signal transduction. In FaDu/siDSC1 cells, the proliferation and migration were decreased compared to FaDu cells, and the expression levels of β-catenin, c-myc and cyclin D1 down-regulated significantly.
CONCLUSIONS: The increased expression of DSC1 can promote the occurrence of HNSCC and is associated with tumor. The increased expression of DSC1 also indicates a poor prognosis of the patients with HNSCC.

Guo S, Bai Q, Rohr J, et al.
Clinicopathological features of primary diffuse large B-cell lymphoma of the central nervous system - strong EZH2 expression implying diagnostic and therapeutic implication.
APMIS. 2016; 124(12):1054-1062 [PubMed] Related Publications
Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a rare entity which is difficult to diagnose and treat. The histone methyltransferase EZH2 was reported to be involved in the tumorigenesis of systemic DLBCL but has not been implicated in primary CNS DLBCL. The clinicopathological features of 33 cases of primary CNS DLBCL and expression of EZH2 and Y641 mutation were assessed. The tumor cells of the majority cases resembled centroblasts, and intriguingly, three cases of rare anaplastic variant were observed. Immunophenotypically, 25/33 (75.8%) cases were non-germinal center B-cell-like type. Several cases (10/33; 30.3%) co-expressed BCL2 and MYC, 6/33 (18.2%) expressed both BCL6 and MYC, and 5/33 (15.2%) expressed BCL2, BCL6, and MYC. MYC expression alone and BCL2/MYC co-expression were associated with poor prognosis. EZH2 was strongly expressed in all 33 cases independent of Y641 mutation and was significantly associated with the tumor proliferative index Ki67. However, no association was found between the level of EZH2 expression and outcomes of patients. In summary, the clinicopathological features including three rare anaplastic variant of primary CNS DLBCL are described. Strong expression of EZH2 in all the primary CNS DLBCL and association with high proliferative index provides further information for treatment and diagnosis of this distinctive entity.

Micale MA, Embrey B, Macknis JK, et al.
Constitutional 560.49 kb chromosome 2p24.3 duplication including the MYCN gene identified by SNP chromosome microarray analysis in a child with multiple congenital anomalies and bilateral Wilms tumor.
Eur J Med Genet. 2016; 59(12):618-623 [PubMed] Related Publications
Fewer than 100 patients with partial chromosome 2p trisomy have been reported. Clinical features are variable and depend on the size of the duplicated segment, but generally include psychomotor delay, facial anomalies, congenital heart defect, and other abnormalities. We report a 560.49 kb duplication of chromosome 2p in a 13 month-old male with hydrocephaly, ventricular septal defect, partial agenesis of the corpus callosum, and bilateral Wilms tumor. After discovery of bilateral renal masses at four months of age, the child underwent neoadjuvant chemotherapy followed by right radical nephrectomy that revealed triphasic Wilms' tumor. A needle core biopsy on one of two lesions on the left kidney also revealed Wilms tumor. A partial left nephrectomy revealed focally positive margins that necessitated left flank radiotherapy. The tumor karyotype was 46,XY,t(7;8)(q36;p11)[8]/46,XY [12] while his constitutional karyotype was 46,XY, suggesting that the t(7;8)(q36;p11) was associated with the malignancy. Single nucleotide polymorphism (SNP) chromosome microarray analysis of peripheral blood identified a maternally-inherited 560.49 kb chromosome 2p24.3 duplication that involved four OMIM genes: NBAS, DDX1, MYCNOS, and MYCN. SNP array analysis of the tumor revealed the same 2p24.3 duplication. At present, the now 5-year-old boy continues to do well without clinical or radiographic evidence of recurrent disease. This case is instructive because the child's health insurer initially denied authorization for chromosome microarray analysis (CMA), and it took more than one year before such authorization was finally granted. That initial decision to deny coverage could have had untoward health implications for this child, as the identification of constitutional MYCN duplication necessitated surveillance imaging for a number of pediatric malignancies associated with MYCN overexpression/dysregulation.

Zhou B, Wang J, Zheng G, Qiu Z
Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21.
Food Chem Toxicol. 2016; 97:375-384 [PubMed] Related Publications
Urolithins are bioactive ellagic acid-derived metabolites produced by human colonic microflora. Although previous studies have demonstrated the cytotoxicity of urolithins, the effect of urolithins on miRNAs is still unclear. In this study, the suppressing effects of methylated urolithin A (mUA) on cell viability in human prostate cancer DU145 cells was investigated. mUA induced caspase-dependent cell apoptosis, mitochondrial depolarization and down-regulation of Bcl-2/Bax ratio. The results showed that upon exposure to mUA, miR-21 expression was decreased and the expression of PTEN and Pdcd4 protein was elevated. mUA could further suppress Akt phosphorylation and increase protein expression of FOXO3a, and the effects of mUA on Akt phosphorylation and protein expression of FOXO3a were blocked by PTEN silence. Moreover, mUA suppressed the Wnt/β-catenin-mediated transcriptional activation of MMP-7 and c-Myc, and this function of mUA on MMP-7 and c-Myc was attenuated by over-expression of miR-21. In conclusion, our data suggest that mUA can suppress cell viability in DU145 cells through modulating miR-21 and its downstream series-wound targets, including PTEN, Akt and Wnt/β-catenin signaling.

Kitade S, Onoyama I, Kobayashi H, et al.
FBXW7 is involved in the acquisition of the malignant phenotype in epithelial ovarian tumors.
Cancer Sci. 2016; 107(10):1399-1405 [PubMed] Free Access to Full Article Related Publications
FBXW7 is a ubiquitin ligase that mediates ubiquitylation of oncoproteins, such as c-Myc, cyclin E, Notch and c-Jun. FBXW7 is a known tumor-suppressor gene, and mutations in FBXW7 have been reported in various human malignancies. In this study, we examined the sequences of the FBXW7 and p53 genes in 57 ovarian cancer clinical samples. Interestingly, we found no FBXW7 mutations associated with amino acid changes. We also investigated FBXW7 expression levels in 126 epithelial ovarian tumors. FBXW7 expression was negatively correlated with the malignant potential of ovarian tumors. That is to say, FBXW7 expression levels in ovarian cancer samples were significantly lower than those in borderline and benign tumors (P < 0.01). FBXW7 expression levels in serous carcinoma samples were the lowest among four major histological subtypes. In addition, p53-mutated ovarian cancer samples showed significantly lower levels of FBXW7 expression compared with p53 wild-type cancer samples (P < 0.001). DNA methylation arrays and bisulfite PCR sequencing experiments revealed that 5'-upstream regions of FBXW7 gene in p53-mutated samples were significantly higher methylated compared with those in p53 wild-type samples (P < 0.01). This data indicates that p53 mutations might suppress FBXW7 expression through DNA hypermethylation of FBXW7 5'-upstream regions. Thus, FBXW7 expression was downregulated in ovarian cancers, and was associated with p53 mutations and the DNA methylation status of the 5'-upstream regions of FBXW7.

Chen Z, Tang J, Cai X, et al.
HBx mutations promote hepatoma cell migration through the Wnt/β-catenin signaling pathway.
Cancer Sci. 2016; 107(10):1380-1389 [PubMed] Free Access to Full Article Related Publications
HBx mutations (T1753V, A1762T, G1764A, and T1768A) are frequently observed in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development of HCC. However, activation of the Wnt/β-catenin signaling pathway by HBx mutants has not been studied in hepatoma cells or HBV-associated HCC samples. In this study, we examined the effects of HBx mutants on the migration and proliferation of HCC cells and evaluated the activation of Wnt/β-catenin signaling in HBx-transfected HCC cells and HBV-related HCC tissues. We found that HBx mutants (T, A, TA, and Combo) promoted the migration and proliferation of hepatoma cells. The HBx Combo mutant potentiated TOP-luc activity and increased nuclear translocation of β-catenin. Moreover, the HBx Combo mutant increased and stabilized β-catenin levels through inactivation of glycogen synthase kinase-3β, resulting in upregulation of downstream target genes such as c-Myc, CTGF, and WISP2. Enhanced activation of Wnt/β-catenin was found in HCC tissues with HBx TA and Combo mutations. Knockdown of β-catenin effectively abrogated cell migration and proliferation stimulated by the HBx TA and Combo mutants. Our results indicate that HBx mutants, especially the Combo mutant, allow constitutive activation of the Wnt signaling pathway and may play a pivotal role in HBV-associated hepatocarcinogenesis.

Pietsch T, Haberler C
Update on the integrated histopathological and genetic classification of medulloblastoma - a practical diagnostic guideline.
Clin Neuropathol. 2016 Nov/Dec; 35(6):344-352 [PubMed] Free Access to Full Article Related Publications
The revised WHO classification of tumors of the CNS 2016 has introduced the concept of the integrated diagnosis. The definition of medulloblastoma entities now requires a combination of the traditional histological information with additional molecular/genetic features. For definition of the histopathological component of the medulloblastoma diagnosis, the tumors should be assigned to one of the four entities classic, desmoplastic/nodular (DNMB), extensive nodular (MBEN), or large cell/anaplastic (LC/A) medulloblastoma. The genetically defined component comprises the four entities WNT-activated, SHH-activated and TP53 wildtype, SHH-activated and TP53 mutant, or non-WNT/non-SHH medulloblastoma. Robust and validated methods are available to allow a precise diagnosis of these medulloblastoma entities according to the updated WHO classification, and for differential diagnostic purposes. A combination of immunohistochemical markers including β-catenin, Yap1, p75-NGFR, Otx2, and p53, in combination with targeted sequencing and copy number assessment such as FISH analysis for MYC genes allows a precise assignment of patients for risk-adapted stratification. It also allows comparison to results of study cohorts in the past and provides a robust basis for further treatment refinement.
.

Liu J, Keisling MP, Samkari A, et al.
Malignant glioma with primitive neuroectodermal tumor-like component (MG-PNET): novel microarray findings in a pediatric patient.
Clin Neuropathol. 2016 Nov/Dec; 35(6):353-367 [PubMed] Related Publications
Central nervous system (CNS) tumors exhibiting dual features of malignant glioma (MG) and primitive neuroectodermal tumor (PNET) are rare and diagnostically challenging. Previous studies have shown that MG-PNET carry MYCN or MYC gene amplifications within the PNET component concomitant with glioma-associated alterations, most commonly 10q loss, in both components [9]. Here we confirm and extend the profile of molecular genetic findings in a MG-PNET involving the left frontal lobe of a 12-year-old male. Histologically, the PNET-like component showed morphological features akin to anaplastic medulloblastoma highlighted by widespread immunoreactivity for βIII-tubulin (TUBB3) and nonphosphorylated neurofilament protein, and to a lesser degree, Neu-N, synaptophysin, and CD99, whereas the gliomatous component was demarcated by glial fibrillary acidic protein (GFAP) labeling. Immunohistochemical labeling with an anti-H3K27M mutant-specific antibody was not detectable in either gliomatous and/or PNET-like areas. Interphase fluorescent in situ hybridization (FISH) study on touch preparations from frozen tumor and formaldehyde-fixed, paraffin-embedded histological sections showed amplification of MYC in both PNET-like and gliomatous areas. Single nucleotide polymorphism (SNP) microarray analysis revealed that the tumor carried gains of multiple chromosomes and chromosome arms, losses of multiple chromosomes and chromosome arms, gains of multiple chromosomal segments (not limited to amplification of chromosomal segments 4q12 including PDGFRA, and 8q24.21 including MYC), and a hitherto unreported chromothripsis-like abnormality on chromosome 8. No mutations were identified for IDH1, IDH2, or BRAF genes by sequence analysis. The molecular genetic findings support the presence of a CNS-PNET as an integral part of the tumor coupled with overlapping genetic alterations found in both adult and pediatric high-grade gliomas/glioblastoma. Collectively, microarray data point to a complex underpinning of genetic alterations associated with the MG-PNET tumor phenotype.
.

Liu K, Wang S, Liu Y, et al.
Overexpression of MYCN promotes proliferation of non-small cell lung cancer.
Tumour Biol. 2016; 37(9):12855-12866 [PubMed] Related Publications
V-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) is an oncogene that is known amplified and overexpressed in different human malignancies including small cell lung cancer. However, the role of MYCN in non-small cell lung cancer (NSCLC) development remains elusive. In the present study, Western blot and immunohistochemistry assays demonstrated that MYCN was overexpressed in NSCLC tumor tissues and cell lines. In addition, immunohistochemistry analysis revealed that upregulation of MYCN expression was positively correlated with a more invasive tumor phenotype and poor prognosis. In vitro studies using serum starvation-refeeding experiment and MYCN-siRNA transfection assay demonstrated that MYCN expression promoted proliferation of NSCLC cells, while MYCN knockdown led to decreased cell growth resulted from growth arrest of cell cycle at G0/G1 phase. Furthermore, upregulation and knockdown of sex-determining region Y-box 2 (SRY) (SOX2), which was a well-known oncogene, confirmed that MYCN might be a downstream gene of the transcription factor SOX2. Collectively, our finding suggested that MYCN might contribute to the progression of NSCLC by enhancing cell proliferation, and that targeting MYCN might provide beneficial effects for the clinical therapy of NSCLC.

Wang G, Wang H, Zhang C, et al.
Rac3 regulates cell proliferation through cell cycle pathway and predicts prognosis in lung adenocarcinoma.
Tumour Biol. 2016; 37(9):12597-12607 [PubMed] Related Publications
Lung cancer is still the leading cause of malignant deaths in the world. It is of great importance to find novel functional genes for the tumorigenesis of lung cancer. We demonstrated that Rac3 could promote cell proliferation and inhibit apoptosis in lung adenocarcinoma cell line A549 previously. The aim of this study was to investigate the function and mechanism of Rac3 in lung adenocarcinoma cell lines. Immunohistochemistry staining was performed in 107 lung adenocarcinoma tissues and matched non-tumor tissues. Multivariate analysis and Kaplan-Meier analysis were used to investigate the correlation between Rac3 expression and the clinical outcomes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, and flow cytometry analysis were employed to determine the proliferative ability, cell cycle distribution, and apoptosis in H1299 and H1975 cell lines. Gene expression microarray and pathway analysis between the Rac3-siRNA group and the control group in A549 cells were performed to investigate the pathways and mechanism of Rac3 regulation. Rac3 was shown to be positively expressed in lung adenocarcinoma tissues, and the expression of Rac3 associates with longer survival in lung adenocarcinoma patients. Silencing of Rac3 significantly induced cell growth inhibition, colony formation decrease, cell cycle arrest, and apoptosis of lung adenocarcinoma cell lines, which accompanied by obvious downregulation of CCND1, MYC, and TFDP1 of cell cycle pathway involving in the tumorigenesis of lung adenocarcinoma based on the gene expression microarray. In conclusion, these findings suggest that Rac3 has the potential of being a therapeutic target for lung adenocarcinoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PVT1, Cancer Genetics Web: http://www.cancer-genetics.org/PVT1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999