RIPK1

Gene Summary

Gene:RIPK1; receptor (TNFRSF)-interacting serine-threonine kinase 1
Aliases: RIP, RIP1
Location:6p25.2
Summary:-
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:receptor-interacting serine/threonine-protein kinase 1
HPRD
Source:NCBIAccessed: 11 August, 2015

Ontology:

What does this gene/protein do?
Show (46)
Pathways:What pathways are this gene/protein implicaed in?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 11 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression Profiling
  • Cell Cycle
  • siRNA
  • TNF-Related Apoptosis-Inducing Ligand
  • I-kappa B Kinase
  • Chromosome 6
  • Apoptosis
  • Receptors, Tumor Necrosis Factor
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Genotype
  • Cancer Gene Expression Regulation
  • Neoplasm Metastasis
  • Staurosporine
  • Oligonucleotide Array Sequence Analysis
  • Reactive Oxygen Species
  • X-Linked Inhibitor of Apoptosis Protein
  • Intracellular Signaling Peptides and Proteins
  • Eye Cancer
  • Single Nucleotide Polymorphism
  • Transfection
  • RTPCR
  • LTA
  • CD40 Ligand
  • Uveal Neoplasms
  • Adolescents
  • Necrosis
  • Genes, Neoplasm
  • Drug Resistance
  • Cell Proliferation
  • MicroRNAs
  • TNF
  • Antineoplastic Agents
  • Inhibitor of Apoptosis Proteins
  • Caspase 8
  • RNA Interference
  • TNFRSF1A
  • Tumor Markers
  • NF-kappa B
  • CRADD Signaling Adaptor Protein
  • Caspases
  • Transcription Factor AP-1
Tag cloud generated 11 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RIPK1 (cancer-related)

Ratovitski EA
Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure.
FEBS Lett. 2015; 589(12):1352-8 [PubMed] Related Publications
This study shows that specific microRNAs differentially regulated by ΔNp63α in cisplatin-sensitive and resistant squamous cell carcinoma (SSC) cells of larynx and tongue affect the expression of members of the necroptotic pathway CYLD, RIPK1, and MLKL. Different degrees of protein interaction between necroptotic signaling intermediates were also observed in SCC cells sensitive or resistant to cisplatin. Modulation of RIPK1 with miR-101-3p mimic or inhibitor, as well as with siRNA, or chemical inhibitors was shown to affect sensitivity of SCC cells to cisplatin. This is the first report showing the modulatory effect of ΔNp63α-responsive microRNAs on the specific members of necroptotic pathway in SCC tumor cells variably responding to platinum chemotherapy.

Liu XY, Lai F, Yan XG, et al.
RIP1 Kinase Is an Oncogenic Driver in Melanoma.
Cancer Res. 2015; 75(8):1736-48 [PubMed] Related Publications
Although many studies have uncovered an important role for the receptor-binding protein kinase RIP1 in controlling cell death signaling, its possible contributions to cancer pathogenesis have been little explored. Here, we report that RIP1 functions as an oncogenic driver in human melanoma. Although RIP1 was commonly upregulated in melanoma, RIP1 silencing inhibited melanoma cell proliferation in vitro and retarded the growth of melanoma xenografts in vivo. Conversely, while inducing apoptosis in a small proportion of melanoma cells, RIP1 overexpression enhanced proliferation in the remaining cells. Mechanistic investigations revealed that the proliferative effects of RIP1 overexpression were mediated by NF-κB activation. Strikingly, ectopic expression of RIP1 enhanced the proliferation of primary melanocytes, triggering their anchorage-independent cell growth in an NF-κB-dependent manner. We identified DNA copy-number gain and constitutive ubiquitination by a TNFα autocrine loop mechanism as two mechanisms of RIP1 upregulation in human melanomas. Collectively, our findings define RIP1 as an oncogenic driver in melanoma, with potential implications for targeting its NF-κB-dependent activation mechanism as a novel approach to treat this disease.

Rose M, Schubert C, Dierichs L, et al.
OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro.
Epigenetics. 2014; 9(12):1626-40 [PubMed] Related Publications
CREB3L1 has been recently proposed as a novel metastasis suppressor gene in breast cancer. Our current study highlights CREB3L1 expression, regulation, and function in bladder cancer. We demonstrate a significant downregulation of CREB3L1 mRNA expression (n = 64) in primary bladder cancer tissues caused by tumor-specific CREB3L1 promoter hypermethylation (n = 51). Based on pyrosequencing CREB3L1 methylation was shown to be potentially associated with a more aggressive phenotype of bladder cancer. These findings were verified by an independent public data set containing data from 184 bladder tumors. In addition, immunohistochemical evaluation showed that CREB3L1 protein expression is decreased in bladder cancer tissues as well. Interestingly, protein loss is predominately observed in the nuclei of aggressive tumor cells. Based on in vitro models we clearly show that CREB3L1 re-expression mediates suppression of tumor cell migration and colony growth of high grade and invasive bladder cancer cells. The candidate tumor suppressor and TGF-β signaling inhibitor HTRA3 was furthermore identified as putative target gene of CREB3L1 in both invasive J82 bladder cells and primary bladder tumors. Hence, our data provide for the first time evidence that the transcription factor CREB3L1 may have an important role as a putative tumor suppressor in bladder cancer.

Babcook MA, Sramkoski RM, Fujioka H, et al.
Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells.
Cell Death Dis. 2014; 5:e1536 [PubMed] Free Access to Full Article Related Publications
Castration-resistant prostate cancer (CRPC) cells acquire resistance to chemotherapy and apoptosis, in part, due to enhanced aerobic glycolysis and biomass production, known as the Warburg effect. We previously demonstrated that combination simvastatin (SIM) and metformin (MET) ameliorates critical Warburg effect-related metabolic aberrations of C4-2B cells, synergistically and significantly decreases CRPC cell viability and metastatic properties, with minimal effect on normal prostate epithelial cells, and inhibits primary prostate tumor growth, metastasis, and biochemical failure in an orthotopic model of metastatic CRPC, more effectively than docetaxel chemotherapy. Several modes of cell death activated by individual treatment of SIM or MET have been reported; however, the cell death process induced by combination SIM and MET treatment in metastatic CRPC cells remains unknown. This must be determined prior to advancing combination SIM and MET to clinical trial for metastatic CRPC. Treatment of C4-2B cells with combination 4 μM SIM and 2 mM MET (SIM+MET) led to significant G1-phase cell cycle arrest and decrease in the percentage of DNA-replicating cells in the S-phase by 24 h; arrest was sustained throughout the 96-h treatment. SIM+MET treatment led to enhanced autophagic flux in C4-2B cells by 72-96 h, ascertained by increased LC3B-II (further enhanced with lysosomal inhibitor chloroquine) and reduced Sequestosome-1 protein expression, significantly increased percentage of acidic vesicular organelle-positive cells, and increased autophagic structure accumulation assessed by transmission electron microscopy. Chloroquine, however, could not rescue CRPC cell viability, eliminating autophagic cell death; rather, autophagy was upregulated by C4-2B cells in attempt to withstand chemotherapy. Instead, SIM+MET treatment led to Ripk1- and Ripk3-dependent necrosis by 48-96 h, determined by propidium iodide-Annexin V flow cytometry, increase in Ripk1 and Ripk3 protein expression, necrosome formation, HMGB-1 extracellular release, and necrotic induction and viability rescue with necrostatin-1 and Ripk3-targeting siRNA. The necrosis-inducing capacity of SIM+MET may make these drugs a highly-effective treatment for apoptosis- and chemotherapy-resistant metastatic CRPC cells.

Zhu G, Chen X, Wang X, et al.
Expression of the RIP-1 gene and its role in growth and invasion of human gallbladder carcinoma.
Cell Physiol Biochem. 2014; 34(4):1152-65 [PubMed] Related Publications
BACKGROUND AND AIM: Receptor interacting protein(RIP)-1 is thought to have a significant role in inflammation signaling pathways; however, the role of RIP-1 in malignant tumors is largely unknown.
METHODS: The present study examined the functions and underlying mechanisms of RIP-1 in gallbladder cancer in vitro and in vivo. In this study we determined the expression and role of RIP-1 in 60 clinical specimens from patients with gallbladder cancer and 3 gallbladder cancer cell lines. Using siRNA targeting RIP-1, plasmid vectors (phU6-EGFP-puro/siRIP-1) were constructed and transfected into the gallbladder cells to characterize the biological effect of RIP-1. Results : In vitro experiments indicated that silencing of RIP-1 in NOZ cells significantly suppressed growth and invasion. Furthermore, silencing of RIP-1 affected the RIP1-NF-κB/c-jun(AP-1)-VEGF-C pathways in NOZ cells. Silencing of RIP-1 in vivo inhibited tumor growth in a NOZ cell subcutaneous xenograft model. Immunohistochemstry analysis of the tumor in thesubcutaneous xenograft model also suggested that RIP-1 mediates the expression of VEGF-C.
CONCLUSION: We have elucidated therelationship between RIP-1 overexpression and the growth and invasion of gallbladder cancer from clinical specimens using a xenograft model. We provide evidence that a reduction in the expression of RIP-1 in gallbladder cancer cells can exert inhibitory effects on the ability of cells to grow and invade in vitro. Thus, targeting RIP-1may be useful in the treatment of gallbladder cancer.

Seneviratne D, Ma J, Tan X, et al.
Genomic instability causes HGF gene activation in colon cancer cells, promoting their resistance to necroptosis.
Gastroenterology. 2015; 148(1):181-191.e17 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
BACKGROUND & AIMS: Genomic instability promotes colon carcinogenesis by inducing genetic mutations, but not all genes affected by this process have been identified. We investigated whether genomic instability in human colorectal cancer (CRC) cells produces mutations in the hepatocyte growth factor (HGF) gene.
METHODS: We genotyped human colon tumor tissues and adjacent nontumor tissues collected from 78 patients University of Pittsburgh Health Sciences and Veterans Hospital, along with 40 human CRC and adjacent nontumor tissues in a commercial microarray. We used cellular, biochemical, and molecular biological techniques to investigate the factors that alter HGF signaling in colon cancer cells and its effects on cell proliferation and survival.
RESULTS: All tested human CRC tissues and cell lines that had microsatellite instability contained truncations in the regulatory deoxyadenosine tract element (DATE) of the HGF gene promoter. The DATE was unstable in 14% (11 of 78) of CRC samples; DATE truncation was also polymorphic and detected in 18% (13 of 78) of CRC tissues without microsatellite instability. In CRC cell lines, truncation of DATE activated expression of HGF, resulting in its autocrine signaling via MET. This promoted cell proliferation and resistance to necroptosis. HGF signaling via MET reduced levels of the receptor-interacting serine-threonine kinase 1, a mediator of necroptosis, in CRC cells. High levels of HGF protein in tumor tissues correlated with lower levels of receptor-interacting serine-threonine kinase 1 and shorter survival times of patients.
CONCLUSIONS: Thirty-one percent of CRC samples contain alterations in the DATE of the HGF promoter. Disruption of the DATE increased HGF signaling via MET and reduced levels of receptor-interacting serine-threonine kinase 1 and CRC cell necroptosis. DATE alteration might be used as a prognostic factor or to select patients for therapies that target HGF-MET signaling.

Wu Y, Liu J, Zheng Y, et al.
Suppressed expression of long non-coding RNA HOTAIR inhibits proliferation and tumourigenicity of renal carcinoma cells.
Tumour Biol. 2014; 35(12):11887-94 [PubMed] Related Publications
Although long non-coding RNAs (lncRNAs) are known to play an important role in cell regulation in several cancers, the regulatory mechanisms in renal carcinoma cells remain unclear. HOX transcript antisense RNA (HOTAIR), an lncRNA, coordinates with chromatin-modifying enzymes to regulate gene silencing. HOTAIR is over-expressed in several types of carcinoma cells. Thus, we hypothesised that lncRNA HOTAIR is crucial for cell proliferation and invasion and that its knockdown induces apoptosis in renal carcinoma cells. lncRNA HOTAIR expression was found to be elevated in renal carcinoma cells. Additionally, lncRNA HOTAIR knockdown by RNA interference with siRNA was found to significantly affect the cell cycle in the G0/G1 phase and weaken the abilities of cell proliferation and invasion in vitro. Xenograft experiments confirmed that the growth of xenograft tumours formed by renal carcinoma cells was suppressed after silencing lncRNA HOTAIR expression. Moreover, chromatin immunoprecipitation (ChIP) and RNA-binding protein immunoprecipitation (RIP) assays revealed that knockdown of lncRNA HOTAIR led to the weakening of the recruitment and binding abilities of EZH2 and H3K27me3 locus with lncRNA HOTAIR. Furthermore, the cell cycle-related gene locus was in an active transcriptional state by the silencing of lncRNA HOTAIR expression and modulation of covalent histones.

Fendrich V, Lopez CL, Manoharan J, et al.
Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.
Endocr Relat Cancer. 2014; 21(5):813-24 [PubMed] Related Publications
Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs.

Xu Y, Lin Z, Zhao N, et al.
Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells.
PLoS One. 2014; 9(6):e100127 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.

Mori T, Gotoh S, Shirakawa M, Hakoshima T
Structural basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) recognition by merlin/NF2 and its implication in tumorigenesis by CD44-mediated inhibition of merlin suppression of DCAF1 function.
Genes Cells. 2014; 19(8):603-19 [PubMed] Related Publications
Merlin, a tumor suppressor encoded by the neurofibromatosis type 2 gene, has been shown to suppress tumorigenesis by inhibiting the Cullin 4-RING E3 ubiquitin ligase CRL4(DCAF) (1) in the nucleus. This inhibition is mediated by direct binding of merlin to DDB1-and-Cullin 4-associated Factor 1 (DCAF1), yet the binding mode of merlin to DCAF1 is not well defined. Here, we report structural and biophysical studies of the merlin binding to DCAF1 and its interference with CD44 binding. The crystal structure of the merlin FERM domain bound to the DCAF1 C-terminal acidic tail reveals that the hydrophobic IILXLN motif located at the C-terminal end of DCAF1 binds subdomain C of the FERM domain by forming a β-strand. The binding site and mode resemble that of merlin binding to the CD44 cytoplasmic tail. Competition binding assay showed that CD44 and DCAF1 compete for binding to the merlin FERM domain in solution. The CD44 cytoplasmic tail is known to be cleaved for nuclear translocation by regulated intra-membrane proteolysis (RIP). Our structure implies that, in the nucleus, the CD44 cytoplasmic tail cleaved by RIP could release DCAF1 from merlin by competing for binding to the merlin FERM domain, which results in the inhibition of merlin-mediated suppression of tumorigenesis.

Li H, Yu B, Li J, et al.
Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer.
Oncotarget. 2014; 5(8):2318-29 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Long non-coding RNAs (lncRNAs) play key roles in the progression and metastasis of some carcinomas. We previously showed that the expression of lncRNA H19 (H19) was higher in gastric cancer (GC) tissues than that in paired noncanerous tissues. However, the underlying mechanisms remain unclear. In this study, H19/miR-675 knockdown models in the MKN45 cell line and ectopic expression models in the SGC7901 cell line were established, and a co-expression network of H19 was generated to identify target genes by RIP and DLR. The results showed that overexpression of H19 promoted the features of GC including proliferation, migration, invasion and metastasis. An H19 co-expression network identified ISM1 as a binding protein of H19, and its expression was positively correlated with that of H19. CALN1 was identified as a target gene of miR-675 and its expression was negatively correlated with that of miR-675. H19 and MiR-675 function in a similar manner. However, H19 RNA actively binds to ISM1 and miR-675 targets CALN1. These differences suggest that H19 plays other roles besides encoding miR-675 in GC. Our results suggest that the effect of H19 in GC is mediated by the direct upregulation of ISM1 and the indirect suppression of CALN1 expression via miR-675.

Liu XH, Sun M, Nie FQ, et al.
Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer.
Mol Cancer. 2014; 13:92 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
BACKGROUND: Accumulating evidence indicates that the long non-coding RNA HOTAIR plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of HOTAIR in gastric carcinogenesis remains largely unknown.
METHODS: HOTAIR expression was measured in 78 paired cancerous and noncancerous tissue samples by real-time PCR. The effects of HOTAIR on gastric cancer cells were studied by overexpression and RNA interference approaches in vitro and in vivo. Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatic analysis, luciferase assays and RNA binding protein immunoprecipitation (RIP). The positive HOTAIR/HER2 interaction was identified and verified by immunohistochemistry assay and bivariate correlation analysis.
RESULTS: HOTAIR upregulation was associated with larger tumor size, advanced pathological stage and extensive metastasis, and also correlated with shorter overall survival of gastric cancer patients. Furthermore, HOTAIR overexpression promoted the proliferation, migration and invasion of gastric carcinoma cells, while HOTAIR depletion inhibited both cell invasion and cell viability, and induced growth arrest in vitro and in vivo. In particular, HOTAIR may act as a ceRNA, effectively becoming a sink for miR-331-3p, thereby modulating the derepression of HER2 and imposing an additional level of post-transcriptional regulation. Finally, the positive HOTAIR/HER2 correlation was significantly associated with advanced gastric cancers.
CONCLUSIONS: HOTAIR overexpression represents a biomarker of poor prognosis in gastric cancer, and may confer malignant phenotype to tumor cells. The ceRNA regulatory network involving HOTAIR and the positive interaction between HOTAIR and HER2 may contribute to a better understanding of gastric cancer pathogenesis and facilitate the development of lncRNA-directed diagnostics and therapeutics against this disease.

Zhang X, Su Y, Song H, et al.
Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells.
Leuk Res. 2014; 38(6):673-81 [PubMed] Related Publications
Previous studies reported leukemic cells from acute myeloid leukemia (AML) patients can differentiate into dendritic cells (DCs), which had some immunoregulatory dysfunctions to effectively stimulate autologous CTLs' anti-leukemia immune response. The zinc-finger protein A20, a negative regulator of the nuclear factor (NF)-κB pathway, was found to play a crucial role in controlling the maturation and function of human monocyte-derived DCs. However, the effects of A20 in AML derived DCs (AML-DCs) have not yet been evaluated. In this study, A20 expression was up-regulated in AML-DCs activated with tumor necrosis factor (TNF)-α. Then, A20 attenuation with siRNA in AML-DC enhanced the expression of several co-stimulatory molecules and proinflammatory cytokines. Furthermore, after A20 attenuation in AML-DCs, the autologous cytolytic T cells (CTLs) induced by AML-DCs had higher killing capability and specificity for primary AML cells. Additionally, receptor-interacting protein (RIP) and the NF-κBp65 pathway were elevated in AML-DCs when A20 was reduced. Hence, this study identified A20 as a negative regulator for controlling AML-DC maturation and immunostimulatory potency, as A20 down-regulation resulted in AML-DCs with enhanced autologous CTLs immune capacity through the NF-κB pathway.

Hadji A, Ceppi P, Murmann AE, et al.
Death induced by CD95 or CD95 ligand elimination.
Cell Rep. 2014; 7(1):208-22 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells.

Wu P, Shi KJ, An JJ, et al.
The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells.
Cell Death Dis. 2014; 5:e1085 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.

De Bellis F, Carafa V, Conte M, et al.
Context-selective death of acute myeloid leukemia cells triggered by the novel hybrid retinoid-HDAC inhibitor MC2392.
Cancer Res. 2014; 74(8):2328-39 [PubMed] Related Publications
HDAC inhibitors (HDACi) are widely used in the clinic to sensitize tumorigenic cells for treatment with other anticancer compounds. The major drawback of HDACi is the broad inhibition of the plethora of HDAC-containing complexes. In acute promyelocytic leukemia (APL), repression by the PML-RARα oncofusion protein is mediated by an HDAC-containing complex that can be dissociated by pharmacologic doses of all trans retinoic acid (ATRA) inducing differentiation and cell death at the expense of side effects and recurrence. We hypothesized that the context-specific close physical proximity of a retinoid and HDACi-binding protein in the repressive PML-RARα-HDAC complex may permit selective targeting by a hybrid molecule of ATRA with a 2-aminoanilide tail of the HDAC inhibitor MS-275, yielding MC2392. We show that MC2392 elicits weak ATRA and essentially no HDACi activity in vitro or in vivo. Genome-wide epigenetic analyses revealed that in NB4 cells expressing PML-RARα, MC2392 induces changes in H3 acetylation at a small subset of PML-RARα-binding sites. RNA-seq reveals that MC2392 alters expression of a number of stress-responsive and apoptotic genes. Concordantly, MC2392 induced rapid and massive, caspase-8-dependent cell death accompanied by RIP1 induction and ROS production. Solid and leukemic tumors are not affected by MC2392, but expression of PML-RARα conveys efficient MC2392-induced cell death. Our data suggest a model in which MC2392 binds to the RARα moiety and selectively inhibits the HDACs resident in the repressive complex responsible for the transcriptional impairment in APLs. Our findings provide proof-of-principle of the concept of a context-dependent targeted therapy.

Benetatos CA, Mitsuuchi Y, Burns JM, et al.
Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models.
Mol Cancer Ther. 2014; 13(4):867-79 [PubMed] Related Publications
The acquisition of apoptosis resistance is a fundamental event in cancer development. Among the mechanisms used by cancer cells to evade apoptosis is the dysregulation of inhibitor of apoptosis (IAP) proteins. The activity of the IAPs is regulated by endogenous IAP antagonists such as SMAC (also termed DIABLO). Antagonism of IAP proteins by SMAC occurs via binding of the N-terminal tetrapeptide (AVPI) of SMAC to selected BIR domains of the IAPs. Small molecule compounds that mimic the AVPI motif of SMAC have been designed to overcome IAP-mediated apoptosis resistance of cancer cells. Here, we report the preclinical characterization of birinapant (TL32711), a bivalent SMAC-mimetic compound currently in clinical trials for the treatment of cancer. Birinapant bound to the BIR3 domains of cIAP1, cIAP2, XIAP, and the BIR domain of ML-IAP in vitro and induced the autoubiquitylation and proteasomal degradation of cIAP1 and cIAP2 in intact cells, which resulted in formation of a RIPK1:caspase-8 complex, caspase-8 activation, and induction of tumor cell death. Birinapant preferentially targeted the TRAF2-associated cIAP1 and cIAP2 with subsequent inhibition of TNF-induced NF-κB activation. The activity of a variety of chemotherapeutic cancer drugs was potentiated by birinapant both in a TNF-dependent or TNF-independent manner. Tumor growth in multiple primary patient-derived xenotransplant models was inhibited by birinapant at well-tolerated doses. These results support the therapeutic combination of birinapant with multiple chemotherapies, in particular, those therapies that can induce TNF secretion.

Fu A, Hoffman AE, Liu R, et al.
Targetome profiling and functional genetics implicate miR-618 in lymphomagenesis.
Epigenetics. 2014; 9(5):730-7 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Despite the voluminous body of observational evidence concerning the role of miRNAs in cancer, significant knowledge gaps remain concerning the molecular circumstances that underlie the miRNA-cancer connection. In this study, we employ a multidisciplinary approach to establish an association between miR-618 and non-Hodgkin lymphoma (NHL) in a human population and attempt to explicate this association at the molecular level. A high-throughput, transcriptome-wide RIP-Chip-based method was used to identify members of the miR-618 targetome, which were analyzed for functional relevance using a gene network-based approach. Findings were confirmed by genotyping a SNP (rs2682818) in the stem-loop sequence of miR-618 in a population-based case-control study of NHL (455 cases and 527 controls). Lastly, we analyzed the functional impact of rs2682818 on miR-618 expression and its consequent implications for the lymphomagenic process. A total of 128 miR-618 targets were identified, which were enriched for genes that have functional roles in lymphoma-relevant pathways. This is consistent with our finding of a significant association between rs2682818 G>T in the miR-618 stem-loop and follicular lymphoma (FL) (OR: 1.65, 95% CI: 1.05-2.60). In vitro analysis of rs2682818's functional impact revealed that the variant T allele resulted in reduced levels of mature miR-618, which in turn may lead to deregulation of miR-618-controlled pathways relevant to follicular lymphoma. Taken together, our findings implicate miR-618 in follicular lymphomagenesis, identify miR-618 as a potential risk biomarker for follicular lymphoma, and illuminate miR-618-regulated lymphomagenic pathways that can serve as therapeutic targets for follicular lymphoma.

Wang Q, Chen W, Bai L, et al.
Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway.
J Biol Chem. 2014; 289(9):5654-63 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Although receptor-interacting protein 1 (RIP1) is well known as a key mediator in cell survival and death signaling, whether RIP1 directly contributes to chemotherapy response in cancer has not been determined. In this report, we found that, in human lung cancer cells, knockdown of RIP1 substantially increased cytotoxicity induced by the frontline anticancer therapeutic drug cisplatin, which has been associated with robust cellular reactive oxygen species (ROS) accumulation and enhanced apoptosis. Scavenging ROS dramatically protected RIP1 knockdown cells against cisplatin-induced cytotoxicity. Furthermore, we found that, in RIP1 knockdown cells, the expression of the hydrogen peroxide-reducing enzyme catalase was dramatically reduced, which was associated with increased miR-146a expression. Inhibition of microRNA-146a restored catalase expression, suppressed ROS induction, and protected against cytotoxicity in cisplatin-treated RIP1 knockdown cells, suggesting that RIP1 maintains catalase expression to restrain ROS levels in therapy response in cancer cells. Additionally, cisplatin significantly triggered the proteasomal degradation of cellular inhibitor of apoptosis protein 1 and 2 (c-IAP1 and c-IAP2), and X-linked inhibitor of apoptosis (XIAP) in a ROS-dependent manner, and in RIP1 knockdown cells, ectopic expression of c-IAP2 attenuated cisplatin-induced cytotoxicity. Thus, our results establish a chemoresistant role for RIP1 that maintains inhibitor of apoptosis protein (IAP) expression by release of microRNA-146a-mediated catalase suppression, where intervention within this pathway may be exploited for chemosensitization.

Nomura M, Ueno A, Saga K, et al.
Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma.
Cancer Res. 2014; 74(4):1056-66 [PubMed] Related Publications
Necrosis has been studied extensively since the early days of medicine, with some patterns of necrosis found to be programmed like apoptotic cell death. However, mechanisms of programmed necrosis (necroptosis) are yet to be fully elucidated. In this study, we investigated how the hemagglutinating virus of Japan-envelope (HVJ-E) induces necrosis in mouse xenografts of human neuroblastoma cells. HVJ-E-induced necrosis in this system was found to depend on phosphorylation of the death receptor kinase receptor interacting protein kinase 1 (RIP1) and on the production of reactive oxygen species. This process was interpreted as necroptosis, based on its suppression by the small molecule necrostatin-1, and it did not involve the TNF-α receptor pathway. We also demonstrated that increased concentrations of cytoplasmic calcium triggered necroptosis by activating calcium-calmodulin kinase (CaMK) II. Finally, we determined that RIP1 phosphorylation was mediated by CaMK II activation. Together, our results define an upstream pathway for the activation of necroptosis in neuroblastoma cells, with potential therapeutic implications.

Han W, Jones FE
HER4 selectively coregulates estrogen stimulated genes associated with breast tumor cell proliferation.
Biochem Biophys Res Commun. 2014; 443(2):458-63 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex is unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.

Tanabe A, Konno J, Tanikawa K, Sahara H
Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene.
Gene. 2014; 535(1):24-32 [PubMed] Related Publications
We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNF-α induces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells.

Chromik J, Safferthal C, Serve H, Fulda S
Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis.
Cancer Lett. 2014; 344(1):101-9 [PubMed] Related Publications
The prognosis for patients with acute myeloid leukaemia (AML) is still poor, thus calling for novel treatment strategies. Here, we report that the small-molecule Smac mimetic BV6, which antagonizes Inhibitor of Apoptosis (IAP) proteins, acts in concert with cytarabine (AraC) to trigger cell death in AML cells in a highly synergistic manner (combination index 0.02-0.27). Similarly, BV6 cooperates with AraC to trigger cell death in primary AML samples, underscoring the clinical relevance of our findings. Molecular studies reveal that the TNFα-blocking antibody Enbrel significantly reduces BV6/AraC-induced cell death, demonstrating that an autocrine/paracrine TNFα loop mediates cell death. Furthermore, BV6 and AraC synergize to induce loss of mitochondrial membrane potential, caspase activation and DNA fragmentation, consistent with apoptotic cell death. Nevertheless, the caspase inhibitor zVAD.fmk fails to protect against BV6/AraC-induced cell death. Intriguingly, this cell death upon caspase inhibition is significantly reduced by pharmacological inhibition of two key components of necroptosis signaling, i.e. by RIP1 kinase inhibitor Necrostatin-1 or MLKL inhibitor NSA. Thus, BV6 sensitizes AML cells to AraC-induced cell death and overcomes apoptosis resistance by triggering necroptosis as alternative form of cell death. These findings have important implications for Smac mimetic-based strategies to bypass apoptosis resistance of AML.

Vaishnavi A, Capelletti M, Le AT, et al.
Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer.
Nat Med. 2013; 19(11):1469-72 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
We identified new gene fusions in patients with lung cancer harboring the kinase domain of the NTRK1 gene that encodes the high-affinity nerve growth factor receptor (TRKA protein). Both the MPRIP-NTRK1 and CD74-NTRK1 fusions lead to constitutive TRKA kinase activity and are oncogenic. Treatment of cells expressing NTRK1 fusions with inhibitors of TRKA kinase activity inhibited autophosphorylation of TRKA and cell growth. Tumor samples from 3 of 91 patients with lung cancer (3.3%) without known oncogenic alterations assayed by next-generation sequencing or fluorescence in situ hybridization demonstrated evidence of NTRK1 gene fusions.

Maas C, Tromp JM, van Laar J, et al.
CLL cells are resistant to smac mimetics because of an inability to form a ripoptosome complex.
Cell Death Dis. 2013; 4:e782 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
In the lymph node (LN) environment, chronic lymphocytic leukemia (CLL) cells display increased NF-κB activity compared with peripheral blood CLL cells, which contributes to chemoresistance. Antagonists of cellular inhibitor of apoptosis proteins (cIAPs) can induce apoptosis in various cancer cells in a tumor necrosis factor-α (TNFα)-dependent manner and are in preclinical development. Smac-mimetics promote degradation of cIAP1 and cIAP2, which results in TNFR-mediated apoptosis via formation of a ripoptosome complex, comprising RIPK1, Fas-associated protein with death domain, FLICE-like inhibitory protein and caspase-8. CD40 stimulation of CLL cells in vitro is used as a model to mimic the LN microenvironment and results in NF-κB activation and TNFα production. In this study, we investigated the response of CLL cells to smac-mimetics in the context of CD40 stimulation. We found that treatment with smac-mimetics results in cIAP1 and cIAP2 degradation, yet although TNFα is produced, this did not induce apoptosis. Despite the presence of all components, the ripoptosome complex did not form upon smac-mimetic treatment in CLL cells. Thus, CLL cells seem to possess aberrant upstream NF-κB regulation that prevents ripoptosome formation upon IAP degradation. Unraveling the exact molecular mechanisms of disturbed ripoptosome formation may offer novel targets for treatment in CLL.

Kanematsu S, Tanimoto K, Suzuki Y, Sugano S
Screening for possible miRNA-mRNA associations in a colon cancer cell line.
Gene. 2014; 533(2):520-31 [PubMed] Related Publications
MicroRNAs (miRNAs) are small non-coding RNAs mediating the regulation of gene expression in various biological contexts, including carcinogenesis. Here, we screened putative associations between 34, 45, and 103 miRNAs and 164, 391, and 81 mRNAs via Argonaute1 (Ago1) or Ago2 immunoprecipitation (IP) experiments in a colon cancer cell line. We used a combination of RIP Seq analysis. RNAs that were co-immunoprecipitated with Ago1 or Ago2 were used for massively parallel small RNA and mRNA sequencing. The detected miRNAs and mRNAs were further associated with one another based on in silico target predictions. Analysis of the putative associations indicated that, although Ago1 and Ago2 shared a similar repertory of miRNAs, the mRNAs possibly regulated by those miRNAs seemed different. The mRNAs detected with Ago1 IP were indicated to be frequently associated with genes having constitutive cellular functions, regulated by a smaller number of miRNAs, and appeared to receive more stringent translational regulation. In contrast, putative miRNA-mRNA associations detected with Ago2 IP appeared to be related to signal transduction genes, which had a larger number of possible miRNA binding sites. We then conducted a similar analysis using the colon cancer cells cultured under hypoxia and identified potential hypoxia-induced miRNA-mRNA associations, which included several well-characterized cancer-related genes as novel putative miRNA targets.

Moriwaki K, Chan FK
RIP3: a molecular switch for necrosis and inflammation.
Genes Dev. 2013; 27(15):1640-9 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
The receptor-interacting protein kinase 3 (RIP3/RIPK3) has emerged as a critical regulator of programmed necrosis/necroptosis, an inflammatory form of cell death with important functions in pathogen-induced and sterile inflammation. RIP3 activation is tightly regulated by phosphorylation, ubiquitination, and caspase-mediated cleavage. These post-translational modifications coordinately regulate the assembly of a macromolecular signaling complex termed the necrosome. Recently, several reports indicate that RIP3 can promote inflammation independent of its pronecrotic activity. Here, we review our current understanding of the mechanisms that drive RIP3-dependent necrosis and its role in different inflammatory diseases.

Jang JH, Cotterchio M, Borgida A, et al.
Interaction of polymorphisms in mitotic regulator genes with cigarette smoking and pancreatic cancer risk.
Mol Carcinog. 2013; 52 Suppl 1:E103-9 [PubMed] Related Publications
Mitotic regulator genes have been associated with several cancers, however little is known about their possible association with pancreatic cancer. Smoking and family history are the strongest risk factors for this highly fatal disease. The main purpose of this study was to determine if polymorphisms of mitotic regulator genes are associated with pancreatic cancer and whether they modify the association between cigarette smoking and pancreatic cancer risk. A population-based case-control study was conducted in Ontario with 455 pathology-confirmed pancreatic cancer cases and 893 controls. Cigarette smoking history was collected using questionnaires and DNA obtained from blood samples. Genotypes were determined by mass-spectrometry. Odds ratio estimates were obtained using multivariate logistic regression. Interactions between genetic variant and smoking were assessed using stratified analyses and the likelihood ratio statistic (significance P < 0.05). Variants of MCPH1, FYN, APC, PRKCA, NIN, TopBP1, RIPK1, and SNW1 were not independently associated with pancreatic cancer risk. A significant interaction was observed between pack-years and MCPH1-2550-C > T (P = 0.02). Compared to never smokers, individuals with 10-27 pack-years and MCPH1-2550-CC genotype were at increased risk for pancreatic cancer (MVOR = 2.49, 95% confidence interval [95% CI]: 1.55, 4.00) as were those with >27 pack-years and MCPH1-2550-TC genotype (MVOR = 2.42, 95% CI: 1.45, 4.05). A significant interaction was observed between smoking status and TopBP1-3257-A > G (P = 0.04) using a dominant model. Current smokers with the TopBP1-3257 A allele were at increased risk for pancreatic cancer (MVOR = 2.55, 95% CI: 1.77, 3.67). MCPH1-2550-C > T and TopBP1-3257-A > G modify the association between smoking and pancreatic cancer. These findings provide insights into the potential molecular mechanisms behind smoking-associated pancreatic cancer.

Greening DW, Ji H, Kapp EA, Simpson RJ
Sulindac modulates secreted protein expression from LIM1215 colon carcinoma cells prior to apoptosis.
Biochim Biophys Acta. 2013; 1834(11):2293-307 [PubMed] Related Publications
Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1mM sulindac over 16h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433-451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1mM sulindac treatment for 8h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30K, 3K and 1K). Proteins isolated in the >30K and 3-30K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1-3K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS-MS. Collectively, our data show that LIM1215 cells treated with 1mM sulindac for 8h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5AC, 6, and 13). A salient finding of this study was the increased proteolysis of cell surface proteins following treatment with sulindac for 8h (40% higher than from untreated LIM1215 cells); several of these endogenous peptides contained C-terminal amino acids from transmembrane domains indicative of regulated intramembrane proteolysis (RIP). Taken together these results indicate that during the early-stage onset of sulindac-induced apoptosis (evidenced by increased annexin V binding, dephosphorylation of focal adhesion kinase (FAK), and cleavage of caspase-3), 1mM sulindac treatment of LIM1215 cells results in decreased expression of secreted proteins implicated in ECM remodeling, mucosal maintenance and cell-cell-adhesion. This article is part of a Special Issue entitled: An Updated Secretome.

Verbeke S, Tomellini E, Dhamani F, et al.
Extracellular cleavage of the p75 neurotrophin receptor is implicated in its pro-survival effect in breast cancer cells.
FEBS Lett. 2013; 587(16):2591-6 [PubMed] Related Publications
The p75 neurotrophin receptor (p75NTR) undergoes sequential proteolytic cleavages leading to the generation of a carboxyl-terminal fragment (p75NTR-CTF) and an intracellular domain (p75NTR-ICD) in many cellular models. We have previously shown that p75NTR is involved in the survival of breast cancer cells. Here, we demonstrated that p75NTR cleavage occurs also in these cells. Surprisingly, p75NTR-CTF increased cell survival, whereas p75NTR-ICD had no effect. The pro-survival effect of p75NTR-CTF was associated with a decrease of TNF-related apoptosis-inducing ligand (TRAIL)-induced PARP and caspase 3 cleavages. Finally, our findings indicate that p75NTR could favor cell survival via its carboxyl-terminal fragment, independently of PI3-kinase, NF-κB, or MAP kinase signaling pathways.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RIPK1, Cancer Genetics Web: http://www.cancer-genetics.org/RIPK1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 August, 2015     Cancer Genetics Web, Established 1999