Gene Summary

Gene:TP53I3; tumor protein p53 inducible protein 3
Aliases: PIG3
Summary:The protein encoded by this gene is similar to oxidoreductases, which are enzymes involved in cellular responses to oxidative stresses and irradiation. This gene is induced by the tumor suppressor p53 and is thought to be involved in p53-mediated cell death. It contains a p53 consensus binding site in its promoter region and a downstream pentanucleotide microsatellite sequence. P53 has been shown to transcriptionally activate this gene by interacting with the downstream pentanucleotide microsatellite sequence. The microsatellite is polymorphic, with a varying number of pentanucleotide repeats directly correlated with the extent of transcriptional activation by p53. It has been suggested that the microsatellite polymorphism may be associated with differential susceptibility to cancer. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:quinone oxidoreductase PIG3
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Polymorphism
  • p53 Protein
  • Lung Cancer
  • Non-Small Cell Lung Cancer
  • rho GTP-Binding Proteins
  • Proto-Oncogene Proteins
  • Vincristine
  • Loss of Heterozygosity
  • Gene Expression
  • Gene Knockdown Techniques
  • Oxidative Stress
  • Messenger RNA
  • Tumor Markers
  • Radiation Tolerance
  • Promoter Regions
  • Signal Transduction
  • Neoplastic Cell Transformation
  • Reactive Oxygen Species
  • Cancer Gene Expression Regulation
  • Genetic Markers
  • TP53
  • Chromosome 2
  • Transcriptional Activation
  • Genotype
  • DNA Repair
  • Transfection
  • Gene Expression Profiling
  • Enzyme Inhibitors
  • Intracellular Signaling Peptides and Proteins
  • Young Adult
  • Down-Regulation
  • Base Sequence
  • Apoptosis
  • Ultraviolet Rays
  • Cisplatin
  • Cell Survival
  • Oligonucleotide Array Sequence Analysis
  • DNA Damage
  • Microsatellite Repeats
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TP53I3 (cancer-related)

Chudasama P, Konrad A, Jochmann R, et al.
Structural proteins of Kaposi's sarcoma-associated herpesvirus antagonize p53-mediated apoptosis.
Oncogene. 2015; 34(5):639-49 [PubMed] Related Publications
The tumor suppressor p53 is a central regulatory molecule of apoptosis and is commonly mutated in tumors. Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies express wild-type p53. Accordingly, KSHV encodes proteins that counteract the cell death-inducing effects of p53. Here, the effects of all KSHV genes on the p53 signaling pathway were systematically analyzed using the reversely transfected cell microarray technology. With this approach we detected eight KSHV-encoded genes with potent p53 inhibiting activity in addition to the previously described inhibitory effects of KSHV genes ORF50, K10 and K10.5. Interestingly, the three most potent newly identified inhibitors were KSHV structural proteins, namely ORF22 (glycoprotein H), ORF25 (major capsid protein) and ORF64 (tegument protein). Validation of these results with a classical transfection approach showed that these proteins inhibited p53 signaling in a dose-dependent manner and that this effect could be reversed by small interfering RNA-mediated knockdown of the respective viral gene. All three genes inhibited p53-mediated apoptosis in response to Nutlin-3 treatment in non-infected and KSHV-infected cells. Addressing putative mechanisms, we could show that these proteins could also inhibit the transactivation of the promoters of apoptotic mediators of p53 such as BAX and PIG3. Altogether, we demonstrate for the first time that structural proteins of KSHV can counteract p53-induced apoptosis. These proteins are expressed in the late lytic phase of the viral life cycle and are incorporated into the KSHV virion. Accordingly, these genes may inhibit cell death in the productive and in the early entrance phase of KSHV infection.

Zhang HH, Zhang ZY, Che CL, et al.
Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines.
Int J Clin Exp Pathol. 2013; 6(9):1734-46 [PubMed] Free Access to Full Article Related Publications
Gemcitabine is one of the most widely used drugs for the treatment of advanced Non-small cell lung cancer (NSCLC), but modest objective response rate of patients to gemcitabine makes it necessary to identify novel biomarkers for patients who can benefit from gemcitabine-based therapy and to improve the effect of clinical therapy. In this work, 3 NSCLC cell lines displaying different sensitivities to gemcitabine were applied for mRNA and microRNA (miR) expression chips to figure out the biomarkers for gemcitabine sensitivity. Genes whose expression increased dramatically in sensitive cell lines were mainly enriched in cell adhesion (NRP2, CXCR3, CDK5R1, IL32 and CDH2) and secretory granule (SLC11A1, GP5, CD36 and IGF1), while genes with significantly upregulated expression in resistant cell line were mainly clustered in methylation modification (HIST1H2BF, RAB23 and TP53) and oxidoreductase (TP53I3, CYP27B1 and SOD3). The most intriguing is the activation of Wnt/β-catenin signaling in gemcitabine resistant NSCLC cell lines. The miR-155, miR-10a, miR-30a, miR-24-2* and miR-30c-2* were upregulated in sensitive cell lines, while expression of miR-200c, miR-203, miR-885-5p, miR-195 and miR-25* was increased in resistant cell line. Genes with significantly altered expression and putatively mediated by the expression-changed miRs were mainly enriched in chromatin assembly (MAF, HLF, BCL2, and IGSF3), anti-apoptosis (BCL2, IGF1 and IKBKB), protein kinase (NRP2, PAK7 and CDK5R1) (all the above genes were upregulated in sensitive cells) and small GTPase mediated signal transduction (GNA13, RAP2A, ARHGAP5 and RAB23, down-regulated in sensitive cells). Our results might provide potential biomarkers for gemcitabine sensitivity prediction and putative targets to overcome gemcitabine resistance in NSCLC patients.

Dadkhah E, Naseh H, Farshchian M, et al.
A cancer-array approach elucidates the immune escape mechanism and defects in the DNA repair system in esophageal squamous cell carcinoma.
Arch Iran Med. 2013; 16(8):463-70 [PubMed] Related Publications
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the second-most frequently diagnosed cancer in Northeast Iran, often diagnosed in advanced stages. No standard early diagnostic guideline has been proposed to date and current therapeutic modalities are not effective. Detection of tumor-specific biomarkers, which is the goal of this study, could prove useful in the diagnosis of ESCC. 
METHODS: To better understand the gene expression profile of ESCC, we analyzed tumor samples and corresponding adjacent normal tissues from ESCC patients by Chemiluminescent Human Cancer GEArrays. Candidate genes were verified by real-time PCR. 
RESULTS: Out of 440 cancer-related genes included in the array, 71 were overexpressed compared to normal tissue, with significant differences in 11 genes. There were 108 genes underexpressed, with significant differences in 5 genes. Until now, the AP2M1, FTL, UBE2L6, HLA-C, and HSPA8 overexpressed genes and XRCC5, TP53I3 and RAP1A underexpressed genes were not reported in ESCC. We chose the MMP2, HLA-G, and XRCC5 markers from 58 Iranian ESCC patients to verify the expression validity by real-time PCR. The microarray results were confirmed with two-tailed significance levels of P = 0.003 (MMP2), P = 0.000 (HLA-G) and P = 0.002(XRCC5). Analysis performed for the candidate genes using GNCpro online software highlighted two pathways, an immuno-modulatory response and DNA replication and repair. We successfully performed and validated Chemiluminescent GEArray gene expression profiling in ESCC. Several biomarkers that might be related to tumorigenesis in ESCC were identified.
CONCLUSION: Immuno-modulatory and DNA repair pathways could be used as targets to locate specific diagnostic, prognostic, and therapeutic biomarkers for ESCC.

Guan X, Liu Z, Wang L, et al.
Functional repeats (TGYCC)n in the p53-inducible gene 3 (PIG3) promoter and susceptibility to squamous cell carcinoma of the head and neck.
Carcinogenesis. 2013; 34(4):812-7 [PubMed] Free Access to Full Article Related Publications
A polymorphic pentanucleotide microsatellite sequence (TGYCC)n within the p53-inducible gene 3 (PIG3) promoter is correlated with the extent of transcriptional activation by p53 and thought to modulate susceptibility to cancer. Using a PCR-silver staining-based single-strand conformation assay, we visualized variant genotypes of the PIG3 promoter (TGYCC)n motif in a subset of 100 subjects for each of four ethnic groups: non-Hispanic whites, African Americans, Hispanic Americans and Native Chinese. We found that PIG3 (TGYCC)15 was the most common allele but less frequent in non-Hispanic whites (0.660) than in Chinese (0.785) (P = 0.016). In an additional study of 616 patients with squamous cell carcinoma of the head and neck (SCCHN) and 623 cancer-free controls in a non-Hispanic white population, we found that compared with those who were PIG3 (TGYCC)15 homozygotes, subjects without the PIG3 (TGYCC)15 allele had a significantly increased SCCHN risk [adjusted odds ratio (OR) = 1.34; 95% CI = 1.04-1.73 for heterozygotes and OR = 1.69; 95% CI = 1.18-2.44 for variant homozygotes] in an allele-dose response manner (P = 0.002). Consistently, subsequent luciferase reporter assay revealed that the wild-type (TGYCC)15 allele had the highest p53-mediated transcriptional activity, compared with the other (TGYCC)n motifs. Our data suggest that the PIG3 variant polymorphic repeats alleles other than (TGYCC)15 may affect p53 binding and thus may be a marker for susceptibility to SCCHN, but our findings need to be validated in larger studies.

Voltan R, Secchiero P, Corallini F, Zauli G
Selective induction of TP53I3/p53-inducible gene 3 (PIG3) in myeloid leukemic cells, but not in normal cells, by Nutlin-3.
Mol Carcinog. 2014; 53(6):498-504 [PubMed] Related Publications
The small molecule inhibitor of the MDM2/p53 interaction Nutlin-3 is a promising anti-cancer agent, which exhibits activity against a variety of cancers, including acute myeloid leukemia (AML). Previous studies have shown that Nutlin-3 variably induces apoptosis and cell cycle arrest in cancer cells while it shows low/absent cytotoxicity in normal cells. However, the reason for the selective pro-apoptotic activity in cancer cells with respect to normal counterparts is incompletely understood. In this study, we have compared the induction of several known target genes of p53 in two p53(wild-type) AML cell lines, OCI-AML3 and MOLM, in comparison with primary normal peripheral blood mononuclear cells (PBMC). Among several p53-target genes activated both in AML cell lines and normal PBMC (BBC3, BAX, MDM2, FAS, CDKN1A, GDF15, GADD45A, TNFRSF10B, TP53I3/PIG3), only TP53I3/PIG3 was selectively activated in MOLM and OCI-AML3, but not in PBMC. The important role of TP53I3/PIG3 in mediating the apoptotic activity of Nutlin-3 was underlined by knock-down experiments with siRNA specific for TP53I3/PIG3, which resulted in a significant decrease in the pro-apoptotic activity of Nutlin-3.

Wu J, Sowinska A, Huang X, et al.
Impairment of antioxidant defenses as a contributor to arsenite-induced cell transformation.
Biometals. 2012; 25(5):927-37 [PubMed] Free Access to Full Article Related Publications
Arsenite (As) causes transformation of human osteogenic sarcoma cells (HOS) when applied continuously at low doses (0.1-0.5 μM) during 8-weeks of exposure. However, the mechanisms by which As transforms human cells are not known. We investigated whether alterations occurred in gene expression and protein levels of antioxidant defense proteins, such as superoxide dismutase 1 (SOD1) and ferritin. In comparison to control HOS cells, 0.1 μM As induced greater cell proliferation and decreased anti-oxidant defenses. The tumor suppressor protein p53 was also decreased at both mRNA and protein levels. Further, pig3 (p53-induced-gene 3), a homolog of NQO1 (NADPH quinone oxidoreductase 1), was also down-regulated after 8 weeks of As challenge. The treatment of HOS cells with dicumarol, a NQO1 inhibitor, caused a dose-dependent decline in p53 protein levels, proving the effect of an antioxidant enzyme on p53 expression and, potentially, down-stream processes. Caffeic acid phenethyl ester, an antioxidant, prevented the As-induced decreases in SOD1, p53, and ferritin mRNA and protein levels. SOD1, p53 and ferritin levels were inversely related to As-induced cell proliferation. Cumulatively, these results strongly suggest that impairment in antioxidant defenses contributes to As-induced human cell transformation and that the p53 pathway is involved in the process.

Wang H, Luo K, Tan LZ, et al.
p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3.
J Biol Chem. 2012; 287(20):16890-902 [PubMed] Free Access to Full Article Related Publications
Expression of glutathione peroxidase 3 (GPx3) is down-regulated in a variety of human malignancies. Both methylation and deletion of GPx3 gene underlie the alterations of GPx3 expression in prostate cancer. A strong correlation between the down-regulation of GPx3 expression and progression of prostate cancer and the suppression of prostate cancer xenografts in SCID mice by forced expression of GPx3 suggests a tumor suppression role of GPx3 in prostate cancer. However, the mechanism of GPx3-mediated tumor suppression remains unclear. In this report, GPx3 was found to interact directly with p53-induced gene 3 (PIG3). Forced overexpression of GPx3 in prostate cancer cell lines DU145 and PC3 as well as immortalized prostate epithelial cells RWPE-1 increased apoptotic cell death. Expression of GPx3(x73c), a peroxidase-negative OPAL codon mutant, in DU145 and PC3 cells also increased cell death. The induced expression of GPx3 in DU145 and PC3 cells resulted in an increase in reactive oxygen species and caspase-3 activity. These activities were abrogated by either knocking down PIG3 or mutating the PIG3 binding motif in GPx3 or binding interference from a peptide corresponding to PIG3 binding motif in GPx3. In addition, UV-treated RWPE-1 cells underwent apoptotic death, which was partially prevented by knocking down GPx3 or PIG3, suggesting that GPx3-PIG3 signaling is critical for UV-induced apoptosis. Taken together, these results reveal a novel signaling pathway of GPx3-PIG3 in the regulation of cell death in prostate cancer.

Kotsinas A, Aggarwal V, Tan EJ, et al.
PIG3: a novel link between oxidative stress and DNA damage response in cancer.
Cancer Lett. 2012; 327(1-2):97-102 [PubMed] Related Publications
Reactive oxygen species (ROS), the most prominent free radicals produced in cells, can have both beneficial and detrimental effects on them. Many genes are known to be involved in ROS regulation. P53 inducible gene 3 (PIG3 or TP53I3) was identified in an analysis of genes induced by p53 before the onset of apoptosis. It is a widely conserved gene between many species. Until now it has been shown to exert two disparate cellular roles. The first is that of ROS producer linked to p53 induced apoptosis. In this context, it exhibits a NADPH dependent reductase activity with orthoquinones. The second is that of a component of the DNA damage response pathway. While it is considered as a p53 dependent pro-apoptotic gene, it is rarely affected in cancer. This data does not support an anti-tumor activity. In the present review we present and discuss aspects on the regulation and function of this factor and how it is implicated in cancer. We conclude by proposing that PIG3 may possibly have a role in cancer cell survival.

Lin C, Crawford DR, Lin S, et al.
Inducible COX-2-dependent apoptosis in human ovarian cancer cells.
Carcinogenesis. 2011; 32(1):19-26 [PubMed] Related Publications
Resveratrol is a naturally occurring trihydroxyl-diphenylethylene compound that has been shown experimentally to have beneficial effects in the treatment of cancer and cardiovascular disease. Resveratrol induces programmed cell death (apoptosis) in these cells and activates important signal transducing proteins including extracellular signal-regulated kinases (ERKs) 1 and 2 in cancer cells. Resveratrol also causes nuclear accumulation of the enzyme cyclooxygenase (COX)-2 and of the oncogene suppressor protein, p53. We have studied the molecular basis of the anticancer actions of resveratrol using human ovarian carcinoma (OVCAR-3) cells. Our findings include the following: (i) nuclear accumulation of COX-2 in resveratrol-treated cells is blocked by the ERK1/2 inhibitor, PD98059; (ii) an inhibitor of COX-2 activity, NS398, prevents accumulation of ERK1/2, COX-2, activated p53 and small ubiquitin-like modifier (SUMO-1) in the nucleus; (iii) apoptosis, quantitated by nucleosome enzyme-linked immunosorbent assay and the nuclear abundance of the pro-apoptotic protein, BcL-xs, were inhibited by NS398. This finding implicates nuclear COX-2 in p53-mediated apoptosis induced by resveratrol. Sumoylation is important to stabilization of p53 and a COX-2-SUMO-1 interaction suggests sumoylation of COX-2 in resveratrol-treated cells and (iv) chromatin immunoprecipitation studies showed binding of induced nuclear COX-2 to the promoter region of PIG3 and Bax, pro-apoptotic gene targets of transcriptionally active p53. Nuclear accumulation of activated ERK1/2 and sumolyated COX-2 are essential to resveratrol-induced pSer-15-p53-mediated apoptosis in human ovarian cancer cells.

Wang H, Ma X, Ren S, et al.
A small-molecule inhibitor of MDMX activates p53 and induces apoptosis.
Mol Cancer Ther. 2011; 10(1):69-79 [PubMed] Free Access to Full Article Related Publications
The p53 inactivation caused by aberrant expression of its major regulators (e.g., MDM2 and MDMX) contributes to the genesis of a large number of human cancers. Recent studies have shown that restoration of p53 activity by counteracting p53 repressors is a promising anticancer strategy. Although agents (e.g., nutlin-3a) that disrupt MDM2-p53 interaction can inhibit tumor growth, they are less effective in cancer cells that express high levels of MDMX. MDMX binds to p53 and can repress the tumor suppressor function of p53 through inhibiting its trans-activation activity and/or destabilizing the protein. Here we report the identification of a benzofuroxan derivative [7-(4-methylpiperazin-1-yl)-4-nitro-1-oxido-2,1,3-benzoxadiazol-1-ium, NSC207895] that could inhibit MDMX expression in cancer cells through a reporter-based drug screening. Treatments of MCF-7 cells with this small-molecule MDMX inhibitor activated p53, resulting in elevated expression of proapoptotic genes (e.g., PUMA, BAX, and PIG3). Importantly, this novel small-molecule p53 activator caused MCF-7 cells to undergo apoptosis and acted additively with nutlin-3a to activate p53 and decrease the viability of cancer cells. These results thus show that small molecules targeting MDMX expression would be of therapeutic benefits.

Lee YS, Oh JH, Yoon S, et al.
Differential gene expression profiles of radioresistant non-small-cell lung cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation.
Int J Radiat Oncol Biol Phys. 2010; 77(3):858-66 [PubMed] Related Publications
PURPOSE: Despite the widespread use of radiotherapy as a local and regional modality for the treatment of cancer, some non-small-cell lung cancers commonly develop resistance to radiation. We thus sought to clarify the molecular mechanisms underlying resistance to radiation.
METHODS AND MATERIALS: We established the radioresistant cell line H460R from radiosensitive parental H460 cells. To identify the radioresistance-related genes, we performed microarray analysis and selected several candidate genes.
RESULTS: Clonogenic and MTT assays showed that H460R was 10-fold more resistant to radiation than H460. Microarray analysis indicated that the expression levels of 1,463 genes were altered more than 1.5-fold in H460R compared with parental H460. To evaluate the putative functional role, we selected one interesting gene tumor protein p53-inducible protein 3 (TP53I3), because that this gene was significantly downregulated in radioresistant H460R cells and that it was predicted to link p53-dependent cell death signaling. Interestingly, messenger ribonucleic acid expression of TP53I3 differed in X-ray-irradiated H460 and H460R cells, and overexpression of TP53I3 significantly affected the cellular radiosensitivity of H460R cells.
CONCLUSIONS: These results show that H460R may be useful in searching for candidate genes that are responsible for radioresistance and elucidating the molecular mechanism of radioresistance.

Zhang Q, Zhao XH, Wang ZJ
Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis.
Toxicol In Vitro. 2009; 23(5):797-807 [PubMed] Related Publications
In this study, cytotoxic effects of structurally related flavones and flavonols on a human esophageal squamous cell carcinoma cell line (KYSE-510) were determined, and the molecular mechanisms responsible for their cytotoxic effects were studied. The results of MTT assay showed that flavones (luteolin, apigenin, chrysin) and flavonols (quercetin, kaempferol, myricetin) were able to induce cytotoxicity in KYSE-510 cells in a dose- and time-dependent manner, and the cytotoxic potency of these compounds was in the order of: luteolin>quercetin>chrysin>kaempferol>apigenin>myricetin. Flow cytometry and DNA fragmentation analysis indicated that the cytotoxicity induced by flavones and flavonols was mediated by G(2)/M cell cycle arrest and apoptosis. Furthermore, the expression of genes related to cell cycle arrest and apoptosis was assessed by oligonucleotide microarray, real-time RT-PCR and Western blot. It was shown that the treatment of KYSE-510 cells with these compounds caused G(2)/M arrest through up-regulation of p21(waf1) and down-regulation of cyclin B1 at the mRNA and protein levels, and induced p53-independent mitochondrial-mediated apoptosis through up-regulation of PIG3 and cleavage of caspase-9 and caspase-3. The results of western blot analysis further showed that increases of p63 and p73 protein translation or stability might be contributed to the regulation of p21(waf1), cyclin B1 and PIG3.

Amano T, Nakamizo A, Mishra SK, et al.
Simultaneous phosphorylation of p53 at serine 15 and 20 induces apoptosis in human glioma cells by increasing expression of pro-apoptotic genes.
J Neurooncol. 2009; 92(3):357-71 [PubMed] Related Publications
Understanding the mechanism underlying p53's ability to induce cell cycle arrest versus apoptosis is critical to treating human gliomas, 70% of which contain wild-type p53. Although N-terminal phosphorylation results in activation of p53, the role of N-terminal phosphorylation, particularly at serines 15 and 20, in p53's ability to induce cell cycle arrest versus apoptosis remains controversial. Here we test the hypothesis that phosphorylation of serine 15 and/or 20 is causally related to p53-mediated apoptosis in human gliomas. Introduction of p53 plasmids containing alanine mutations at serine 15 or/and serine 20 (which block phosphorylation) or aspartate mutations (which mimic phosphorylation) at the same sites, implicated simultaneous phosphorylation of both sites in the induction of apoptosis. When a double phosphorylation-mimicking adenoviral p53 vector (Ad-p53-15D20D) was compared with an unphosphorylated p53 vector (Ad-p53), treatment with Ad-p53 resulted in G1-arrest, whereas Ad-p53-15D20D induced apoptosis. These effects occurred independent of phosphorylation of other N-terminal serine (i.e., serines 6, 9, 33, 37, 46) indicating that phosphorylation of S15 and S20 is sufficient for inducing apoptosis. Mechanistically, Ad-p53 was capable only of increasing the expression of p21/CIP, whereas Ad-p53-15D20D increased the binding to and expression of the pro-apoptotic genes Fas, Puma and PIG3. However, Ad-p53-15D20D did not alter the expression of Noxa, Bid, IGFBP3, PERP and Killer/DR5, suggesting that phosphorylation of S15 and S20 resulted in the expression of specific pro-apoptotic gene. In conclusion, simultaneous phosphorylation of S15 and S20 is causally associated with apoptosis, resulting in increased expression of specific p53-responsive pro-apoptotic genes.

Serrano E, Carnicer MJ, Orantes V, et al.
Uniparental disomy may be associated with microsatellite instability in acute myeloid leukemia (AML) with a normal karyotype.
Leuk Lymphoma. 2008; 49(6):1178-83 [PubMed] Related Publications
The discovery of underlying genetic lesions helps to better understand the mechanisms of leukemogenesis and identify prognostic subgroups. Recent insights have allowed normal karyotype acute myeloid leukemia (AML) to be split into many molecular entities according to the genetic status of FLT3, NPM, CEBPA and MLL. Genome-wide single nucleotide polymorphism analysis was performed on 22 well-characterised AML patients with a normal karyotype. At the same time, microsatellite instability was investigated using a commonly used panel of polymorphic markers. Loss of heterozygosity (LOH) was found in 22.7% of cases without an associated copy number variation, suggesting that LOH represented an acquired partial uniparental disomy (aUPD) event. Three UPD+ cases harboured NPM mutations, associated with FLT3-ITD in two of them. An additional UPD patient had mutations both in CEBPA and in WT1. MSI was present at three loci in the three UPD+ cases (60%), whereas single locus MSI was present in three UPD- patients (17%). MSI involved the polymorphic PIG3 promoter in two UPD+ cases. It remains to be tested whether UPD and MSI association marks a common pathway of leukemogenesis.

Zhang Q, Zhao XH, Wang ZJ
Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis.
Food Chem Toxicol. 2008; 46(6):2042-53 [PubMed] Related Publications
Dietary flavonoids have been shown to exert specific cytotoxicity towards some cancer cells, but the precise molecular mechanisms are still not completely understood. In our study, cytotoxic effects of structurally related flavones and flavonols on a human oesophageal adenocarcinoma cell line (OE33) were compared, and the molecular mechanisms responsible for their cytotoxic effects were explored. The results of MTT assay showed that flavones (luteolin, apigenin, chrysin) and flavonols (quercetin, kaempferol, myricetin) were all able to induce cytotoxicity in OE33 cells in a dose- and time-dependent manner, and the cytotoxic potency of these compounds was in the order of quercetin>luteolin>chrysin>kaempferol>apigenin>myricetin. Flow cytometry and DNA fragmentation analysis indicated that the cytotoxicity induced by flavones and flavonols was mediated by G2/M cell cycle arrest and apoptosis. Furthermore, the expression of genes related to cell cycle arrest and apoptosis was assessed by oligonucleotide microarray, real-time RT-PCR and Western blot. It was found that the treatment of OE33 cells with flavones and flavonols caused G2/M arrest through up-regulation of GADD45beta and 14-3-3sigma and down-regulation of cyclin B1 at the mRNA and protein levels, and induced p53-independent mitochondrial-mediated apoptosis through up-regulation of PIG3 and cleavage of caspase-9 and caspase-3. The results of western blot analysis further showed that increases of p63 and p73 protein translation or stability might be contribute to the regulation of GADD45beta, 14-3-3sigma, cyclin B1 and PIG3.

Tanaka T, Ohkubo S, Tatsuno I, Prives C
hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes.
Cell. 2007; 130(4):638-50 [PubMed] Related Publications
The p53 tumor suppressor protein regulates many genes that can determine different cellular outcomes such as growth arrest or cell death. Promoter-selective transactivation by p53, although critical for the different cellular outcomes, is not well understood. We report here that the human cellular apoptosis susceptibility protein (hCAS/CSE1L) associates with a subset of p53 target promoters, including PIG3, in a p53-autonomous manner. Downregulation of hCAS/CSE1L decreases transcription from those p53 target promoters to which it preferentially binds and reduces apoptosis. In addition, hCAS/CSE1L silencing leads to increased methylation of histone H3 lysine 27 within the PIG3 gene. hCAS/CSE1L was previously shown to function as a nucleo-cytoplasmic transport factor, as does its closely related yeast homologue Cse1, which can also associate with chromatin and serve as a barrier protein that prevents spreading of heterochromatin. Thus, human CAS/CSE1L can bind select genes with significant functional consequences for p53-mediated transcription and determine cellular outcome.

Long XH, Zhao ZQ, He XP, et al.
Dose-dependent expression changes of early response genes to ionizing radiation in human lymphoblastoid cells.
Int J Mol Med. 2007; 19(4):607-15 [PubMed] Related Publications
The sensitivity of cancer cells as well as normal cells in response to ionizing radiation (IR) is believed to be associated with the early inducible expression of specific genes. Using cDNA microarray technology, here we explored and compared the global transcriptional changes in human lymphoblastoid AHH-1 cells irradiated with 0.05-, 0.2-, 0.5-, 2.0- and 10-Gy doses of gamma-rays 4 h after exposure. A dose as low as 0.05 Gy was efficient in inducing a transcriptional response including the up-regulation of 25 genes, some of which are involved in signal transduction pathways, e.g. BMPR2, GPR124, MAPK8IP2 and AGGF1, and the down-regulation of 18 genes. Expression of some genes was altered only at a specific dose. Most importantly, we discovered a number of radiation-response genes, e.g. DNA repair gene XPC, tumor protein p53 inducible protein 3 gene (TP53I3), immediate early response 5 gene, whose transcriptional levels were increased or depressed by IR in a dose-dependent trend within the dose range 0.05-10 Gy. The dose-dependent induced expression of TP53I3 and XPC was confirmed by Northern blot analyses. Using quantitative real-time PCR, we further confirmed that XPC gene induction was dose dependent as well as time dependent, reaching a peak 4 h post-2 Gy and 10 h post-0.05 Gy. The maximum induced expression level of the XPC gene was higher after 2 Gy (3.2-fold) than 0.05 Gy (1.93-fold). The identification of these radiation-inducible genes, especially those exhibiting a dose-dependent response, not only expands our knowledge of the mechanisms underlying the diverse biological effects induced by IR, but provides candidates for developing novel biomarkers of radiation injury.

Kim JS, Lee C, Bonifant CL, et al.
Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA.
Mol Cell Biol. 2007; 27(2):662-77 [PubMed] Free Access to Full Article Related Publications
In an effort to identify genes whose expression is regulated by activated phosphatidylinositol 3-kinase (PI3K) signaling, we performed microarray analysis and subsequent quantitative reverse transcription-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN(-/-) cells via an Akt1-dependent and p14(ARF)-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescence-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic, but not wild-type, PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on phosphatidylinositol (3,4,5)-triphosphate-induced mitogenesis during human cancer pathogenesis.

Yang G, Zhang G, Pittelkow MR, et al.
Expression profiling of UVB response in melanocytes identifies a set of p53-target genes.
J Invest Dermatol. 2006; 126(11):2490-506 [PubMed] Related Publications
Epidermal melanocytes execute specific physiological programs in response to UV radiation (UVR) at the cutaneous interface. Many melanocytic responses, including increased dendrite formation, enhanced melanogenesis/melanization, and cell cycle arrest impact the ability of melanocytes to survive and to attenuate the UVR insult. Although some of the molecules that underlie these UVR programs are known, a coherent view of UVR-induced transcriptional changes is lacking. Using primary melanocyte cultures, we assessed for UVR-mediated alterations in over 47,000 transcripts using Affymetrix Human Genome U133 Plus 2.0 microarrays. From the 100 most statistically robust changes in transcript level, there were 84 genes that were suppressed >2.0-fold by UVR; among these transcripts, the identities of 48 of these genes were known. Similarly, there were 99 genes that were induced >2.0-fold by UVR; the identity of 57 of these genes were known. We then subjected these top 100 changes to the Ingenuity Pathway analysis program and identified a group of p53 targets including the cell cycle regulator CDKN1A (p21CIP), the WNT pathway regulator DKK1 (dickkopf homolog 1), the receptor tyrosine kinase EPHA2, growth factor GDF15, ferrodoxin reductase (FDXR), p53-inducible protein TP53I3, transcription factor ATF3, DNA repair enzyme DDB2, and the beta-adrenergic receptor ADBR2. These genes were also found to be consistently elevated by UVR in six independent melanocyte lines, although there were interindividual variations in magnitude. WWOX, whose protein product interacts and regulates p53 and p73, was found to be consistently suppressed by UVR. There was also a subgroup of neurite/axonal developmental genes that were altered in response to UVR, suggesting that melanocytic and neuronal arborization may share similar mechanisms. When compared to melanomas, the basal levels of many of these p53-responsive genes were greatly dysregulated. Three genes--CDKN1A, DDB2 and ADRB2--exhibited a trend towards loss of expression in melanomas thereby raising the possibility of a linked role in tumorigenesis. These expression data provide a global view of UVR-induced changes in melanocytes and, more importantly, generate novel hypotheses regarding melanocyte physiology.

Hopkins-Donaldson S, Belyanskaya LL, Simões-Wüst AP, et al.
p53-induced apoptosis occurs in the absence of p14(ARF) in malignant pleural mesothelioma.
Neoplasia. 2006; 8(7):551-9 [PubMed] Free Access to Full Article Related Publications
Malignant pleural mesotheliomas (MPMs) are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14(ARF), an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14(ARF) expression and the presence of SV40 large T antigen (L-Tag) result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, and treatment of p14(ARF)-deficient cells with cisplatin (CDDP) increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21(WAF), PIG3, MDM2, Bax, and PUMA increased in p14(ARF)-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14(ARF)-deficient cells, and treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1) inhibition of MDM2 (using nutlin-3); 2) transient overexpression of p14(ARF); and 3) targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14(ARF) in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.

Yates CM, Patel A, Oakley K, et al.
Erythropoietin in thyroid cancer.
J Endocrinol Invest. 2006; 29(4):320-9 [PubMed] Related Publications
Erythropoietin (Epo) and the epo-receptor (EpoR) have been implicated in tumor growth, invasion and metastasis. We previously demonstrated Epo and EpoR expression in a small group of archived papillary thyroid cancers (PTC), but were unable to examine functional integrity using formalin-fixed tissues. In the present study, we examined the in vitro expression, induction and function of Epo and EpoR in papillary (NPA), follicular (WRO) and anaplastic (ARO-81) thyroid cancer cells. We found that all three cell lines expressed Epo and EpoR mRNA and that the hypoxia-mimetic cobalt induced Epo expression in all cell lines. None of the growth factors we examined (thyrotropin, vascular endothelial growth factor, IGF-I, or human Epo) altered Epo or EpoR gene expression. Importantly, however, administration of Epo to NPA but not WRO cells resulted in significant alterations in the expression of several mitogenic genes including cyclooxygenase-2 (COX-2), beta-casein (CSN2), wild type p53-induced gene-1 (WIG1) and cathepsin D (CTSD). Epo treated ARO-81 cells only had an increase in CSN2 expression. We conclude that Epo and EpoR are expressed by thyroid cancers and that stimulation of the Epo/EpoR signal pathway results in changes that could impact on the clinical behavior of thyroid cancers.

Coll-Mulet L, Iglesias-Serret D, Santidrián AF, et al.
MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells.
Blood. 2006; 107(10):4109-14 [PubMed] Related Publications
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived CD5(+) B lymphocytes. Several drugs currently used in the therapy of B-CLL act, at least partially, through activation of the p53 pathway. Recently, nongenotoxic small-molecule activators of p53, the nutlins, have been developed that inhibit p53-MDM2 binding. We have investigated the antitumor potential of nutlin-3 in B-CLL and find that it can activate the p53 pathway and effectively induce apoptosis in cells with wild-type p53, including cells with dysfunctional ataxia telangiectasia mutated, but not mutant p53. Nutlin-3 stabilized p53 and induced p53 target genes, including MDM2, p21(CIP1), PUMA, BAX, PIG3, and WIG1. Nutlin-3 synergized with the genotoxic drugs doxorubicin, chlorambucil, and fludarabine, but not with acadesine, which induces p53-independent apoptosis. Normal human T cells showed lower sensitivity to nutlin-3 than B-CLL cells and no synergism with the genotoxic drugs. These results suggest that MDM2 antagonists alone or in combination with chemotherapeutic drugs may offer a new treatment option for B-CLL.

Secchiero P, Barbarotto E, Tiribelli M, et al.
Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL).
Blood. 2006; 107(10):4122-9 [PubMed] Related Publications
Deletions and/or mutations of p53 are relatively rare and late events in the natural history of B-cell chronic lymphocytic leukemia (B-CLL). However, it is unknown whether p53 signaling is functional in B-CLL and if targeted nongenotoxic activation of the p53 pathway by using nutlin-3, a small molecule inhibitor of the p53/MDM2 interaction, is sufficient to kill B-CLL cells. In vitro treatment with nutlin-3 induced a significant cytotoxicity on primary CD19(+) B-CLL cells, but not on normal CD19(+) B lymphocytes, peripheral-blood mononuclear cells, or bone marrow hematopoietic progenitors. Among 29 B-CLL samples examined, only one was resistant to nutlin-3-mediated cytotoxicity. The induction of p53 by nutlin-3 in B-CLL samples was accompanied by alterations of the mitochondrial potential and activation of the caspase-dependent apoptotic pathway. Among several genes related to the p53 pathway, nutlin-3 up-regulated the steady-state mRNA levels of PCNA, CDKN1A/p21, GDF15, TNFRSF10B/TRAIL-R2, TP53I3/PIG3, and GADD45. This profile of gene activation showed a partial overlapping with that induced by the genotoxic drug fludarabine. Moreover, nutlin-3 synergized with both fludarabine and chlorambucil in inducing B-CLL apoptosis. Our data strongly suggest that nutlin-3 should be further investigated for clinical applications in the treatment of B-CLL.

Ito M, Nishiyama H, Watanabe J, et al.
Association of the PIG3 promoter polymorphism with invasive bladder cancer in a Japanese population.
Jpn J Clin Oncol. 2006; 36(2):116-20 [PubMed] Related Publications
PIG3 (p53-induced gene 3) is one of the targets of TP53 and is involved in apoptosis. The promoter of PIG3 contains a variable number of tandem repeats (VNTRs) of pentanucleotides (TGYCC)n (Y = C or T) and the number of VNTRs was reported to be correlated with the activation by TP53. In this study, the clinical significance of the PIG3 promoter VNTRs was analyzed in the bladder cancer patients using the genome DNAs from 338 controls and 273 bladder cancer patients. There was no significant difference in the allele frequency of the PIG3 promoter VNTRs between them. However, the presence of 14 or less repeats allele was associated with higher cancer grade (P = 0.038) and higher stage in relative risk (adjusted odds ratio = 2.31, 95% confidence interval = 1.05-5.90). These data suggested that the PIG3 promoter VNTRs was associated with generation of invasive bladder cancer.

Naumann U, Huang H, Wolburg H, et al.
PCTAIRE3: a putative mediator of growth arrest and death induced by CTS-1, a dominant-positive p53-derived synthetic tumor suppressor, in human malignant glioma cells.
Cancer Gene Ther. 2006; 13(5):469-78 [PubMed] Related Publications
Chimeric tumor suppressor-1 (CTS-1) is based on the sequence of p53 and was designed as a therapeutic tool resisting various mechanisms of p53 inactivation. We previously reported that an adenovirus expressing CTS-1 (Ad-CTS-1) has superior cell death-inducing activity in glioma cells compared with wild-type p53. Here, we used cDNA microarrays to detect changes in gene expression preferentially induced by Ad-CTS-1. The putative serine threonine kinase, PCTAIRE3, and the quinone oxireductase, PIG3, were strongly induced by Ad-CTS-1 compared with wild-type p53. An adenoviral vector encoding PCTAIRE3 (Ad-PCTAIRE3) induced growth arrest and killed a minor proportion of the glioma cells. Ad-PIG3 alone affected neither growth nor viability. However, coinfection with Ad-PCTAIRE3 and Ad-PIG3 resulted in enhanced growth inhibition compared with Ad-PCTAIRE3 infection alone. Ad-CTS1, Ad-PCTAIRE3 or Ad-PIG3 induced the formation of free reactive oxygen species (ROS). However, the prevention of ROS formation induced by Ad-PCTAIRE3 and Ad-CTS-1 did not block growth arrest and cell death, suggesting that ROS formation is not essential for these effects. Altogether, these data identify PCTAIRE3 as one novel growth-inhibitory and death-inducing p53 response gene and suggest that changes in the expression of specific target genes contribute to the superior anti-glioma activity of CTS-1.

Ramachandran C, Rodriguez S, Ramachandran R, et al.
Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines.
Anticancer Res. 2005 Sep-Oct; 25(5):3293-302 [PubMed] Related Publications
Curcumin (diferuloyl methane), the yellow-colored dietary pigment from the rhizomes of turmeric, has been recognized as a chemopreventive agent because of its antitumor, antioxidant and antiproliferative effects. The cytotoxic, apoptotic and gene regulatory effects of both turmeric and curcumin were investigated in the MCF-7 human breast cancer carcinoma cell line and compared with the effects in MCF-10A human mammary epithelial cells. MCF-7 cells were more sensitive to turmeric and curcumin than MCF-10A cells. MCF-10A cells retained comparatively less curcumin in the medium than MCF- 7 cells after 24 h, thereby reducing the cytotoxic effect. Curcumin induced a significantly higher percentage of apoptosis in MCF-7 than MCF-10A cells at all doses. Microarray hybridization of Clonetech apoptotic arrays with labeled first-strand probes of total RNA was performed to identify and characterize the genes regulated by curcumin in tumor cells. Of the 214 apoptosis-associated genes in the array, the expression of 104 genes was altered by curcumin treatment. The gene expression was altered up to 14-fold levels in MCF-7 as compared to only up to 1.5-fold in the MCF-10A cell line by curcumin. Curcumin up-regulated (>3 fold) 22 genes and down-regulated (<3-fold) 17 genes at both 25 microg/ml and 50 microg/ml doses in the MCF-7 cell line. The up-regulated genes include HIAP1, CRAF1, TRAF6, CASP1, CASP2, CASP3, CASP4, HPRT, GADD45, MCL-1, NIP1, BCL2L2, TRAP3, GSTP1, DAXX, PIG11, UBC, PIG3, PCNA, CDC10, JNK1 and RBP2. The down-regulated genes were TRAIL, TNFR, AP13, IGFBP3, SARP3, PKB, IGFBP, CASP7, CASP9, TNFSF6, TRICK2A, CAS, TRAIL-R2, RATS1, hTRIP, TNFb and TNFRSF5. While a dose-dependent gene expression change was noticed in some genes, opposite regulatory effects were induced by different curcumin doses in three apoptotic genes. These results suggest that curcumin induces apoptosis in breast cancer cells by regulation of multiple signaling pathways, indicating its potential use for prevention and treatment of cancer.

Takimoto R, Kato J, Terui T, et al.
Augmentation of antitumor effects of p53 gene therapy by combination with HDAC inhibitor.
Cancer Biol Ther. 2005; 4(4):421-8 [PubMed] Related Publications
We have previously shown that the HDAC inhibitors (HDACI) activate the p53 molecule through acetylation of 320 and 373 lysine residues, upregulate PIG3 and NOXA and induce apoptosis in cancer cells expressing wild and pseudo-wild type p53 genes (Terui T, et al. Cancer Res 2003; 63:8948-54). It has also been reported that expression of the Coxsackie adenovirus receptor and subsequent transfection efficiency of the adenovirus in cancer cells were enhanced by HDACI treatment. In this study, we extended these observations to explore the combination effect of adenoviral vector carrying wild type p53 (Ad-p53) gene therapy with a HDACI, sodium butyrate (SB), on xenografted human gastric cancer cells (KATO-III) and hepatocellular carcinoma cells (HuH7) in nude mice. We first confirmed an increased expression of Coxsackie adenovirus receptors with an associated increment of transgene (X-gal) expression by SB treatment in KATO-III cells. We then injected Ad-p53 into subcutaneous tumors of KATO-III and HuH7 combined with intraperitoneal administration of SB and found a significantly higher growth suppressive effect than single treatments of each. Even a complete regression of tumors was observed in three of five mice treated with this combination while with single treatment no tumor regression was observed. Tumors treated with the combination showed higher numbers of TUNEL positive cells than those treated with a single modality. Moreover, necrotic changes were more evident in tumors treated with the combination than separately, a compatible finding to the observation that vascularity revealed by CD34 staining was poorer in tumors treated with the combination than those treated with p53 gene or SB alone. This was further supported by the finding that BAI-1 (brain specific angiogenesis inhibitor-1), an inhibitor of vascularization, was induced by SB treatment in KATO-III and HuH7 cells transfected with Ad-p53. Thus SB was shown to be an efficient potentiator of p53 gene therapy for cancer.

Ostrakhovitch EA, Cherian MG
Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells.
Apoptosis. 2005; 10(1):111-21 [PubMed] Related Publications
Previous studies revealed that cells may differ in their response to metal stress depending on their p53 status; however, the sequence of events leading to copper-induced apoptosis is still unclear. Exposure of copper (10 and 25 microM) and zinc (10 and 25 microM) caused activation of p53 in ER+/p53+ human epithelial breast cancer MCF7 cells and resulted in up-regulation of p21. Transactivation of p53 in MCF7 cells also led to increase in expression of Bax, proapototic Bcl-2 family member, triggering mitochondrial pore opening, and PIG3 (p53-induced gene 3 product), and also generation of intracellular reactive oxygen species (ROS). The treatment of MCF7 cells with either copper or zinc for 4 h also caused decrease in mitochondrial membrane potential (Delta psi(m)), accompanied by an elevation in the ROS production and redistribution of p53 into mitochondria. The loss of Delta psi(m) was correlated with accumulation of Annexin V positive apoptotic cells. However, the release of apoptosis inducing factor (AIF) and its translocation into nucleus was observed only in MCF7 cells treated with copper. In MDA-MB-231 (ER-/p53-) and MCF7-E6 (ER+/p53-) cells, both p53 and p21 protein levels were not altered in the presence of metals. These cells were resistant to metals, and there was no alteration in Delta psi(m). Copper treatment did not result in accumulation of ROS in these cell lines with an inactive p53 even after exposure to 50 microM of copper for 6 h, indicating a key role for p53 in the ROS generation. Pretreatment of MCF7 cells with p53 inhibitor, pifithrin-alpha, resulted in decrease of copper and zinc induced ROS production to the control level, suppression of both Bax expression and AIF release. Therefore, the activation of p53 seems to play a crucial role in copper and zinc induced generation of ROS in epithelial breast cancer cells, and expression of downstream targets of p53, such as PIG3 and Bax, responsible for increased generation of the intracellular ROS, as well as disruption of mitochondrial integrity. Our data suggest that copper induces apoptosis in MCF-7 cells with no caspases through the depolarization of mitochondrial membrane with release of AIF and its translocation into the nucleus. The results demonstrate that a functional p53 is required for the execution of apoptosis in epithelial cells.

Petitjean A, Cavard C, Shi H, et al.
The expression of TA and DeltaNp63 are regulated by different mechanisms in liver cells.
Oncogene. 2005; 24(3):512-9 [PubMed] Related Publications
The TP63 gene, a member of the TP53 gene family, encodes several isoforms with (TAp63) or without (DeltaNp63) transactivating properties. Whereas the role of p63 in the normal development of squamous epithelia is well established, its function in other cell types remains to be elucidated. Here, we have analysed the expression of TA and DeltaNp63 isoforms in liver cells, by using both primary hepatocytes from wild type and p53-null mice and three human hepatocellular carcinoma (HCC) cell lines, according to the transformation state and the TP53 status of the cells. We observed the expression of DeltaNp63 isoforms only in a p53-null context. On the other hand, the expression of TAp63 isoforms was restricted to the HCC cell lines, whatever the TP53 status. We then studied the expression of TP63 upon genotoxic treatment. When treated with UVB or H(2)O(2), hepatocytes did not exhibit any change in p63 mRNA level. At the opposite, upon treatment with topoisomerase II inhibitors (doxorubicin or etoposide), the expression of TAp63 isoforms was clearly induced, independently of the TP53 status of cells. The same treatment did not induce any variation in the expression of DeltaNp63 isoforms, both at mRNA and protein levels. In HCC cell lines, doxorubicin or etoposide treatment also resulted in an increase of TAp63 transcripts only. This increase was accompanied by an increase in the intracellular level of TAp63 alpha protein. In parallel, we observed an upregulation of some p53-target genes related to cell cycle regulation, such as WAF1/CIP1, PIG3, 14-3-3sigma or GADD45, independently of the TP53 status of cells. In conclusion, we report for the first time that TA and DeltaNp63 alpha proteins are present in liver cells. Furthermore, our results suggest that p63 may partially substitute for wild-type p53, in counteracting uncontrolled liver cell proliferation in response to certain forms of DNA-damage.

Gorgoulis VG, Liloglou T, Sigala F, et al.
Absence of association with cancer risk and low frequency of alterations at a p53 responsive PIG3 gene polymorphism in breast and lung carcinomas.
Mutat Res. 2004; 556(1-2):143-50 [PubMed] Related Publications
The mechanisms of p53-dependent apoptosis involve a set of genes that possess the ability to modulate oxidative stress. One of them PIG3, is induced by p53 through a microsatellite in its promoter region. This microsatellite was found to acquire its full structure and p53-functional dependence only in Hominoidea (apes and humans) and has been proposed to represent an evolutionary adaptation of tumor suppressor mechanisms. Microsatellite instability and genetic constitution, comprising the presence of the low repetition allele (10 TGYCC repeats), at this locus have been hypothesized to provide an increased risk for cancer development. Therefore, in the present analysis we examined this polymorphism in two common human cancers, lung and breast and compared it with corresponding control cases. Furthermore, for lung cancer we employed two different ethnic groups, Greek and British. Analysis of this locus in this types of tumors showed: (1) a very low frequency of microsatellite instability and loss of heterozygosity (1.4% and 4%, respectively) in the examined carcinomas, (2) the homozygous presence of the 10 repeats allele only in the control cases, and (3) a non-significant increase of the most frequent allele (15 repeats) in the cancer groups as compared to control ones. The last two observations were found in both Greek and British populations. Taken together, these data do not support the notion that this PIG3 polymorphism is associated with an increased risk for cancer susceptibility. Larger studies including other types of cancer should also be performed.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TP53I3, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999