TRAF2

Gene Summary

Gene:TRAF2; TNF receptor associated factor 2
Aliases: TRAP, TRAP3, RNF117, MGC:45012
Location:9q34.3
Summary:The protein encoded by this gene is a member of the TNF receptor associated factor (TRAF) protein family. TRAF proteins associate with, and mediate the signal transduction from members of the TNF receptor superfamily. This protein directly interacts with TNF receptors, and forms a heterodimeric complex with TRAF1. This protein is required for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB. The protein complex formed by this protein and TRAF1 interacts with the inhibitor-of-apoptosis proteins (IAPs), and functions as a mediator of the anti-apoptotic signals from TNF receptors. The interaction of this protein with TRADD, a TNF receptor associated apoptotic signal transducer, ensures the recruitment of IAPs for the direct inhibition of caspase activation. BIRC2/c-IAP1, an apoptosis inhibitor possessing ubiquitin ligase activity, can unbiquitinate and induce the degradation of this protein, and thus potentiate TNF-induced apoptosis. Multiple alternatively spliced transcript variants have been found for this gene, but the biological validity of only one transcript has been determined. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:TNF receptor-associated factor 2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (43)
Pathways:What pathways are this gene/protein implicaed in?
Show (15)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Immunohistochemistry
  • Mutation
  • Protein-Serine-Threonine Kinases
  • Apoptosis
  • TNF
  • Wnt Proteins
  • Survival Rate
  • Breast Cancer
  • RTPCR
  • HEK293 Cells
  • Tumor Microenvironment
  • Protein Binding
  • Molecular Sequence Data
  • siRNA
  • Cell Proliferation
  • TNF Receptor-Associated Factor 3
  • Signal Transduction
  • Gene Expression Profiling
  • I-kappa B Kinase
  • Lung Cancer
  • Messenger RNA
  • Receptor-Like Protein Tyrosine Phosphatases, Class 8
  • Viral Matrix Proteins
  • Phosphorylation
  • Cancer Gene Expression Regulation
  • TNF Receptor-Associated Factor 2
  • Amino Acid Sequence
  • Enzyme Activation
  • Cell Survival
  • TNF Receptor-Associated Factor 6
  • Transcription
  • Western Blotting
  • Chromosome 9
  • Systems Biology
  • Biomarkers, Tumor
  • RNA Interference
  • Neoplasm Proteins
  • NF-kappa B
  • Mice, Inbred BALB C
  • Transfection
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TRAF2 (cancer-related)

Gonzalez-Aparicio M, Alfaro C
Influence of Interleukin-8 and Neutrophil Extracellular Trap (NET) Formation in the Tumor Microenvironment: Is There a Pathogenic Role?
J Immunol Res. 2019; 2019:6252138 [PubMed] Free Access to Full Article Related Publications
In this review, we will highlight several studies that revolve around interleukin-8 (IL-8) and show the multiple facets that could take in the tumor microenvironment. Chemokines that attract neutrophils (to a large extent, IL-8) can have a bimodal behavior inducing the migration of them in the first place and later favoring the formation of NETs in the place of emission focus of the chemokine. Also, this mechanism occurs when neutrophils migrate to tumor cells and where the extrusion of NETs in the tumor is observed. A possible participation of NETs in cancer progression was considered; however, until now, it is difficult to decide if NETosis plays a pro- or antitumor role, although it is necessary to emphasize that there is more experimentation focused on the protumorigenic aspect of the NETs. The formation of NETs has a relevant role in the inhibition of the immune response against the tumor generated by neutrophils and in turn favoring the processes involved in the development of tumor metastasis. It is striking that we do not have more complete information about the effects of circulating chemokines on neutrophils in cancer patients and hence the suitability of this review. No one has observed to date the impact that it could have on other cell populations to inhibit the arrival of neutrophils and the formation/elimination of NETs. However, the extent to which NETs affect the function of other cells of the immune system in the tumor context has not been directly demonstrated. It is necessary to identify possible combinations of immunotherapy that involve the modulation of neutrophil activity with other strategies (immunomodulatory antibodies or adoptive cell therapy). Therefore, knowing the mechanisms by which tumors take advantage of this ability of neutrophils to form NETs is very important in the search for antitumor therapies and thus be able to take advantage of the possible immunotherapeutic combinations that we currently have in clinical practice.

Duan Y, Tan Z, Yang M, et al.
PC-3-Derived Exosomes Inhibit Osteoclast Differentiation by Downregulating miR-214 and Blocking NF-
Biomed Res Int. 2019; 2019:8650846 [PubMed] Free Access to Full Article Related Publications
Prostate cancer is a serious disease that can invade bone tissues. These bone metastases can greatly decrease a patient's quality of life, pose a financial burden, and even result in death. In recent years, tumor cell-secreted microvesicles have been identified and proposed to be a key factor in cell interaction. However, the impact of cancer-derived exosomes on bone cells remains unclear. Herein, we isolated exosomes from prostate cancer cell line PC-3 and investigated their effects on human osteoclast differentiation by tartrate-resistant acid phosphatase (TRAP) staining. The potential mechanism was evaluated by qRT-PCR, western blotting, and microRNA transfection experiments. The results showed that PC-3-derived exosomes dramatically inhibited osteoclast differentiation. Marker genes of mature osteoclasts, including CTSK, NFATc1, ACP5, and miR-214, were all downregulated in the presence of PC-3 exosomes. Furthermore, transfection experiments showed that miR-214 downregulation severely impaired osteoclast differentiation, whereas overexpression of miR-214 promoted differentiation. Furthermore, we demonstrated that PC-3-derived exosomes block the NF-

Lee RS, Zhang L, Berger A, et al.
Characterization of the ERG-regulated Kinome in Prostate Cancer Identifies TNIK as a Potential Therapeutic Target.
Neoplasia. 2019; 21(4):389-400 [PubMed] Free Access to Full Article Related Publications
Approximately 50% of prostate cancers harbor the TMPRSS2:ERG fusion, resulting in elevated expression of the ERG transcription factor. Despite the identification of this subclass of prostate cancers, no personalized therapeutic strategies have achieved clinical implementation. Kinases are attractive therapeutic targets as signaling networks are commonly perturbed in cancers. The impact of elevated ERG expression on kinase signaling networks in prostate cancer has not been investigated. Resolution of this issue may identify novel therapeutic approaches for ERG-positive prostate cancers. In this study, we used quantitative mass spectrometry-based kinomic profiling to identify ERG-mediated changes to cellular signaling networks. We identified 76 kinases that were differentially expressed and/or phosphorylated in DU145 cells engineered to express ERG. In particular, the Traf2 and Nck-interacting kinase (TNIK) was markedly upregulated and phosphorylated on multiple sites upon ERG overexpression. Importantly, TNIK has not previously been implicated in prostate cancer. To validate the clinical relevance of these findings, we characterized expression of TNIK and TNIK phosphorylated at serine 764 (pS764) in a localized prostate cancer patient cohort and showed that nuclear enrichment of TNIK (pS764) was significantly positively correlated with ERG expression. Moreover, TNIK protein levels were dependent upon ERG expression in VCaP cells and primary cells established from a prostate cancer patient-derived xenograft. Furthermore, reduction of TNIK expression and activity by silencing TNIK expression or using the TNIK inhibitor NCB-0846 reduced cell viability, colony formation and anchorage independent growth. Therefore, TNIK represents a novel and actionable therapeutic target for ERG-positive prostate cancers that could be exploited to develop new treatments for these patients.

Wang F, Cheng Y, Zhang C, et al.
A novel antisense oligonucleotide anchored on the intronic splicing enhancer of hTERT pre-mRNA inhibits telomerase activity and induces apoptosis in glioma cells.
J Neurooncol. 2019; 143(1):57-68 [PubMed] Related Publications
INTRODUCTION: Alternative splicing of hTERT pre-mRNA is an important step in the regulation of telomerase activity, but the regulation mechanisms and functions remain unclear.
METHODS: RT-PCR analysis was used to detect hTERT splicing in glioma cell lines and brain tissues. TRAP assay was used to detect the telomerase activity. Then, we designed and synthesized 2'-O-methyl-RNA phosphorothioate AONs and transfected them into glioma cells to detect the changes in telomerase activity. MTT assay, plate colony formation assay, western blotting and Annexin V/PI assay were used to detect cell proliferation and apoptosis. At last, bioinformatics analyses were used to predict the expression and function of splicing protein SRSF2 in gliomas.
RESULTS: hTERT splicing occurs both in glioma cell lines and glioma patients' tissues. The telomerase activity was related to the expression level of the full-length hTERT, rather than the total hTERT transcript level. AON-Ex726 was complementary to the sequence of the intronic splicing enhancer (ISE) in intron six, and significantly altered the splicing pattern of hTERT pre-mRNA, reducing the expression level of the full-length hTERT mRNA and increasing the expression level of the -β hTERT mRNA. After transfection with AON-Ex726, the level of apoptosis was increased, while telomerase activity and cell proliferation were significantly decreased. By bioinformatic predictions, we found the AON-Ex726 anchoring sequence in ISE overlaps the binding site of SRSF2 protein, which is up-regulated during the development of gliomas.
CONCLUSIONS: Our findings provided new targets and important clues for the gene therapy of gliomas by regulating the alternative splicing pattern of hTERT pre-mRNA.

Wu YF, Ou CC, Chien PJ, et al.
Chidamide-induced ROS accumulation and miR-129-3p-dependent cell cycle arrest in non-small lung cancer cells.
Phytomedicine. 2019; 56:94-102 [PubMed] Related Publications
BACKGROUND: Epigenetic therapy is a promising popular treatment modality for various cancers. Histone modification and miRNA should not be underestimated in lung cancer. This study aimed to investigate whether chidamide, a histone deacetylase inhibitor (HDACi), which inhibits telomerase activity and induces cell cycle arrest, influences ROS and miRNA production in non-small cell lung cancer (NSCLC) cells.
METHODS: H1355 and A549 were treated with chidamide. The analysis of DNA content was measured by FACSCalibur equipped with a 488 nm laser. H1355 cells were transfected with miR-129-3p mimic by Lipofectamine2000. Telomerase activity was performed on the telomeric repeat amplification protocol (TRAP) assay. Detection of thymidylate synthase (TS), p21, p53, pRB, and β-actin, were performed by western blot analysis.
RESULTS: Our data showed that expression of TS, p21, and pRB were altered in the presence of chidamide by PCR and western blot. Using BrdU-incorporation analysis, we found that chidamide induced G1 arrest through the regulation of the TS gene by miR-129-3p. Chidamide was shown to suppress telomerase activity in the TRAP assay and reduced the expression of human telomerase reverse transcriptase (hTERT) by PCR and q-PCR in H1355 and A549 cells. Chidamide increased the generation of reactive oxygen species (ROS) by flow cytometry. N-acetyl cysteine (NAC), a ROS scavenger, attenuated chidamide-induced telomerase activity inhibition.
CONCLUSION: Chidamide repressed telomerase activity through ROS accumulation and cell cycle arrest by miR-129-3p upregulation in both H1355 and A549 cells. This is the first study to demonstrate that chidamide induces miR-129-3p upregulation and ROS accumulation, leading to cell cycle arrest.

Li Z, Lim SK, Liang X, Lim YP
The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway.
J Biol Chem. 2018; 293(52):20014-20028 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
The transcriptional coactivator WW domain-binding protein 2 (WBP2) is an emerging oncogene and serves as a node between the signaling protein Wnt and other signaling molecules and pathways, including epidermal growth factor receptor, estrogen receptor/progesterone receptor, and the Hippo pathway. The upstream regulation of WBP2 is well-studied, but its downstream activity remains unclear. Here, we elucidated WBP2's role in triple-negative breast cancer (TNBC), in which Wnt signaling is predominantly activated. Using RNAi coupled with RNA-Seq and MS analyses to identify Wnt/WBP2- and WBP2-dependent targets in MDA-MB-231 TNBC cells, we found that WBP2 is required for the expression of a core set of genes in Wnt signaling. These included

Ren G, Shi Z, Teng C, Yao Y
Antiproliferative Activity of Combined Biochanin A and Ginsenoside Rh₂ on MDA-MB-231 and MCF-7 Human Breast Cancer Cells.
Molecules. 2018; 23(11) [PubMed] Article available free on PMC after 28/12/2019 Related Publications
Breast cancer is the most frequently diagnosed cancer in women worldwide. The antiproliferative activities of biochanin A (BA) and ginsenoside Rh₂ were determined by evaluating their inhibitory effect on MDA-MB-231 human breast cancer cell proliferation. The combination of BA with Rh₂ was also assessed. In MDA cells, combination treatment led to a decrease in the EC

Bai H, Zhu H, Yan Q, et al.
TRPV2-induced Ca
Cell Commun Signal. 2018; 16(1):68 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
BACKGROUND: Myeloma bone disease (MBD) can cause bone destruction and increase the level of Ca
METHODS: To investigate the expression of TRPV2 in MM, we analyzed publicly available MM data sets and performed immunohistochemistry in MM patients. The correlations between TRPV2 expression levels and osteoclast-related cytokines were analyzed. Fluo-4 staining and ELISA assays were used to assess the regulated function of TRPV2 in intracellular Ca
RESULTS: The functional expression of TRPV2, involved in the osteolysis through gating the calcium influx, was changed in the MM cells cultured in a high Ca
CONCLUSIONS: Our study uncovers the possible roles of TRPV2, which enhances MBD, suggesting that targeting osteocyte-MM cells interactions through blockade of TRPV2 channel may provide a promising treatment strategy in MM.

Kazemi Noureini S, Fatemi L, Wink M
Telomere shortening in breast cancer cells (MCF7) under treatment with low doses of the benzylisoquinoline alkaloid chelidonine.
PLoS One. 2018; 13(10):e0204901 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
Telomeres, the specialized dynamic structures at chromosome ends, regularly shrink with every replication. Thus, they function as an internal molecular clock counting down the number of cell divisions. However, most cancer cells escape this limitation by activating telomerase, which can maintain telomere length. Previous studies showed that the benzylisoquinoline alkaloid chelidonine stimulates multiple modes of cell death and strongly down-regulates telomerase. It is still unknown if down-regulation of telomerase by chelidonine boosts substantial telomere shortening. The breast cancer cell line MCF7 was sequentially treated with very low concentrations of chelidonine over several cell passages. Telomere length and telomerase activity were measured by a monochrome multiplex quantitative PCR and a q-TRAP assay, respectively. Changes in population size and doubling time correlated well with telomerase inhibition and telomere shortening. MCF7 cell growth was arrested completely after three sequential treatments with 0.1 μM chelidonine, each ending after 48 h, while telomere length was reduced to almost 10% of the untreated control. However, treatment with 0.01 μM chelidonine did not have any apparent consequence. In addition to dose and time dependent telomerase inhibition, chelidonine changed the splicing pattern of hTERT towards non-enzyme coding isoforms of the transcript. In conclusion, telomere length and telomere stability are strongly affected by chelidonine in addition to microtubule formation.

Lai S
Carcinogenesis is consequence of failure of tissue development.
Med Hypotheses. 2018; 119:84-87 [PubMed] Related Publications
Cancer has become a public health problem. The exploration of pathogenesis and therapy of cancer is mainly under the guidance of gene mutation theory. But the therapeutic effect of cancer is not satisfactory, and many predictions of gene mutation theory do not conform actual phenomena of cancer. The research results of mechanism of genetic molecular mutation trap us in an intricate molecular maze hopelessly. The dilemma compels us to doubt about the correctness of gene mutation theory and re-understand the nature of tumor. This study explores the nature of cancer by the method of theoretical analysis by the view of tissue regeneration, and draws a conclusion that the carcinogenesis is consequence of failure of tissue development. Tumors originate from tissue regeneration, tumor cells originate from normal tissue stem cells. The tumor cells are only normal immature cells. Tumor promoters stimulate stem cells to proliferate. Carcinogens obstruct the inducers from inducing tissue stem cells differentiation outside of cells. With tumor promoters and carcinogens, the tissue stem cells proliferate, but cannot differentiate into mature cells, and stop in different phases of differentiation forming atypical hyperplasia of different degrees and tumors of various differentiation grades in tissue. The tumor cells can differentiate into normal mature cells with suitable inducers. The normal stem cells will develop into tumor stem cells without suitable inducers. The ultimate solution of tumor is differentiation therapy. Stem cell transplantation should be cautious.

Takemori T, Kawamoto T, Ueha T, et al.
Transcutaneous carbon dioxide application suppresses bone destruction caused by breast cancer metastasis.
Oncol Rep. 2018; 40(4):2079-2087 [PubMed] Related Publications
Hypoxia plays a significant role in cancer progression, including metastatic bone tumors. We previously reported that transcutaneous carbon dioxide (CO2) application could decrease tumor progression through the improvement of intratumor hypoxia. Therefore, we hypothesized that decreased hypoxia using transcutaneous CO2 could suppress progressive bone destruction in cancer metastasis. In the present study, we examined the effects of transcutaneous CO2 application on metastatic bone destruction using an animal model. The human breast cancer cell line MDA-MB-231 was cultured in vitro under three different oxygen conditions, and the effect of altered oxygen conditions on the expression of osteoclast-differentiation and osteolytic factors was assessed. An in vivo bone metastatic model of human breast cancer was created by intramedullary implantation of MDA-MB-231 cells into the tibia of nude mice, and treatment with 100% CO2 or a control was performed twice weekly for two weeks. Bone volume of the treated tibia was evaluated by micro-computed tomography (µCT), and following treatment, histological evaluation was performed by hematoxylin and eosin staining and immunohistochemical staining for hypoxia-inducible factor (HIF)-1α, osteoclast-differentiation and osteolytic factors, and tartrate-resistant acid phosphatase (TRAP) staining for osteoclast activity. In vitro experiments revealed that the mRNA expression of RANKL, PTHrP and IL-8 was significantly increased under hypoxic conditions and was subsequently reduced by reoxygenation. In vivo results by µCT revealed that bone destruction was suppressed by transcutaneous CO2, and that the expression of osteoclast-differentiation and osteolytic factors, as well as HIF-1α, was decreased in CO2-treated tumor tissues. In addition, multinucleated TRAP-positive osteoclasts were significantly decreased in CO2-treated tumor tissues. Hypoxic conditions promoted bone destruction in breast cancer metastasis, and reversal of hypoxia by transcutaneous CO2 application significantly inhibited metastatic bone destruction along with decreased osteoclast activity. The findings in this study strongly indicated that transcutaneous CO2 application could be a novel therapeutic strategy for treating metastatic bone destruction.

Lu CH, Yeh DW, Lai CY, et al.
USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation.
Oncogene. 2018; 37(49):6327-6340 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
Macrophage accumulation and inflammation in the lung owing to stresses and diseases is a cause of lung cancer development. However, molecular mechanisms underlying the interaction between macrophages and cancer cells, which drive inflammation and stemness in cancers, are poorly understood. In this study, we investigated the expression of ubiquitin-specific peptidase 17 (USP17) in lung cancers, and role of elevated USP17 in the interaction between macrophages and lung cancer cells. USP17 expression in lung cancers was associated with poor prognosis, macrophage, and inflammatory marker expressions. Macrophages promoted USP17 expression in cancer cells. TNFR-associated factor (TRAF) 2-binding and TRAF3-binding motifs were identified in USP17, through which it interacted with and disrupted the TRAF2/TRAF3 complex. This stabilized its client proteins, enhanced inflammation and stemness in cancer cells, and promoted macrophage recruitment. In different animal studies, co-injection of macrophages with cancer cells promoted USP17 expression in tumors and tumor growth. Conversely, depletion of macrophages in host animals by clodronate liposomes reduced USP17 expression and tumor growth. In addition, overexpression of USP17 in cancer cells promoted tumor growth and inflammation-associated and stemness-associated gene expressions in tumors. These results suggested that USP17 drives a positive-feedback interaction between macrophages and cancer cells to enhance inflammation and stemness in cancer cells, and promotes lung cancer growth.

Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, et al.
17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression.
Biomed Pharmacother. 2018; 105:1026-1032 [PubMed] Related Publications
Up-regulation of heat shock protein 90 (HSP90) gene takes place in lung cancer cells. Therefore, targeting HSP90 in lung cancer may be promising step in lung cancer therapy. The present study aimed to evaluate the efficiency of implantable 17-dimethylaminoethylamino-17-demethoxy geldanamycin (17-DMAG)-loaded Poly(caprolactone)-poly(ethylene glycol) (PCL/PEG) nanofibers to increase the anti-cancer effects via inhibition of HSP90 expression and telomerase activity. For this purpose, 17-DMAG-loaded PCL/PEG nanofibers were successfully fabricated via electrospinning and characterized using FE-SEM and FTIR. Colorimetric MTT assay was used to determine the drug cytotoxicity. Also, the expression levels of HSP90 mRNA in the A549 cells treated with the nanofibers were assessed using Quantitative Real-Time PCR. The effect of free 17-DMAG and 17-DMAG-loaded PCL/PEG nanofiber treatment on telomerase activity was monitored by TRAP assay. MTT assay confirmed that loading of 17-DMAG into PCL/PEG nanofiber enhanced dramatically cytotoxicity in the lung cancer cells. This finding was associated with reduction of HSP90 mRNA expression and telomerase activity in the cells seeded on 17-DMAG-loaded PCL/PEG nanofibers in relative to free 17-DMAG. In conclusion, the findings demonstrated that 17-DMAG-loaded PCL/PEG nanofibers are more effectual than free 17-DMAG against A549 lung cancer cells via modulation of Hsp90 expression and inhibition of telomerase activity. Hence, the implantable 17-DMAG-loaded nanofibrous scaffolds might be an excellent tool for efficiently killing of the lung residual cancer cells and avoid the local cancer recurrence.

Feng L, Yang Y, Li M, et al.
Systems biology analysis of the lung cancer‑related secretome.
Oncol Rep. 2018; 40(2):1103-1118 [PubMed] Related Publications
Tumorigenesis is closely and highly associated with developmental biology. The present study aimed to discover and identify marker proteins strongly associated with the occurrence and development of non‑small cell lung cancer (NSCLC) in humans and to provide new ideas for investigating lung cancer markers by combining biological analyses of embryonic development. We established primary cultures for samples of tumor and control tissues from 9 patients with NSCLC and collected conditioned medium (CM). Subsequently, we used liquid chromatography and linear ion trap (LTQ) mass spectrometry to isolate and identify proteins in CM samples. Data mining of free proteins was conducted using the analogous analysis strategy in systems biology to obtain important lung cancer‑associated proteins (plasma markers). Proteins with significant plasma enrichment in lung cancer patients were detected via enzyme‑linked immunosorbent assay (ELISA). We identified 987 high‑confidence proteins and established a primary database of free proteins associated with lung cancer. Furthermore, 511 high‑confidence proteins were present in CM from primary tissue cultures from at least 2 of the 9 examined cases of lung cancer. Analysis using Gene Set Enrichment Analysis (GSEA) software revealed significant enrichment for 197 proteins from the CM of lung cancer samples in maternal‑placental interface expression profiles for a mid‑term placenta with strong invasiveness relative to RNA expression profiles for a human full‑term placenta after delivery. ELISA results demonstrated that hypoxanthine phosphoribosyltransferase 1 (HPRT1) was associated with worse rates of disease‑free survival (DFS) and overall survival (OS). The biological behaviors of embryonic implantation are similar to those of tumor invasion and metastasis, and the information obtained regarding developmental biology could facilitate the interpretation of tumor invasion and metastasis. Therefore, similar biological behaviors combined with analyses at different molecular levels from the perspective of systems biology will provide new ideas for tumor research.

Yu C, Chen S, Guo Y, Sun C
Oncogenic TRIM31 confers gemcitabine resistance in pancreatic cancer via activating the NF-κB signaling pathway.
Theranostics. 2018; 8(12):3224-3236 [PubMed] Article available free on PMC after 28/12/2019 Related Publications

Sirinian C, Papanastasiou AD, Schizas M, et al.
RANK-c attenuates aggressive properties of ER-negative breast cancer by inhibiting NF-κB activation and EGFR signaling.
Oncogene. 2018; 37(37):5101-5114 [PubMed] Related Publications
The RANK/RANKL axis emerges as a key regulator of breast cancer initiation, progression, and metastasis. RANK-c is a RANK receptor isoform produced through alternative splicing of the TNFRSF11A (RANK) gene and a dominant-negative regulator of RANK-induced nuclear factor-κB (NF-κB) activation. Here we report that RANK-c transcript is expressed in 3.2% of cases in The Cancer Genome Atlas breast cancer cohort evenly between ER-positive and ER-negative cases. Nevertheless, the ratio of RANK to RANK-c (RANK/RANK-c) is increased in ER-negative breast cancer cell lines compared to ER-positive breast cancer cell lines. In addition, forced expression of RANK-c in ER-negative breast cancer cell lines inhibited stimuli-induced NF-κB activation and attenuated migration, invasion, colony formation, and adhesion of cancer cells. Further, RANK-c expression in MDA-MB-231 cells inhibited lung metastasis and colonization in vivo. The RANK-c-mediated inhibition of cancer cell aggressiveness and nuclear factor-κB (NF-κB) activation in breast cancer cells seems to rely on a RANK-c/TNF receptor-associated factor-2 (TRAF2) protein interaction. This was further confirmed by a mutated RANK-c that is unable to interact with TRAF2 and abolishes the ability to attenuate NF-κB activation, migration, and invasion. Additional protein interaction characterization revealed epidermal growth factor receptor (EGFR) as a novel interacting partner for RANK-c in breast cancer cells with a negative effect on EGFR phosphorylation and EGF-dependent downstream signaling pathway activation. Our findings further elucidate the complex molecular biology of the RANKL/RANK system in breast cancer and provide preliminary data for RANK-c as a possible marker for disease progression and aggressiveness.

Li Y, Huang J, Zeng B, et al.
PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation.
Cancer Lett. 2018; 430:109-122 [PubMed] Related Publications
Alterations in the ubiquitin-proteasome system (UPS) and UPS-associated proteins have been implicated in the development of many human malignancies. In this study, we investigated the expression profiles of 797 UPS-related genes using HiSeq data from The Cancer Genome Atlas and identified that PSMD2 was markedly upregulated in breast cancer. High PSMD2 expression was significantly correlated with poor prognosis. Gene set enrichment analysis revealed that transcriptome signatures involving proliferation, cell cycle, and apoptosis were critically enriched in specimens with elevated PSMD2. Consistently, PSMD2 knockdown inhibited cell proliferation and arrested cell cycle at G0/G1 phase in vitro, as well as suppressed tumor growth in vivo. Rescue assays demonstrated that the cell cycle arrest caused by silencing PSMD2 partially resulted from increased p21 and/or p27. Mechanically, PSMD2 physically interacted with p21 and p27 and mediated their ubiquitin-proteasome degradation with the cooperation of USP14. Notably, intratumor injection of therapeutic PSMD2 small interfering RNA effectively delayed xenograft tumor growth accompanied by p21 and p27 upregulation. These data provide novel insight into the role of PSMD2 in breast cancer and suggest that PSMD2 may be a potential therapeutic target.

Zhang T, Kastrenopoulou A, Larrouture Q, et al.
Angiopoietin-like 4 promotes osteosarcoma cell proliferation and migration and stimulates osteoclastogenesis.
BMC Cancer. 2018; 18(1):536 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
BACKGROUND: Osteosarcoma is the most common primary bone cancer in children and young adults. It is highly aggressive and patients that present with metastasis have a poor prognosis. Angiopoietin-like 4 (ANGPTL4) drives the progression and metastasis of many solid tumours, but has not been described in osteosarcoma tissue. ANGPTL4 also enhances osteoclast activity, which is required for osteosarcoma growth in bone. We therefore investigated the expression and function of ANGPTL4 in human osteosarcoma tissue and cell lines.
METHODS: Expression of ANGPTL4 in osteosarcoma tissue microarrays was determined by immunohistochemistry. Hypoxic secretion of ANGPTL4 was tested by ELISA and Western blot. Regulation of ANGPTL4 by hypoxia-inducible factor (HIF) was investigated using isoform specific HIF siRNA (HIF-1α, HIF-2α). Effects of ANGPTL4 on cell proliferation, migration (scratch wound assay), colony formation and osteoblastogenesis were assessed using exogenous ANGPTL4 or cells stably transfected with ANGPTL4. Osteoclastogenic differentiation of CD14+ monocytes was assessed by staining for tartrate-resistant acid phosphatase (TRAP), bone resorption was assessed by lacunar resorption of dentine.
RESULTS: ANGPTL4 was immunohistochemically detectable in 76/109 cases. ANGPTL4 was induced by hypoxia in 6 osteosarcoma cell lines, under the control of the HIF-1α transcription factor. MG-63 cells transfected with an ANGPTL4 over-expression plasmid exhibited increased proliferation and migration capacity and promoted osteoclastogenesis and osteoclast-mediated bone resorption. Individually the full-length form of ANGPTL4 could increase MG-63 cell proliferation, whereas N-terminal ANGPTL4 mediated the other pro-tumourigenic phenotypes.
CONCLUSIONS: This study describes a role(s) for ANGPTL4 in osteosarcoma and identifies ANGPTL4 as a treatment target that could potentially reduce tumour progression, inhibit angiogenesis, reduce bone destruction and prevent metastatic events.

Morris SM, Mhyre AJ, Carmack SS, et al.
A modified gene trap approach for improved high-throughput cancer drug discovery.
Oncogene. 2018; 37(31):4226-4238 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
While advances in laboratory automation has dramatically increased throughout of compound screening efforts, development of robust cell-based assays in relevant disease models remain resource-intensive and time-consuming, presenting a bottleneck to drug discovery campaigns. To address this issue, we present a modified gene trap approach to efficiently generate pathway-specific reporters that result in a robust "on" signal when the pathway of interest is inhibited. In this proof-of-concept study, we used vemurafenib and trametinib to identify traps that specifically detect inhibition of the mitogen-activated protein kinase (MAPK) pathway in a model of BRAFV600E driven human malignant melanoma. We demonstrate that insertion of our trap into particular loci results in remarkably specific detection of MAPK pathway inhibitors over compounds targeting any other pathway or cellular function. The accuracy of our approach was highlighted in a pilot screen of ~6000 compounds where 40 actives were detected, including 18 MEK, 10 RAF, and 3 ERK inhibitors along with a few compounds representing previously under-characterized inhibitors of the MAPK pathway. One such compound, bafetinib, a second generation BCR/ABL inhibitor, reduced phosphorylation of ERK and when combined with trametinib, both in vitro and in vivo, reduced growth of vemurafenib resistant melanoma cells. While piloted in a model of BRAF-driven melanoma, our results set the stage for using this approach to rapidly generate reporters against any transcriptionally active pathway across a wide variety of disease-relevant cell-based models to expedite drug discovery efforts.

Didier R, Mallavialle A, Ben Jouira R, et al.
Targeting the Proteasome-Associated Deubiquitinating Enzyme USP14 Impairs Melanoma Cell Survival and Overcomes Resistance to MAPK-Targeting Therapies.
Mol Cancer Ther. 2018; 17(7):1416-1429 [PubMed] Related Publications
Advanced cutaneous melanoma is one of the most challenging cancers to treat because of its high plasticity, metastatic potential, and resistance to treatment. New targeted therapies and immunotherapies have shown remarkable clinical efficacy. However, such treatments are limited to a subset of patients and relapses often occur, warranting validation of novel targeted therapies. Posttranslational modification of proteins by ubiquitin coordinates essential cellular functions, including ubiquitin-proteasome system (UPS) function and protein homeostasis. Deubiquitinating enzymes (DUB) have been associated to multiple diseases, including cancer. However, their exact involvement in melanoma development and therapeutic resistance remains poorly understood. Using a DUB trap assay to label cellular active DUBs, we have observed an increased activity of the proteasome-associated DUB, USP14 (Ubiquitin-specific peptidase 14) in melanoma cells compared with melanocytes. Our survey of public gene expression databases indicates that high expression of

Lezcano C, Shoushtari AN, Ariyan C, et al.
Primary and Metastatic Melanoma With NTRK Fusions.
Am J Surg Pathol. 2018; 42(8):1052-1058 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
A number of oncogenic driver mutations have been identified in melanocytic nevi and melanoma, but translocations also play a role in tumorigenesis and provide potential therapeutic targets for malignant lesions. Various translocations, such as those involving the anaplastic lymphoma kinase (ALK), neurotrophic tropomyosin receptor kinase 1 (NTRK1), and NTRK3 have been reported in spitzoid melanocytic neoplasms leading to kinase-fusion proteins that result in immunohistochemically detectable ALK or NTRK expression. We have previously reported that ALK expression can be found in nonspitzoid primary and metastatic cutaneous melanomas. In this study we report that nonspitzoid metastasizing melanomas of adults may also harbor NTRK fusions and that NTRK expression can be immunohistochemically detected in these tumors. Of 751 melanomas analyzed by next-generation sequencing, 4 metastatic melanomas were identified with NTRK fusions, 3 involving NTRK1, 1 involving NTRK2. They occurred in 3 women and 1 man. Two of the corresponding primary tumors were from the trunk, 1 from an extremity and 1 tumor arose in anal skin. One primary tumor displayed features of superficial spreading melanoma and 3 were nodular melanomas. All tumors were cytologically characterized by the presence of large epithelioid melanocytes. All tumors were immunoreactive with anti-Trk antibody. Next-generation sequencing documented that the NTRK1 fusion partners included TRIM63, DDR2, and GON4L. One tumor harbored an NTRK2-TRAF2 fusion. Thus, our findings document that NTRK kinase fusions can occur in nonspitzoid metastasizing melanomas of adults. The presence of an NTRK family fusion in these tumors may provide a therapeutic opportunity in a small subset of patients with metastatic melanoma.

Nordstrand A, Bovinder Ylitalo E, Thysell E, et al.
Bone Cell Activity in Clinical Prostate Cancer Bone Metastasis and Its Inverse Relation to Tumor Cell Androgen Receptor Activity.
Int J Mol Sci. 2018; 19(4) [PubMed] Article available free on PMC after 28/12/2019 Related Publications
Advanced prostate cancer frequently metastasizes to bone and induces a mixed osteoblastic/osteolytic bone response. Standard treatment for metastatic prostate cancer is androgen-deprivation therapy (ADT) that also affects bone biology. Treatment options for patients relapsing after ADT are limited, particularly in cases where castration-resistance does not depend on androgen receptor (AR) activity. Patients with non-AR driven metastases may, however, benefit from therapies targeting the tumor microenvironment. Therefore, the current study specifically investigated bone cell activity in clinical bone metastases in relation to tumor cell AR activity, in order to gain novel insight into biological heterogeneities of possible importance for patient stratification into bone-targeting therapies. Metastasis tissue obtained from treatment-naïve (

Alon M, Emmanuel R, Qutob N, et al.
Refinement of the endogenous epitope tagging technology allows the identification of a novel NRAS binding partner in melanoma.
Pigment Cell Melanoma Res. 2018; 31(5):641-648 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
The NRAS oncoprotein is highly mutated in melanoma. However, to date, no comprehensive proteomic study has been reported for NRAS. Here, we utilized the endogenous epitope tagging (EET) approach for the identification of novel NRAS binding partners. Using EET, an epitope tag is added to the endogenously expressed protein, via modification of its genomic coding sequence. Existing EET systems are not robust, suffer from high background, and are labor-intensive. To this end, we present a polyadenylation signal-trap construct for N'-tagging that generates a polycistronic mRNA with the gene of interest. This system requires the integration of the tagging cassette in frame with the target gene to be expressed. Using this design, we demonstrate, for the first time, endogenous tagging of NRAS in melanoma cells allowing the identification of the E3 ubiquitin ligase c-CBL as a novel NRAS binding partner. Thus, our developed EET technology allows the characterization of new RAS effectors, which could be beneficial for the design of future drugs that inhibit constitutive signaling of RAS oncogenic mutants.

Zhang W, Lu Y, Li X, et al.
CDCA3 promotes cell proliferation by activating the NF-κB/cyclin D1 signaling pathway in colorectal cancer.
Biochem Biophys Res Commun. 2018; 500(2):196-203 [PubMed] Related Publications
Cell division cycle associated 3 (CDCA3) is required for mitotic entry, and mediates the degradation of the inhibitory kinase Wee1. New evidence suggests CDCA3 plays a role in tumor promotion. However, little is known about the relevance of CDCA3 in colorectal cancer(CRC), especially in the regulation of NF-κB activity. In this study, we found that colorectal tumors significantly expressed more CDCA3 than non-cancer tissues. In addition, CDCA3 promoted CRC cell proliferation in vitro. Furthermore, downregulation of CDCA3 not only induced cell cycle arrest but also facilitated apoptosis. Mechanistically, CDCA3 activates the NF-κB signaling pathway by interacting with TRAF2 in CRC. Together, these results define a tumor-supportive role for CDCA3, which may also provide a new promising strategy for treating CRC.

Lobeek D, Franssen GM, Ma MT, et al.
In Vivo Characterization of 4
J Nucl Med. 2018; 59(8):1296-1301 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
α

Guzmán-Ortiz AL, Aparicio-Ozores G, Valle-Rios R, et al.
Proteomic changes in a childhood acute lymphoblastic leukemia cell line during the adaptation to vincristine.
Bol Med Hosp Infant Mex. 2017 May - Jun; 74(3):181-192 [PubMed] Related Publications
INTRODUCTION: Relapse occurs in approximately 20% of Mexican patients with childhood acute lymphoblastic leukemia (ALL). In this group, chemoresistance may be one of the biggest challenges. An overview of complex cellular processes like drug tolerance can be achieved with proteomic studies.
METHODS: The B-lineage pediatric ALL cell line CCRF-SB was gradually exposed to the chemotherapeutic vincristine until proliferation was observed at 6nM, control cells were cultured in the absence of vincristine. The proteome from each group was analyzed by nanoHPLC coupled to an ESI-ion trap mass spectrometer. The identified proteins were grouped into overrepresented functional categories with the PANTHER classification system.
RESULTS: We found 135 proteins exclusively expressed in the presence of vincristine. The most represented functional categories were: Toll receptor signaling pathway, Ras Pathway, B and T cell activation, CCKR signaling map, cytokine-mediated signaling pathway, and oxidative phosphorylation.
CONCLUSIONS: Our study indicates that signal transduction and mitochondrial ATP production are essential during adaptation of leukemic cells to vincristine, these processes represent potential therapeutic targets.

Peramuhendige P, Marino S, Bishop RT, et al.
TRAF2 in osteotropic breast cancer cells enhances skeletal tumour growth and promotes osteolysis.
Sci Rep. 2018; 8(1):39 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
NFκB plays an important role in inflammation and bone remodelling. Tumour necrosis factor receptor associated factor 2 (TRAF2), a key component of NFκB signalling, has been identified as an oncogene, but its role in the regulation of breast cancer osteolytic metastasis remains unknown. Here, we report that stable overexpression of TRAF2 in parental and osteotropic sub-clones of human MDA-MB-231 (MDA-231) breast cancer cells increased cell growth and motility in vitro, whereas TRAF2 knockdown was inhibitory. In vivo, TRAF2 overexpression in the parental MDA-231-P cells enhanced tumour growth after orthotopic injection into the mammary fat pad of mice but failed to promote the metastasis of these cells to bone. In contrast, overexpression of TRAF2 in osteotropic MDA-231-BT cells increased skeletal tumour growth, enhanced osteoclast formation and worsened osteolytic bone loss after intra-tibial injection in mice. Mechanistic and functional studies in osteotropic MDA-231-BT and osteoclasts revealed that upregulation of TRAF2 increased the ability of osteotropic MDA-231-BT cells to migrate and to enhance osteoclastogenesis by a mechanism dependent, at least in part, on NFκB activation. Thus, the TRAF2/NFκB axis is implicated in the regulation of skeletal tumour burden and osteolysis associated with advanced breast cancer.

Liang J, Zhang J, Ruan J, et al.
CPNE1 Is a Useful Prognostic Marker and Is Associated with TNF Receptor-Associated Factor 2 (TRAF2) Expression in Prostate Cancer.
Med Sci Monit. 2017; 23:5504-5514 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
BACKGROUND CPNE1 plays a vital role in regulating cell differentiation. The clinical and biological values of CPNE1 in prostate cancer are still unclear. The aim of this study was to investigate the clinicopathological value of CPNE1 and the association of CPNE1 with TRAF2 expression in patients with prostate cancer. MATERIAL AND METHODS CPNE1 expression in prostate cancer was analyzed using Gene Expression Omnibus (GEO) databases. The Cancer Genome Atlas (TCGA) dataset was used to investigate the association of CPNE1 expression with TRAF2 expression in prostate cancer. The association of CPNE1 expression with recurrence-free survival in patients was also analyzed using the TCGA dataset. Immunohistochemistry assay was performed to examine CPNE1 expression in 65 normal prostate samples and 114 prostate cancer samples. The recurrence-free survival in patients was evaluated using Kaplan-Meier curves and log-rank test. In addition, multivariate and univariate analyses of prognostic factors were investigated by Cox regression. The effect of CPNE1 on TRAF2 expression was explored in human prostate cancer DU-145 cells. RESULTS Our results showed that expression level of CPNE1 is higher in prostate cancer than in normal prostate tissues (P=0.006). In the GSE35988 dataset, CPNE1 expression was found to be upregulated in castration-resistant prostate cancer compared with non-castration-resistant prostate cancer (P<0.001). Furthermore, we found that CPNE1 high expression was significantly related to tumor stage, Gleason score, and poorer biochemical recurrence-free survival in prostate cancer patients. Co-expression analysis of TCGA data showed that CPNE1 is significantly associated with TRAF2 expression. CPNE1 overexpression can upregulate TRAF2 expression in prostate cancer DU-145 cells as determined by Western blotting and immunofluorescence assays. CONCLUSIONS Overall, our findings suggest that CPNE1 is a valuable prognostic marker for evaluating recurrence-free survival and is positively related to TRAF2 expression in prostate cancer.

Grenga I, Donahue RN, Gargulak ML, et al.
Anti-PD-L1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis.
Urol Oncol. 2018; 36(3):93.e1-93.e11 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
BACKGROUND: Avelumab has recently been approved by the Food and Drug Administration for the therapy of Merkel cell carcinoma and urothelial carcinoma. M7824 is a novel first-in-class bifunctional fusion protein comprising a monoclonal antibody against programmed death-ligand 1 (PD-L1, avelumab), fused to the extracellular domain of human transforming growth factor beta (TGFβ) receptor 2, which functions as a TGFβ "trap." Advanced urothelial tumors have been shown to express TGFβ, which possesses immunosuppressive properties that promote cancer progression and metastasis. The rationale for a combined molecule is to block the PD-1/PD-L1 interaction between tumor cells and immune cell infiltrate and simultaneously reduce or eliminate TGFβ from the tumor microenvironment. In this study, we explored the effect of M7824 on invasive urothelial carcinoma cell lines.
METHODS: Human urothelial (transitional cell) carcinoma cell lines HTB-4, HTB-1, and HTB-5 were treated with M7824, M7824mut (M7824 that is mutated in the anti-PD-L1 portion of the molecule and thus does not bind PD-L1), anti-PD-L1 (avelumab), or IgG1 isotype control monoclonal antibody, and were assessed for gene expression, cell-surface phenotype, and sensitivity to lysis by TRAIL, antigen-specific cytotoxic T lymphocytes and natural killer cells.
RESULTS: M7824 retains the ability to mediate antibody-dependent cellular cytotoxicity of tumor cells, although in some cases to a lesser extent than anti-PD-L1. However, compared to anti-PD-L1, M7824 increases (A) gene expression of molecules involved in T-cell trafficking in the tumor (e.g., CXCL11), (B) TRAIL-mediated tumor cell lysis, and (C) antigen-specific CD8
CONCLUSIONS: These studies demonstrate the immunomodulatory properties of M7824 on both tumor cell phenotype and immune-mediated lysis. Compared to anti-PD-L1 or M7824mut, M7824 induces immunogenic modulation of urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. These findings show the relevance of the dual blockade of PD-L1 and TGFβ in urothelial carcinoma cell lines and thus support the rationale for future clinical studies of M7824 in patients with urothelial cancer.

Basudhar D, Glynn SA, Greer M, et al.
Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer.
Proc Natl Acad Sci U S A. 2017; 114(49):13030-13035 [PubMed] Article available free on PMC after 28/12/2019 Related Publications
Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TRAF2, Cancer Genetics Web: http://www.cancer-genetics.org/TRAF2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999