Gene Summary

Gene:TSC2; tuberous sclerosis 2
Aliases: LAM, TSC4, PPP1R160
Summary:Mutations in this gene lead to tuberous sclerosis complex. Its gene product is believed to be a tumor suppressor and is able to stimulate specific GTPases. The protein associates with hamartin in a cytosolic complex, possibly acting as a chaperone for hamartin. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (53)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Uterine Cancer
  • Chromosome 16
  • Loss of Heterozygosity
  • Antineoplastic Agents
  • p300-CBP Transcription Factors
  • Up-Regulation
  • Cancer Gene Expression Regulation
  • Lymphangioleiomyomatosis
  • Sirolimus
  • Transcription Factors
  • Wnt Proteins
  • Disease Models, Animal
  • Angiomyolipoma
  • Adolescents
  • Base Sequence
  • Infant
  • DNA Mutational Analysis
  • Tuberous Sclerosis
  • AKT1
  • Multiprotein Complexes
  • Newborns
  • Tumor Suppressor Gene
  • Cell Proliferation
  • Brain
  • Bladder Cancer
  • Phenotype
  • Genotype
  • Lung Cancer
  • Immunohistochemistry
  • Kidney Cancer
  • Brain Tumours
  • Pedigree
  • Childhood Cancer
  • Genetic Predisposition
  • Epilepsy
  • Protein Kinases
  • Mutation
  • rho GTP-Binding Proteins
  • Messenger RNA
  • TOR Serine-Threonine Kinases
  • Magnetic Resonance Imaging
  • Phosphorylation
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TSC2 (cancer-related)

Hino O, Kobayashi T
Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex.
Cancer Sci. 2017; 108(1):5-11 [PubMed] Free Access to Full Article Related Publications
On July 10, 2016, Alfred G. Knudson, Jr., MD, PhD, a leader in cancer research, died at the age of 93 years. We deeply mourn his loss. Knudson's two-hit hypothesis, published in 1971, has been fundamental for understanding tumor suppressor genes and familial tumor-predisposing syndromes. To understand the molecular mechanism of two-hit-initiated tumorigenesis, Knudson used an animal model of a dominantly inherited tumor, the Eker rat. From the molecular identification of Tsc2 germline mutations, the Eker rat became a model for tuberous sclerosis complex (TSC), a familial tumor-predisposing syndrome. Animal models, including the fly, have greatly contributed to TSC research. Because the product of the TSC2/Tsc2 gene (tuberin) together with hamartin, the product of another TSC gene (TSC1/Tsc1), suppresses mammalian/mechanistic target of rapamycin complex 1 (mTORC1), rapalogs have been used as therapeutic drugs for TSC. Although significant activity of these drugs has been reported, there are still problems such as recurrence of residual tumors and adverse effects. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin/tuberin, which may represent new therapeutic targets. The establishment of cellular models, such as pluripotent stem cells with TSC2/Tsc2 gene mutations, will facilitate the understanding of new aspects of TSC pathogenesis and the development of novel treatment options. In this review, we look back at the history of Knudson and animal models of TSC and introduce recent progress in TSC research.

Kuo WT, Yu SY, Li SC, et al.
MicroRNA-324 in Human Cancer: miR-324-5p and miR-324-3p Have Distinct Biological Functions in Human Cancer.
Anticancer Res. 2016; 36(10):5189-5196 [PubMed] Related Publications
MicroRNAs (miRNAs) are small non-coding RNAs that have crucial regulatory functions in carcinogenesis. miR-324-5p and miR-324-3p are generated from the same hairpin RNA structure, however, both are diverse in their direct target genes and expression levels. We report that expression of miR-324-5p and -3p was frequently observed to be either up-regulated or down-regulated, and the selection preference of miR-324 for 5p and 3p arms significantly varied in various types or human cancer. Overexpression of miR-324-5p or -3p suppressed growth and invasion of breast cancer cells. Overexpression of miR-324-5p reduced the growth and invasive abilities of colorectal cancer cells, whereas miR-324-3p suppressed colorectal cancer cell invasion but did not influence cell growth. We conclude that miR-324-5p and miR-324-3p might have distinct biological functions, further complicating the regulatory network in human cancer. Therefore, the arm selection preference of miR-324 may be a method for modulating its function.

Starbuck KD, Drake RD, Budd GT, Rose PG
Treatment of Advanced Malignant Uterine Perivascular Epithelioid Cell Tumor with mTOR Inhibitors: Single-institution Experience and Review of the Literature.
Anticancer Res. 2016; 36(11):6161-6164 [PubMed] Related Publications
Uterine perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors. Many have malignant behavior, and no successful treatment strategy has been established. Identification of mutations in the tuberous sclerosis 1 (TSC1) and TSC2 genes producing constitutive activation of the mammalian target of rapamycin (mTOR) pathway presents an opportunity for targeted therapy. Patients with advanced malignant uterine PEComa treated with mTOR inhibitors were identified and records were retrospectively reviewed for treatment response based on radiographic assessment. Three patients with advanced uterine PEComas underwent debulking surgery followed by mTOR inhibitor therapy; two had a complete response to therapy and disease in one patient progressed.
CONCLUSION: Given the absence of effective therapies for malignant uterine PEComas, targeting the mTOR pathway is a logical strategy to pursue given the known pathobiology involving the Tuberous Sclerosis complex. Treatment of malignant uterine PEComas with mTOR inhibitors was effective in two out of three patients after surgical resection, with durable response.

Yuen ST, Leung SY
Genomics Study of Gastric Cancer and Its Molecular Subtypes.
Adv Exp Med Biol. 2016; 908:419-39 [PubMed] Related Publications
Gastric cancer is a heterogeneous disease encompassing diverse morphological (intestinal versus diffuse) and molecular subtypes (MSI, EBV, TP53 mutation). Recent advances in genomic technology have led to an improved understanding of the driver gene mutational profile, gene expression, and epigenetic alterations that underlie each of the subgroups, with therapeutic implications in some of these alterations. There have been attempts to classify gastric cancers based on these genomic features, with an aim to improve prognostication and predict responsiveness to specific drug therapy. The eventual aims of these genomic studies are to develop deep biological insights into the carcinogenic pathway in each of these subtypes. Future large-scale drug screening strategies may then be able to link these genomic features to drug responsiveness, eventually leading to genome-guided personalized medicine with improved cure rates.

Lam SW, Guchelaar HJ, Boven E
The role of pharmacogenetics in capecitabine efficacy and toxicity.
Cancer Treat Rev. 2016; 50:9-22 [PubMed] Related Publications
Capecitabine is an oral prodrug of 5-fluorouracil (5-FU) and approved for treatment of various malignancies. Hereditary genetic variants may affect a drug's pharmacokinetics or pharmacodynamics and account for differences in treatment response and adverse events among patients. In this review we present the current knowledge on genetic variants, commonly single-nucleotide polymorphisms (SNPs), tested in cohorts of cancer patients and possibly useful for prediction of capecitabine efficacy or toxicity. Capecitabine is activated to 5-FU by CES, CDA and TYMP, of which SNPs in CDA and CES2 were found to be associated with efficacy and toxicity. In addition, variants in genes of the 5-FU metabolic pathway, including TYMS, MTHFR and DPYD also influenced capecitabine efficacy and toxicity. In particular, well-known SNPs in TYMS and DPYD as well as putative DPYD SNPs had an association with clinical outcome as well as adverse events. Inconsistent findings may be attributable to factors related to ethnic differences, sample size, study design, study endpoints, dosing schedule and the use of multiple agents. Of the SNPs described in this review, dose reduction of fluoropyrimidines based on the presence of DPYD variants (*)2A (rs3918290), (*)13 (rs55886062), -2846A>T (rs67376798) and -1236G>A/HapB3 (rs56038477) has already been recommended. Other variants merit further validation to establish their definite role in explanation of interindividual differences in the outcome of capecitabine-based therapy.

Lee KT, Tan JK, Lam AK, Gan SY
MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review.
Crit Rev Oncol Hematol. 2016; 103:1-9 [PubMed] Related Publications
Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor genes or oncogenes in NPC. They play important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBVmiRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC.

Flinders C, Lam L, Rubbi L, et al.
Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma.
Genome Med. 2016; 8(1):54 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The genetic origins of chemotherapy resistance are well established; however, the role of epigenetics in drug resistance is less well understood. To investigate mechanisms of drug resistance, we performed systematic genetic, epigenetic, and transcriptomic analyses of an alkylating agent-sensitive murine lymphoma cell line and a series of resistant lines derived by drug dose escalation.
METHODS: Dose escalation of the alkylating agent mafosfamide was used to create a series of increasingly drug-resistant mouse Burkitt's lymphoma cell lines. Whole genome sequencing, DNA microarrays, reduced representation bisulfite sequencing, and chromatin immunoprecipitation sequencing were used to identify alterations in DNA sequence, mRNA expression, CpG methylation, and H3K27me3 occupancy, respectively, that were associated with increased resistance.
RESULTS: Our data suggest that acquired resistance cannot be explained by genetic alterations. Based on integration of transcriptional profiles with transcription factor binding data, we hypothesize that resistance is driven by epigenetic plasticity. We observed that the resistant cells had H3K27me3 and DNA methylation profiles distinct from those of the parental lines. Moreover, we observed DNA methylation changes in the promoters of genes regulated by E2a and members of the polycomb repressor complex 2 (PRC2) and differentially expressed genes were enriched for targets of E2a. The integrative analysis considering H3K27me3 further supported a role for PRC2 in mediating resistance. By integrating our results with data from the Immunological Genome Project (Immgen.org), we showed that these transcriptional changes track the B-cell maturation axis.
CONCLUSIONS: Our data suggest a novel mechanism of drug resistance in which E2a and PRC2 drive changes in the B-cell epigenome; these alterations attenuate alkylating agent treatment-induced apoptosis.

Salajegheh A, Vosgha H, Rahman MA, et al.
Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma.
Hum Pathol. 2016; 51:75-85 [PubMed] Related Publications
MicroRNA-126 (miR-126) expression has been shown to be associated with angiogenesis. The aim of the current study is to evaluate the functional roles of miR-126 in dysregulation of VEGF expression and cancer progression in thyroid carcinomas. The expression of VEGF-A and miR-126 were measured in 101 thyroid carcinomas tissues (including 51 conventional papillary thyroid carcinoma, 37 follicular variant of papillary thyroid carcinoma, and 13 undifferentiated thyroid carcinomas), 13 matched lymph nodes with metastatic thyroid carcinoma, 21 benign thyroid tissues, and 5 thyroid carcinoma cell lines (both papillary and undifferentiated carcinomas). Then, exogenous miR-126 was transfected, and the expressions of VEGF-A were determined (Western blot technique). Proliferation assay, cell cycle analysis, and apoptosis assays were used to evaluate the role of miR-126 in these events. Significant underexpression of miR-126 levels in thyroid cancer tissues and cell lines was detected using real-time polymerase chain reaction. Introducing exogenous miR-126 into the cancer cell lines resulted in a significant reduction of VEGF-A protein expression. Marked inhibition in proliferation, cell cycle arrest in G0-G1, and promotion of total apoptosis were also noted. The modulatory role of miR-126 on expression of VEGF-A and its tumor suppressive roles were demonstrated for the first time in thyroid cancer. The current experiments provided specific information on the functional consequences of VEGF manipulation via microRNA on cancer.

Myers AP, Filiaci VL, Zhang Y, et al.
Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
Gynecol Oncol. 2016; 141(1):43-8 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development.
METHODS: Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next-generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored.
RESULTS: Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01-0.78) and RR (response difference 0.83; 95% CI 0.03-0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20-0.97) but not RR (response difference 0.00, 95% CI -0.34-0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR.
CONCLUSIONS: Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus.

Hayashi T, Kumasaka T, Mitani K, et al.
Bronchial involvement in advanced stage lymphangioleiomyomatosis: histopathologic and molecular analyses.
Hum Pathol. 2016; 50:34-42 [PubMed] Related Publications
Lymphangioleiomyomatosis (LAM), a rare progressive disease that almost exclusively affects women, is characterized by pulmonary cysts and neoplastic proliferation of smooth muscle-like cells (LAM cells). Airflow obstruction is a physiologic consequence that is commonly observed in LAM and has been attributed to narrowing of peripheral airways. However, histopathologic examinations of the entire airway have been precluded by the limited availability of such specimens. Here, we used explanted lung tissues from 30 LAM patients for a thorough histologic analysis with a special emphasis on the bronchi. We found bronchial involvement by LAM cells and lymphatics in all patients examined. Furthermore, a moderate to severe degree of chronic inflammation (73%), goblet cell hyperplasia (97%), squamous cell metaplasia (83%) of the epithelium, and thickening of basal lamina (93%) were identified in the bronchi. Because LAM cells are transformed by the functional loss of the TSC genes leading to a hyperactivated mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, we confirmed the expression of phospho-p70S6K, phospho-S6, phospho-4E-BP1, and vascular endothelial growth factor (VEGF)-D in LAM cells from all of the patients examined. In contrast, no protein expression of hypoxia-inducible factor 1α, a downstream molecule indicative of mTORC1 activation and leading to VEGF production, was detected in any patient. Our study indicates that late-stage LAM patients commonly have bronchi involved by the proliferation of both LAM cells and lymphatics and that chronic inflammation complicated their disease. Furthermore, the up-regulation of hypoxia-inducible factor 1α, a common event in mTORC1-driven tumor cells, does not occur in LAM cells and plays no role in VEGF-D expression in LAM cells.

Qin X, Wang X, Liu F, et al.
Gankyrin activates mTORC1 signaling by accelerating TSC2 degradation in colorectal cancer.
Cancer Lett. 2016; 376(1):83-94 [PubMed] Related Publications
Gankyrin is overexpressed in some malignancies. However its roles in colorectal carcinogenesis and underlying mechanisms remain largely unexplored. Here we report that gankyrin promotes the initiation and development of colorectal carcinogenesis by activating mTORC1 signaling through TSC/Rheb dependent mechanism. We further show that Gankyrin overexpression accelerated TSC2 degradation, while knockdown in a panel of colorectal cancer (CRC) cell lines, cell line derived xenografts and CRC patient derived xenograft (PDX) tumors delayed TSC2 degradation, restored the TSC2 protein level, and inhibited mTORC1 signaling and CRC growth. Our findings reveal a unique mechanism by which gankyrin promotes colorectal carcinogenesis and show that gankyrin is a potential therapeutic target to improve the clinical management of CRC.

Dai W, Zheng H, Cheung AK, et al.
Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma.
Proc Natl Acad Sci U S A. 2016; 113(12):3317-22 [PubMed] Free Access to Full Article Related Publications
Multiple factors, including host genetics, environmental factors, and Epstein-Barr virus (EBV) infection, contribute to nasopharyngeal carcinoma (NPC) development. To identify genetic susceptibility genes for NPC, a whole-exome sequencing (WES) study was performed in 161 NPC cases and 895 controls of Southern Chinese descent. The gene-based burden test discovered an association between macrophage-stimulating 1 receptor (MST1R) and NPC. We identified 13 independent cases carrying the MST1R pathogenic heterozygous germ-line variants, and 53.8% of these cases were diagnosed with NPC aged at or even younger than 20 y, indicating that MST1R germline variants are relevant to disease early-age onset (EAO) (age of ≤20 y). In total, five MST1R missense variants were found in EAO cases but were rare in controls (EAO vs. control, 17.9% vs. 1.2%, P = 7.94 × 10(-12)). The validation study, including 2,160 cases and 2,433 controls, showed that the MST1R variant c.G917A:p.R306H is highly associated with NPC (odds ratio of 9.0). MST1R is predominantly expressed in the tissue-resident macrophages and is critical for innate immunity that protects organs from tissue damage and inflammation. Importantly, MST1R expression is detected in the ciliated epithelial cells in normal nasopharyngeal mucosa and plays a role in the cilia motility important for host defense. Although no somatic mutation of MST1R was identified in the sporadic NPC tumors, copy number alterations and promoter hypermethylation at MST1R were often observed. Our findings provide new insights into the pathogenesis of NPC by highlighting the involvement of the MST1R-mediated signaling pathways.

Curatolo P, Bjørnvold M, Dill PE, et al.
The Role of mTOR Inhibitors in the Treatment of Patients with Tuberous Sclerosis Complex: Evidence-based and Expert Opinions.
Drugs. 2016; 76(5):551-65 [PubMed] Related Publications
Tuberous sclerosis complex (TSC) is a genetic disorder arising from mutations in the TSC1 or TSC2 genes. The resulting over-activation of the mammalian target of rapamycin (mTOR) signalling pathway leaves patients with TSC susceptible to the growth of non-malignant tumours in multiple organs. Previously, surgery was the main therapeutic option for TSC. However, pharmacological therapy with mTOR inhibitors such as everolimus and sirolimus is now emerging as an alternate approach. Everolimus and sirolimus have already been shown to be effective in treating subependymal giant cell astrocytoma (SEGA) and renal angiomyolipoma (AML), and everolimus is currently being evaluated in treating TSC-related epilepsy. In November 2013 a group of European experts convened to discuss the current options and practical considerations for treating various manifestations of TSC. This article provides evidence-based recommendations for the treatment of SEGA, TSC-related epilepsy and renal AML, with a focus on where mTOR inhibitor therapy may be considered alongside other treatment options. Safety considerations regarding mTOR inhibitor therapy are also reviewed. With evidence of beneficial effects in neurological and non-neurological TSC manifestations, mTOR inhibitors may represent a systemic treatment for TSC.

McCampbell AS, Mittelstadt ML, Dere R, et al.
Loss of p27 Associated with Risk for Endometrial Carcinoma Arising in the Setting of Obesity.
Curr Mol Med. 2016; 16(3):252-65 [PubMed] Related Publications
Endometrial carcinoma (EC) exhibits the strongest association with obesity of all cancers. Growth of these tumors is driven by PI3K/AKT activation, and opposed by tumor suppressors, including the tuberous sclerosis complex 2 (TSC-2) and p27, with inactivation of TSC2 and loss or cytoplasmic mislocalization of p27 both being linked to PI3K/AKT activation. However, little is known about the involvement of p27 in the development of EC arising in the setting of obesity, especially its role early in disease progression. Using a panel of EC cell lines, in vitro studies using PI3K inhibitors provided evidence that p27 rescue contributes to the efficacy of interventions that inhibit endometrial cell growth. In "at risk" obese patients, and in an animal model of obesity-associated EC (Tsc2-deficient Eker rats), p27 was moderately-to-severely reduced in both "normal" endometrial glands as well as in endometrial complex atypical hyperplasia (obese women), and endometrial hyperplasia (obese rats). In obese Eker rats, an energy balance intervention; caloric restriction from 2-4 months of age, reduced weight, increased adiponectin and lowered leptin to produce a favorable leptin:adiponectin ratio, and reduced circulating insulin levels. Caloric restriction also increased p27 levels, relocalized this tumor suppressor to the nucleus, and significantly decreased hyperplasia incidence. Thus, dietary and pharmacologic interventions that inhibit growth and decrease risk for development of endometrial lesions are associated with increased expression and nuclear (re)localization of p27. These data suggest that p27 levels and localization may be useful as a biomarker, and possible determinant, of risk for EC arising in the setting of obesity.

Bailey P, Chang DK, Nones K, et al.
Genomic analyses identify molecular subtypes of pancreatic cancer.
Nature. 2016; 531(7592):47-52 [PubMed] Related Publications
Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

Sancho-Martinez I, Nivet E, Xia Y, et al.
Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.
Nat Commun. 2016; 7:10743 [PubMed] Free Access to Full Article Related Publications
Glioma tumour-initiating cells (GTICs) can originate upon the transformation of neural progenitor cells (NPCs). Studies on GTICs have focused on primary tumours from which GTICs could be isolated and the use of human embryonic material. Recently, the somatic genomic landscape of human gliomas has been reported. RTK (receptor tyrosine kinase) and p53 signalling were found dysregulated in ∼90% and 86% of all primary tumours analysed, respectively. Here we report on the use of human-induced pluripotent stem cells (hiPSCs) for modelling gliomagenesis. Dysregulation of RTK and p53 signalling in hiPSC-derived NPCs (iNPCs) recapitulates GTIC properties in vitro. In vivo transplantation of transformed iNPCs leads to highly aggressive tumours containing undifferentiated stem cells and their differentiated derivatives. Metabolic modulation compromises GTIC viability. Last, screening of 101 anti-cancer compounds identifies three molecules specifically targeting transformed iNPCs and primary GTICs. Together, our results highlight the potential of hiPSCs for studying human tumourigenesis.

Prizant H, Taya M, Lerman I, et al.
Estrogen maintains myometrial tumors in a lymphangioleiomyomatosis model.
Endocr Relat Cancer. 2016; 23(4):265-80 [PubMed] Free Access to Full Article Related Publications
Lymphangioleiomyomatosis (LAM) is a rare disease in women. Patients with LAM develop metastatic smooth-muscle cell adenomas within the lungs, resulting in reduced pulmonary function. LAM cells contain mutations in tuberous sclerosis genes (TSC1 or TSC2), leading to up-regulation of mTORC1 activity and elevated proliferation. The origin of LAM cells remains unknown; however, inactivation of Tsc2 gene in the mouse uterus resulted in myometrial tumors exhibiting LAM features, and approximately 50% of animals developed metastatic myometrial lung tumors. This suggests that LAM tumors might originate from the uterine myometrium, possibly explaining the overwhelming prevalence of LAM in female. Here, we demonstrate that mouse Tsc2-null myometrial tumors exhibit nearly all the features of LAM, including mTORC1/S6K activation, as well as expression of melanocytic markers and matrix metalloproteinases (MMPs). Estrogen ablation reduces S6K signaling and results in Tsc2-null myometrial tumor regression. Thus, even without TSC2, estradiol is required to maintain tumors and mTORC1/S6K signaling. Additionally, we find that MMP-2 and -9, as well as neutrophil elastase (NE), are overexpressed in Tsc2-null myometrial tumors in an estrogen-dependent fashion. In vivo fluorescent imaging using MMP- or NE-sensitive optical biomarkers confirms that protease activity is specific to myometrial tumors. Similar to LAM cells, uterine Tsc2-null myometrial cells also overexpress melanocytic markers in an estrogen-dependent fashion. Finally, we identify glycoprotein NMB (GPNMB) as a melanocytic marker up-regulated in Tsc2-null mouse uteri and human LAM samples. Our data highlight the potential importance of estradiol in LAM cells, suggesting that anti-estrogen therapy may be a treatment modality. Furthermore, proteases and GPNMB might be useful LAM biomarkers.

Liu F, Zhang W, Yang F, et al.
Interleukin-6-stimulated progranulin expression contributes to the malignancy of hepatocellular carcinoma cells by activating mTOR signaling.
Sci Rep. 2016; 6:21260 [PubMed] Free Access to Full Article Related Publications
This study aimed to determine the expression of progranulin (PGRN) in hepatocellular carcinoma (HCC) cells in response to interleukin 6 (IL-6), a non-cellular component of the tumor microenvironment, and the molecular mechanism of PGRN oncogenic activity in hepatocarcinogenesis. Levels of IL-6 and PGRN were increased and positively correlated in HCC tissues. IL-6 dose- and time-dependently increased PGRN level in HCC cells. IL-6-driven PGRN expression was at least in part mediated by Erk/C/EBPβ signaling, and reduced expression of PGRN impaired IL-6-stimulated proliferation, migration and invasion of HepG2 cells. PGRN activated mammalian target of rapamycin (mTOR) signaling, as evidenced by increased phosphorylation of p70S6K, 4E-BP1, and Akt-Ser473/FoxO1. Inhibition of mTOR signaling with rapamycin, an mTOR signaling inhibitor, disturbed PGRN- or IL-6-mediated proliferation, migration and invasion of HCC cells in vitro. Persistent activation of mTOR signaling by knockdown of TSC2 restored PGRN-knockdown-attenuated pro-proliferation effects of IL-6 in HepG2 cells. In addition, rapamycin treatment in vivo in mice slowed tumor growth stimulated by recombinant human PGRN. Our findings provide a better understanding of the biological activities of the IL-6/PGRN/mTOR cascade in the carcinogenesis of HCC, which may suggest a novel target in the treatment of HCC.

Clermont PL, Crea F, Chiang YT, et al.
Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.
Clin Epigenetics. 2016; 8:16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: While localized prostate cancer (PCa) can be effectively cured, metastatic disease inevitably progresses to a lethal state called castration-resistant prostate cancer (CRPC). Emerging evidence suggests that aberrant epigenetic repression by the polycomb group (PcG) complexes fuels PCa progression, providing novel therapeutic opportunities.
RESULTS: In the search for potential epigenetic drivers of CRPC, we analyzed the molecular profile of PcG members in patient-derived xenografts and clinical samples. Overall, our results identify the PcG protein and methyl-lysine reader CBX2 as a potential therapeutic target in advanced PCa. We report that CBX2 was recurrently up-regulated in metastatic CRPC and that elevated CBX2 expression was correlated with poor clinical outcome in PCa cohorts. Furthermore, CBX2 depletion abrogated cell viability and induced caspase 3-mediated apoptosis in metastatic PCa cell lines. Mechanistically explaining this phenotype, microarray analysis in CBX2-depleted cells revealed that CBX2 controls the expression of many key regulators of cell proliferation and metastasis.
CONCLUSIONS: Taken together, this study provides the first evidence that CBX2 inhibition induces cancer cell death, positioning CBX2 as an attractive drug target in lethal CRPC.

Lim SM, Park HS, Kim S, et al.
Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
Oncotarget. 2016; 7(9):10547-56 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Given the modest responses to everolimus, a mTOR inhibitor, in multiple tumor types, there is a pressing need to identify predictive biomarkers for this drug. Using targeted ultra-deep sequencing, we aimed to explore genomic alterations that confer extreme sensitivity to everolimus.
RESULTS: We collected formalin-fixed paraffin-embedded tumor/normal pairs from 39 patients (22 with exceptional clinical benefit, 17 with no clinical benefit) who were treated with everolimus across various tumor types (13 gastric cancers, 15 renal cell carcinomas, 2 thyroid cancers, 2 head and neck cancer, and 7 sarcomas). Ion AmpliSeqTM Comprehensive Cancer Panel was used to identify alterations across all exons of 409 target genes. Tumors were sequenced to a median coverage of 552x. Cancer genomes are characterized by 219 somatic single-nucleotide variants (181 missense, 9 nonsense, 7 splice-site) and 22 frameshift insertions/deletions, with a median of 2.1 mutations per Mb (0 to 12.4 mutations per Mb). Overall, genomic alterations with activating effect on mTOR signaling were identified in 10 of 22 (45%) patients with clinical benefit and these include MTOR, TSC1, TSC2, NF1, PIK3CA and PIK3CG mutations. Recurrently mutated genes in chromatin remodeling genes (BAP1; n = 2, 12%) and receptor tyrosine kinase signaling (FGFR4; n = 2, 12%) were noted only in patients without clinical benefit.
CONCLUSIONS: Regardless of different cancer types, mTOR-pathway-activating mutations confer sensitivity to everolimus. Targeted sequencing of mTOR pathway genes facilitates identification of potential candidates for mTOR inhibitors.

Tee AR, Sampson JR, Pal DK, Bateman JM
The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex.
Semin Cell Dev Biol. 2016; 52:12-20 [PubMed] Related Publications
Understanding the development and function of the nervous system is one of the foremost aims of current biomedical research. The nervous system is generated during a relatively short period of intense neurogenesis that is orchestrated by a number of key molecular signalling pathways. Even subtle defects in the activity of these molecules can have serious repercussions resulting in neurological, neurodevelopmental and neurocognitive problems including epilepsy, intellectual disability and autism. Tuberous sclerosis complex (TSC) is a monogenic disease characterised by these problems and by the formation of benign tumours in multiple organs, including the brain. TSC is caused by mutations in the TSC1 or TSC2 gene leading to activation of the mechanistic target of rapamycin (mTOR) signalling pathway. A desire to understand the neurological manifestations of TSC has stimulated research into the role of the mTOR pathway in neurogenesis. In this review we describe TSC neurobiology and how the use of animal model systems has provided insights into the roles of mTOR signalling in neuronal differentiation and migration. Recent progress in this field has identified novel mTOR pathway components regulating neuronal differentiation. The roles of mTOR signalling and aberrant neurogenesis in epilepsy are also discussed. Continuing efforts to understand mTOR neurobiology will help to identify new therapeutic targets for TSC and other neurological diseases.

Pillai S, Gopalan V, Smith RA, Lam AK
Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era.
Crit Rev Oncol Hematol. 2016; 100:190-208 [PubMed] Related Publications
Genetic mutations of phaeochromocytoma (PCC) and paraganglioma (PGL) are mainly classified into two major clusters. Cluster 1 mutations are involved with the pseudo hypoxic pathway and comprised of PHD2, VHL, SDHx, IDH, HIF2A, MDH2 and FH mutated PCC/PGL. Cluster 2 mutations are associated with abnormal activation of kinase signalling pathways and included mutations of RET, NF1, KIF1Bβ, MAX and TMEM127. In addition, VHL, SDHx (cluster 1 genes) and RET, NF1 (cluster 2 genes) germline mutations are involved in the neuronal precursor cell pathway in the pathogeneses of PCC/PGL. Also, GDNF, H-ras, K-ras, GNAS, CDKN2A (p16), p53, BAP1, BRCA1&2, ATRX and KMT2D mutations have roles in the development of PCC/PGLs. Overall, known genetic mutations account for the pathogenesis of approximately 60% of PCC/PGLs. Genetic mutations, pathological parameters and biochemical markers are used for better prediction of the outcome of patients with this group of tumours. Immunohistochemistry and gene sequencing can ensure a more effective detection, prediction of malignant potential and treatment of PCC/PCLs.

D'Armiento J, Shiomi T, Marks S, et al.
Mesenchymal Tumorigenesis Driven by TSC2 Haploinsufficiency Requires HMGA2 and Is Independent of mTOR Pathway Activation.
Cancer Res. 2016; 76(4):844-54 [PubMed] Related Publications
Tuberous sclerosis (TSC) is a tumor suppressor gene syndrome that is associated with the widespread development of mesenchymal tumor types. Genetically, TSC is said to occur through a classical biallelic inactivation of either TSC genes (TSC1, hamartin or TSC2, tuberin), an event that is implicated in the induction of the mTOR pathway and subsequent tumorigenesis. High Mobility Group A2 (HMGA2), an architectural transcription factor, is known to regulate mesenchymal differentiation and drive mesenchymal tumorigenesis in vivo. Here, we investigated the role of HMGA2 in the pathogenesis of TSC using the TSC2(+/-) mouse model that similarly mirrors human disease and human tumor samples. We show that HMGA2 expression was detected in 100% of human and mouse TSC tumors and that HMGA2 activation was required for TSC mesenchymal tumorigenesis in genetically engineered mouse models. In contrast to the current dogma, the mTOR pathway was not activated in all TSC2(+/-) tumors and was elevated in only 50% of human mesenchymal tumors. Moreover, except for a subset of kidney tumors, tuberin was expressed in both human and mouse tumors. Therefore, haploinsufficiency of one TSC tumor suppressor gene was required for tumor initiation, but further tumorigenesis did not require the second hit, as previously postulated. Collectively, these findings demonstrate that tissue-specific genetic mechanisms are employed to promote tumor pathogenesis in TSC and identify a novel, critical pathway for potential therapeutic targeting.

Cheng CK, Chan NP, Wan TS, et al.
Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia.
Haematologica. 2016; 101(4):448-57 [PubMed] Free Access to Full Article Related Publications
Helicase-like transcription factor is a SWI/SNF chromatin remodeling factor involved in various biological processes. However, little is known about its role in hematopoiesis. In this study, we measured helicase-like transcription factor mRNA expression in the bone marrow of 204 adult patients with de novo acute myeloid leukemia. Patients were dichotomized into low and high expression groups at the median level for clinicopathological correlations. Helicase-like transcription factor levels were dramatically reduced in the low expression patient group compared to those in the normal controls (n=40) (P<0.0001). Low helicase-like transcription factor expression correlated positively with French-American-British M4/M5 subtypes (P<0.0001) and complex cytogenetic abnormalities (P=0.02 for ≥3 abnormalities;P=0.004 for ≥5 abnormalities) but negatively with CEBPA double mutations (P=0.012). Also, low expression correlated with poorer overall (P=0.005) and event-free (P=0.006) survival in the intermediate-risk cytogenetic subgroup. Consistent with the more aggressive disease associated with low expression, helicase-like transcription factor knockdown in leukemic cells promoted proliferation and chromosomal instability that was accompanied by downregulation of mitotic regulators and impaired DNA damage response. The significance of helicase-like transcription factor in genome maintenance was further indicated by its markedly elevated expression in normal human CD34(+)hematopoietic stem cells. We further demonstrated that helicase-like transcription factor was a RUNX1 target and transcriptionally repressed by RUNX1-ETO and site-specific DNA methylation through a duplicated RUNX1 binding site in its promoter. Taken together, our findings provide new mechanistic insights on genomic instability linked to helicase-like transcription factor deregulation, and strongly suggest a tumor suppressor function of the SWI/SNF protein in acute myeloid leukemia.

Zheng F, Yue C, Li G, et al.
Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype.
Nat Commun. 2016; 7:10180 [PubMed] Free Access to Full Article Related Publications
Centrosome-localized mitotic Aurora kinase A (AURKA) facilitates G2/M events. Here we show that AURKA translocates to the nucleus and causes distinct oncogenic properties in malignant cells by enhancing breast cancer stem cell (BCSC) phenotype. Unexpectedly, this function is independent of its kinase activity. Instead, AURKA preferentially interacts with heterogeneous nuclear ribonucleoprotein K (hnRNP K) in the nucleus and acts as a transcription factor in a complex that induces a shift in MYC promoter usage and activates the MYC promoter. Blocking AURKA nuclear localization inhibits this newly discovered transactivating function of AURKA, sensitizing resistant BCSC to kinase inhibition. These findings identify a previously unknown oncogenic property of the spatially deregulated AURKA in tumorigenesis and provide a potential therapeutic opportunity to overcome kinase inhibitor resistance.

Ng KW, Anderson C, Marshall EA, et al.
Piwi-interacting RNAs in cancer: emerging functions and clinical utility.
Mol Cancer. 2016; 15:5 [PubMed] Free Access to Full Article Related Publications
PIWI-interacting RNAs (piRNAs) are emerging players in cancer genomics. Originally described in the germline, there are over 20,000 piRNA genes in the human genome. In contrast to microRNAs, piRNAs interact with PIWI proteins, another member of the Argonaute family, and function primarily in the nucleus. There, they are involved in the epigenetic silencing of transposable elements in addition to the transcriptional regulation of genes. It has recently been demonstrated that piRNAs are also expressed across a variety of human somatic tissue types in a tissue-specific manner. An increasing number of studies have shown that aberrant piRNA expression is a signature feature across multiple tumour types; however, their specific tumorigenic functions remain unclear. In this article, we discuss the emerging functional roles of piRNAs in a variety of cancers, and highlight their potential clinical utilities.

Alkharusi A, Lesma E, Ancona S, et al.
Role of Prolactin Receptors in Lymphangioleiomyomatosis.
PLoS One. 2016; 11(1):e0146653 [PubMed] Free Access to Full Article Related Publications
Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations in the tumor suppressor genes encoding Tuberous Sclerosis Complex (TSC) 1 and TSC2. The protein product of the TSC2 gene is a well-known suppressor of the mTOR pathway. Emerging evidence suggests that the pituitary hormone prolactin (Prl) has both endocrine and paracrine modes of action. Here, we have investigated components of the Prl system in models for LAM. In a TSC2 (+/-) mouse sarcoma cell line, down-regulation of TSC2 using siRNA resulted in increased levels of the Prl receptor. In human LAM cells, the Prl receptor is detectable by immunohistochemistry, and the expression of Prl in these cells stimulates STAT3 and Erk phosphorylation, as well as proliferation. A high affinity Prl receptor antagonist consisting of Prl with four amino acid substitutions reduced phosphorylation of STAT3 and Erk. Antagonist treatment further reduced the proliferative and invasive properties of LAM cells. In histological sections from LAM patients, Prl receptor immuno reactivity was observed. We conclude that the Prl receptor is expressed in LAM, and that loss of TSC2 increases Prl receptor levels. It is proposed that Prl exerts growth-stimulatory effects on LAM cells, and that antagonizing the Prl receptor can block such effects.

Ross JS, Gay LM, Nozad S, et al.
Clinically advanced and metastatic pure mucinous carcinoma of the breast: a comprehensive genomic profiling study.
Breast Cancer Res Treat. 2016; 155(2):405-13 [PubMed] Related Publications
PURPOSE: Pure mucinous breast carcinoma (pmucBC) is a distinctive variant of breast cancer (BC) featuring an excellent overall prognosis. However, on rare occasions, pmucBC pursues an aggressive clinical course. We queried whether comprehensive genomic profiling (CGP) would uncover clinically relevant genomic alterations (CRGA) that could lead to targeted therapy treatment for patients with an advanced and metastatic form of pmucBC.
METHODS: From a series of 51,238 total cancer samples, which included 5605 cases of clinically advanced BC and 22 cases of stage IV pmucBC, DNA was extracted from 40 microns of FFPE sections. Comprehensive genomic profiling was performed using a hybrid-capture, adaptor ligation-based next generation sequencing assay to a mean coverage depth of 564X. The results were analyzed for all classes of genomic alterations (GA) including base substitutions, insertions and deletions, select rearrangements, and copy number changes. Clinically relevant genomic alterations were defined as those indicating possible treatment with anti-cancer drugs on the market or in registered clinical trials.
RESULTS: Samples were obtained from breast (11), lymph nodes (3), chest wall (2), liver (2), soft tissue (2), bone (1), and pleura (1). The median age of the 22 pmucBC patients was 57 years (range 32-79 years). Three pmucBCs were grade 1, 17 were grade 2, and 2 were grade 3. Twenty-one (95 %) pmucBC were ER+, 18 (82 %) were PR+, and 3 (14 %) were HER2+ by IHC and/or FISH. A total of 132 GA were identified (6.0 GA per tumor), including 53 CRGA, for a mean of 2.4 GA per tumor. Amplification of FGFR1 or ZNF703, located within the same amplicon, was found in 8 of 22 cases (36 %). This enrichment of FGFR1 amplification in 36 % of pmucBC versus 11 % of non-mucinous ER+ BC (601 cases) was significant (p < 0.005). Other frequently altered genes of interest in pmucBC were CCND1 and the FGF3/FGF4/FGF19 amplicon (27 %), often co-amplified together. ERBB2/HER2 alterations were identified in 5 pmucBC (23 %): ERBB2 amplification was found in 3 of 3 cases (100 %) that were HER2+ by IHC and/or FISH; 1 pmucBC was negative for HER2 overexpression by IHC, but positive for amplification by CGP; and 2 pmucBC harbored the ERBB2 substitutions D769Y and V777L (one sample also featured ERBB2 amplification). The enrichment of ERBB2 GA in metastatic pmucBC versus non-metastatic primary pmucBC was significant (p = 0.03). CRGA were also found in 20 additional genes including PIK3CA (5), BRCA1 (1), TSC2 (1), STK11 (1), AKT3 (1), and ESR1 (1).
CONCLUSIONS: Metastatic pmucBC is a distinct form of breast cancer that features a relatively high frequency of CRGA, including a significant enrichment of FGFR1 alterations and a high frequency of ERBB2 alterations when compared with non-metastatic pmucBC. These findings suggest that CGP can identify a variety of known and emerging therapy targets that have the potential to improve outcomes for patients with clinically advanced and metastatic forms of this disease.

Zhang YA, Ma X, Sathe A, et al.
Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers.
J Thorac Oncol. 2016; 11(3):346-60 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer.
METHODS: We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays.
RESULTS: The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non-small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta.
CONCLUSIONS: Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage.

Chartier C, Raval J, Axelrod F, et al.
Therapeutic Targeting of Tumor-Derived R-Spondin Attenuates β-Catenin Signaling and Tumorigenesis in Multiple Cancer Types.
Cancer Res. 2016; 76(3):713-23 [PubMed] Related Publications
Deregulation of the β-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and β-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate β-catenin signaling. Through this screen and further molecular characterization, we found that R-spondin (RSPO) proteins collaborate with Wnt proteins to activate β-catenin. RSPO family members were expressed in several human tumors representing multiple malignancies, including ovarian, pancreatic, colon, breast, and lung cancer. We generated specific monoclonal antibody antagonists of RSPO family members and found that anti-RSPO treatment markedly inhibited tumor growth in human patient-derived tumor xenograft models, either as single agents or in combination with chemotherapy. Furthermore, blocking RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies. Moreover, gene-expression analyses revealed that anti-RSPO treatment in responsive tumors strongly inhibited β-catenin target genes known to be associated with cancer and normal stem cells. Collectively, our results suggest that the RSPO family is an important stimulator of β-catenin activity in many human tumors and highlight a new effective approach for therapeutically modulating this fundamental signaling axis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TSC2, Cancer Genetics Web: http://www.cancer-genetics.org/TSC2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999