Gene Summary

Gene:CTLA4; cytotoxic T-lymphocyte-associated protein 4
Aliases: CD, GSE, GRD4, ALPS5, CD152, CTLA-4, IDDM12, CELIAC3
Summary:This gene is a member of the immunoglobulin superfamily and encodes a protein which transmits an inhibitory signal to T cells. The protein contains a V domain, a transmembrane domain, and a cytoplasmic tail. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. The membrane-bound isoform functions as a homodimer interconnected by a disulfide bond, while the soluble isoform functions as a monomer. Mutations in this gene have been associated with insulin-dependent diabetes mellitus, Graves disease, Hashimoto thyroiditis, celiac disease, systemic lupus erythematosus, thyroid-associated orbitopathy, and other autoimmune diseases. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:cytotoxic T-lymphocyte protein 4
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Melanoma
  • Mutation
  • Childhood Cancer
  • Immunoconjugates
  • Randomized Controlled Trials
  • Squamous Cell Carcinoma
  • Tumor Escape
  • Sulfonamides
  • BRAF
  • Acute Lymphocytic Leukaemia
  • Genetic Predisposition
  • United States Food and Drug Administration
  • Case-Control Studies
  • Antigens, Differentiation
  • Adolescents
  • Molecular Targeted Therapy
  • Chromosome 2
  • Programmed Cell Death 1 Receptor
  • Inducible T-Cell Co-Stimulator Protein
  • Lymphocyte Activation
  • Monoclonal Antibodies
  • Genetic Association Studies
  • China
  • Polymerase Chain Reaction
  • Immunotherapy
  • Breast Cancer
  • Odds Ratio
  • Haplotypes
  • CTLA-4 Antigen
  • CD Antigens
  • Antigens, CD28
  • Single Nucleotide Polymorphism
  • T-Lymphocyte Subsets
  • Staging
  • Alleles
  • Genotype
  • Asian Continental Ancestry Group
  • Cultured Cells
  • Cancer Gene Expression Regulation
  • Antineoplastic Agents
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CTLA4 (cancer-related)

Spranger S, Bao R, Gajewski TF
Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.
Nature. 2015; 523(7559):231-5 [PubMed] Related Publications
Melanoma treatment is being revolutionized by the development of effective immunotherapeutic approaches. These strategies include blockade of immune-inhibitory receptors on activated T cells; for example, using monoclonal antibodies against CTLA-4, PD-1, and PD-L1 (refs 3-5). However, only a subset of patients responds to these treatments, and data suggest that therapeutic benefit is preferentially achieved in patients with a pre-existing T-cell response against their tumour, as evidenced by a baseline CD8(+) T-cell infiltration within the tumour microenvironment. Understanding the molecular mechanisms that underlie the presence or absence of a spontaneous anti-tumour T-cell response in subsets of cases, therefore, should enable the development of therapeutic solutions for patients lacking a T-cell infiltrate. Here we identify a melanoma-cell-intrinsic oncogenic pathway that contributes to a lack of T-cell infiltration in melanoma. Molecular analysis of human metastatic melanoma samples revealed a correlation between activation of the WNT/β-catenin signalling pathway and absence of a T-cell gene expression signature. Using autochthonous mouse melanoma models we identified the mechanism by which tumour-intrinsic active β-catenin signalling results in T-cell exclusion and resistance to anti-PD-L1/anti-CTLA-4 monoclonal antibody therapy. Specific oncogenic signals, therefore, can mediate cancer immune evasion and resistance to immunotherapies, pointing to new candidate targets for immune potentiation.

Starska K, Bryś M, Forma E, et al.
The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues.
Toxicol Appl Pharmacol. 2015; 285(3):187-97 [PubMed] Related Publications
Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the -5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region -5 A/G SNP was identified by restriction fragment length polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of -5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the -5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the -5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma.

Mallawaaratchy DM, Buckland ME, McDonald KL, et al.
Membrane proteome analysis of glioblastoma cell invasion.
J Neuropathol Exp Neurol. 2015; 74(5):425-41 [PubMed] Related Publications
Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM.

Zhang J, Zhang C, Hu L, et al.
Abnormal Expression of miR-21 and miR-95 in Cancer Stem-Like Cells is Associated with Radioresistance of Lung Cancer.
Cancer Invest. 2015; 33(5):165-71 [PubMed] Related Publications
This study demonstrated that miR-21 and miR-95 expression were significantly higher in the ALDH1(+)CD133(+)subpopulation than in the ALDH1(-)CD133(-) subpopulation of lung cancer cells. Combined delivery of anti-miR-21 and anti-miR-95 by calcium phosphate nanoparticles significantly inhibited tumor growth in a xenograft tumor model and sensitized radiotherapy. The anti-miRNAs significantly reduced miR-21 and miR-95 levels, increased PTEN, SNX1, and SGPP1 protein expression, but reduced Akt Ser(473) and Thr(308) phosphorylation. ALDH1(+)CD133(+) subpopulation of NSCLC tumor cells confers radioresistance due to high expression of miR-21 and miR-95. Targeting inhibition of miR-21 and miR-95 can inhibit tumor growth through elevating PTEN, SNX1, and SGPP1 expression and inhibiting Akt phosphorylation.

Kolla V, Naraparaju K, Zhuang T, et al.
The tumour suppressor CHD5 forms a NuRD-type chromatin remodelling complex.
Biochem J. 2015; 468(2):345-52 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Eukaryotic gene expression is developmentally regulated, in part by chromatin remodelling, and its dysregulation has been linked to cancer. CHD5 (chromodomain helicase DNA-binding protein 5) is a tumour suppressor gene (TSG) that maps to a region of consistent deletion on 1p36.31 in neuroblastomas (NBs) and other tumour types. CHD5 encodes a protein with chromatin remodelling, helicase and DNA-binding motifs that is preferentially expressed in neural and testicular tissues. CHD5 is highly homologous to CHD3 and CHD4, which are the core subunits of nucleosome remodelling and deacetylation (NuRD) complexes. To determine if CHD5 forms a similar complex, we performed studies on nuclear extracts from NBLS, SY5Y (both with endogenous CHD5 expression), NLF (CHD5 null) and NLF cells stably transfected with CHD5 cDNA (wild-type and V5-histidine-tagged). Immunoprecipitation (IP) was performed with either CHD5 antibody or antibody to V5/histidine-tagged protein. We identified NuRD components both by GST-FOG1 (Friend Of GATA1) pull-down and by IP. We also performed MS/MS analysis to confirm the presence of CHD5 or other protein components of the NuRD complex, as well as to identify other novel proteins. CHD5 was clearly associated with all canonical NuRD components, including metastasis-associated protein (MTA)1/2, GATA zinc finger domain containing 2A (GATAD2A), histone deacetylase (HDAC)1/2, retinoblastoma-binding protein (RBBP)4/7 and methyl DNA-binding domain protein (MBD)2/3, as determined by Western blotting and MS/MS. Our data suggest CHD5 forms a NuRD complex similar to CHD4. However, CHD5-NuRD may also have unique protein associations that confer functional specificity and may contribute to normal development and to tumour suppression in NB and other cancers.

Chen Z, Shojaee S, Buchner M, et al.
Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia.
Nature. 2015; 521(7552):357-61 [PubMed] Article available free on PMC after 21/11/2015 Related Publications
B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In ∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation--above a maximum threshold--will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR-ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.

Xia P, Song CL, Liu JF, et al.
Prognostic value of circulating CD133(+) cells in patients with gastric cancer.
Cell Prolif. 2015; 48(3):311-7 [PubMed] Related Publications
OBJECTIVES: Gastric cancer is an important cause of cancer-related mortality worldwide (1). There is increasing evidence that the existence of cancer stem cells (CSC) is responsible for tumour formation and maintenance.
MATERIALS AND METHODS: The present study was designed to recognise circulating CSCs from blood samples of patients with gastric cancer, using CD133 and ABCG2 as potential markers. CD133(-) , CD133(+)  ABCG2(-) and CD133(+)  ABCG2(+) cells lines were analysed by flow cytometry, immunofluorescence staining, western blotting and real-time PCR. Furthermore, functional assays (clonogenic assay in vitro and tumourigenic assay in vivo) were also performed using these cell lines.
RESULTS: Higher percentages of CD133(+) cells were identified in blood samples from gastric cancer patients compared to normal controls. In addition, we found by using Kaplan-Meier analysis, that numbers of CD133(+) cells correlated with poor prognosis gastric cancer patients. Finally, tumourigenic properties of CD133(+)  ABCG2(+) cells were determined in vitro and in vivo.
CONCLUSIONS: Our in vitro and in vivo experiments demonstrated that CD133(+)  ABCG2(+) cells exhibited well-known CSC characteristics; thus when circulating they could be used as a prognostic marker for gastric cancer.

Djenidi F, Adam J, Goubar A, et al.
CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients.
J Immunol. 2015; 194(7):3475-86 [PubMed] Related Publications
We had previously demonstrated the role of CD103 integrin on lung tumor-infiltrating lymphocyte (TIL) clones in promoting specific TCR-mediated epithelial tumor cell cytotoxicity. However, the contribution of CD103 on intratumoral T cell distribution and functions and the prognosis significance of TIL subpopulations in non-small cell lung carcinoma (NSCLC) have thus far not been systematically addressed. In this study, we show that an enhanced CD103(+) TIL subset correlates with improved early stage NSCLC patient survival and increased intraepithelial lymphocyte infiltration. Moreover, our results indicate that CD8(+)CD103(+) TIL, freshly isolated from NSCLC specimens, display transcriptomic and phenotypic signatures characteristic of tissue-resident memory T cells and frequently express PD-1 and Tim-3 checkpoint receptors. This TIL subset also displays increased activation-induced cell death and mediates specific cytolytic activity toward autologous tumor cells upon blockade of the PD-1-PD-L1 interaction. These findings emphasize the role of CD8(+)CD103(+) tissue-resident memory T cells in promoting intratumoral CTL responses and support the rationale for using anti-PD-1 blocking Ab to reverse tumor-induced T cell exhaustion in NSCLC patients.

Li C, Chen J, Chen T, et al.
Aberrant Hypermethylation at Sites -86 to 226 of DAB2 Gene in Non-Small Cell Lung Cancer.
Am J Med Sci. 2015; 349(5):425-31 [PubMed] Related Publications
BACKGROUND: Lung cancer is now the leading cause of malignant tumor-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases. Human Disabled-2 (DAB2) was reported to act as a tumor suppressor gene and was found downregulated in numerous cancer types. However, the expression of DAB2 in NSCLC and the mechanism of DAB2 expression regulation remain unclear.
METHODS: DAB2 expression was analyzed by quantitative real-time polymerase chain reaction (PCR) and Western blot in 20 paired primary NSCLC tissues and corresponding normal lung tissues. Immunohistochemistry assay was performed in paired NSCLC tissues from another 20 patients. Methylation status of DAB2 promoter was analyzed using bisulfite sequencing polymerase chain reaction.
RESULTS: DAB2 messenger RNA level was significantly lower in NSCLC tissues than normal tissues in 95.0% of the group of patients under investigation. In addition, NSCLC tissues showed a significant reduction in DAB2 protein when compared with normal tissues. Importantly, 85% of NSCLC tissues (17/20) had high methylation in DAB2 promoter when compared with normal tissues.
CONCLUSIONS: DAB2 expression is decreased in NSCLC, and the frequent methylation event at sites -86 to 226 of the DAB2 gene could contribute to the downregulation of DAB2.

Jia Z, Ai X, Sun F, et al.
Identification of new hub genes associated with bladder carcinoma via bioinformatics analysis.
Tumori. 2015 Jan-Feb; 101(1):117-22 [PubMed] Related Publications
AIMS AND BACKGROUND: Bladder carcinoma (BC) is one of the most common malignant cancers worldwide. Several genes related to the mechanism of BC have been studied in recent years, but the current understanding of BC is still rather limited. This study aimed to find new differentially expressed genes (DEGs) associated with the occurrence and development of BC.
METHODS: In this work, we downloaded gene expression data from Gene Expression Omnibus under accession number GSE27448, which included 10 GeneChips from urinary BC tissues and 5 from normal tissues. DEGs were identified by the LIMMA package in R. Then the protein-protein interactions (PPIs) networks were analyzed with the database of Search Tool for the Retrieval of Interacting Genes, and gene ontology (GO) was applied to explore the underlying function of the DEGs using the Database for Annotation, Visualization and Integrated Discovery.
RESULTS: A total of 2,068 DEGs were found between BC and normal tissues. These genes were involved in 49 functional clusters. The top 10 highest degree nodes, such as POLR2F/2H (DNA directed RNA polymerase II polypeptide F/polypeptide H) and RPS14/15 (ribosomal protein S14/S15), were proven to be hub nodes in the PPIs network. ITGA7 (integrin, alpha 7), GRB14 (growth factor receptor-bound protein 14), CDC20 (cell division cycle 20) and PSMB1 (proteasome subunit, beta type, 1) were significant DEGs identified in the functional clusters.
CONCLUSIONS: Genes such as POLR2F/2H, RPS14/15, ITGA7, GRB14, CDC20 and PSMB1 were forecast to play important roles in the occurrence and progression of BC.

Francis JC, Melchor L, Campbell J, et al.
Whole-exome DNA sequence analysis of Brca2- and Trp53-deficient mouse mammary gland tumours.
J Pathol. 2015; 236(2):186-200 [PubMed] Related Publications
Germline mutations in the tumour suppressor BRCA2 predispose to breast, ovarian and a number of other human cancers. Brca2-deficient mouse models are used for preclinical studies but the pattern of genomic alterations in these tumours has not yet been described in detail. We have performed whole-exome DNA sequencing analysis of mouse mammary tumours from Blg-Cre Brca2(f/f) Trp53(f/f) animals, a model of BRCA2-deficient human cancer. We also used the sequencing data to estimate DNA copy number alterations in these tumours and identified a recurrent copy number gain in Met, which has been found amplified in other mouse mammary cancer models. Through a comparative genomic analysis, we identified several mouse Blg-Cre Brca2(f/f) Trp53(f/f) mammary tumour somatic mutations in genes that are also mutated in human cancer, but few of these genes have been found frequently mutated in human breast cancer. A more detailed analysis of these somatic mutations revealed a set of genes that are mutated in human BRCA2 mutant breast and ovarian tumours and that are also mutated in mouse Brca2-null, Trp53-null mammary tumours. Finally, a DNA deletion surrounded by microhomology signature found in human BRCA1/2-deficient cancers was not common in the genome of these mouse tumours. Although a useful model, there are some differences in the genomic landscape of tumours arising in Blg-Cre Brca2(f/f) Trp53(f/f) mice compared to human BRCA-mutated breast cancers. Therefore, this needs to be taken into account in the use of this model.

Turbica I, Gallais Y, Gueguen C, et al.
Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarization.
J Leukoc Biol. 2015; 97(4):737-49 [PubMed] Related Publications
DCs are the first immune cells to be exposed to allergens, including chemical sensitizers, such as nickel, a human TLR4 agonist that induces DC maturation. In ACD, DCs can interact with PMNs that are recruited and activated, leading, in particular, to ectosome release. The objective of this work was to characterize the effects of PMN-Ect on DC functions in an ACD context. We first developed a standardized protocol to produce, characterize, and quantify ectosomes by use of human PLB-985 cells, differentiated into mature PMN (PLB-Ect). We then studied the in vitro effects of these purified ectosomes on human moDC functions in response to NiSO4 and to LPS, another TLR4 agonist. Confocal fluorescence microscopy showed that PLB-Ect was internalized by moDCs and localized in the lysosomal compartment. We then showed that PLB-Ect down-regulated NiSO4-induced moDC maturation, as witnessed by decreased expression of CD40, CD80, CD83, CD86, PDL-1, and HLA-DR and by decreased levels of IL-1β, IL-6, TNF-α, and IL-12p40 mRNAs. These effects were related to p38MAPK and NF-κB down-regulation. However, no increase in pan-regulatory DC marker genes (GILZ, CATC, C1QA) was observed; rather, levels of effector DC markers (Mx1, NMES1) were increased. Finally, when these PLB-Ect + NiSO4-treated moDCs were cocultured with CD4(+) T cells, a Th2 cytokine profile seemed to be induced, as shown, in particular, by enhanced IL-13 production. Together, these results suggest that the PMN-Ect can modulate DC maturation in response to nickel, a common chemical sensitizer responsible for ADC.

Li Y, Sun B, Zhao X, et al.
Subpopulations of uPAR+ contribute to vasculogenic mimicry and metastasis in large cell lung cancer.
Exp Mol Pathol. 2015; 98(2):136-44 [PubMed] Related Publications
The urokinase plasminogen activator receptor (uPAR) is closely associated with poor prognosis in various aggressive cancers including large-cell lung cancer (LCLC). Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks involving the blood supply in early tumor formation. We demonstrate the statistically positive correlation of uPAR expression with VM formation, metastasis, and poor prognosis of LCLC patients. uPAR(+) cells sorted from the LCLC H460 cell line show higher invasion, migration capacity, and tube structure formation capability on Matrigel compared with uPAR(-) cells. uPAR(+) tumor cells highly expressed vimentin and VE-cadherin; the epithelial marker E-cadherin was low expressed. Higher EMT-regulated protein twist and snail expressions were also observed in these cells. uPAR(+) cells injected subcutaneously into nude mice markedly increased tumor growth, induced VM formation and liver metastasis; by contrast, uPAR(-) cells did not. The data suggest that uPAR expression may predict VM formation, tumor metastasis and poorer prognosis of LCLC patients. The uPAR gene may be used as a novel therapeutic target for inhibiting angiogenesis and metastasis in LCLC.

Wang H, Zhuo Y, Hu X, et al.
CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis.
Biochem Biophys Res Commun. 2015; 458(2):268-73 [PubMed] Related Publications
Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients.

Lang J, Zhu W, Nokes B, et al.
Characterization of a novel radiation-induced sarcoma cell line.
J Surg Oncol. 2015; 111(6):669-82 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
BACKGROUND: Radiation-induced sarcoma (RIS) is a potential complication of cancer treatment. No widely available cell line models exist to facilitate studies of RIS.
METHODS: We derived a spontaneously immortalized primary human cell line, UACC-SARC1, from a RIS.
RESULTS: Short tandem repeat (STR) profiling of UACC-SARC1 was virtually identical to its parental tumor. Immunohistochemistry (IHC) analysis of the tumor and immunocytochemistry (ICC) analysis of UACC-SARC1 revealed shared expression of vimentin, osteonectin, CD68, Ki67 and PTEN but tumor-restricted expression of the histiocyte markers α1-antitrypsin and α1-antichymotrypsin. Karyotyping of the tumor demonstrated aneuploidy. Comparative genomic hybridization (CGH) provided direct genetic comparison between the tumor and UACC-SARC1. Sequencing of 740 mutation hotspots revealed no mutations in UACC-SARC1 nor in the tumor. NOD/SCID gamma mouse xenografts demonstrated tumor formation and metastasis. Clonogenicity assays demonstrated that 90% of single cells produced viable colonies. NOD/SCID gamma mice produced useful patient-derived xenografts for orthotopic or metastatic models.
CONCLUSION: Our novel RIS strain constitutes a useful tool for pre-clinical studies of this rare, aggressive disease. UACC-SARC1 is an aneuploid cell line with complex genomics lacking common oncogenes or tumor suppressor genes as drivers of its biology. The UACC-SARC1 cell line will enable further studies of the drivers of RIS.

Azevedo-Silva J, Queirós O, Ribeiro A, et al.
The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH.
Biochem J. 2015; 467(2):247-58 [PubMed] Related Publications
Although the anti-cancer properties of 3BP (3-bromopyruvate) have been described previously, its selectivity for cancer cells still needs to be explained [Ko et al. (2001) Cancer Lett. 173, 83-91]. In the present study, we characterized the kinetic parameters of radiolabelled [14C] 3BP uptake in three breast cancer cell lines that display different levels of resistance to 3BP: ZR-75-1 < MCF-7 < SK-BR-3. At pH 6.0, the affinity of cancer cells for 3BP transport correlates with their sensitivity, a pattern that does not occur at pH 7.4. In the three cell lines, the uptake of 3BP is dependent on the protonmotive force and is decreased by MCTs (monocarboxylate transporters) inhibitors. In the SK-BR-3 cell line, a sodium-dependent transport also occurs. Butyrate promotes the localization of MCT-1 at the plasma membrane and increases the level of MCT-4 expression, leading to a higher sensitivity for 3BP. In the present study, we demonstrate that this phenotype is accompanied by an increase in affinity for 3BP uptake. Our results confirm the role of MCTs, especially MCT-1, in 3BP uptake and the importance of cluster of differentiation (CD) 147 glycosylation in this process. We find that the affinity for 3BP transport is higher when the extracellular milieu is acidic. This is a typical phenotype of tumour microenvironment and explains the lack of secondary effects of 3BP already described in in vivo studies [Ko et al. (2004) Biochem. Biophys. Res. Commun. 324, 269-275].

Matsuoka Y, Yoshida R, Nakayama H, et al.
The tumour stromal features are associated with resistance to 5-FU-based chemoradiotherapy and a poor prognosis in patients with oral squamous cell carcinoma.
APMIS. 2015; 123(3):205-14 [PubMed] Related Publications
It has been increasingly recognized that the tumour microenvironment is a critical factor involved in cancer progression. However, little is known about the clinical value of the stromal features in oral squamous cell carcinoma (OSCC). The purpose of this study was to determine the clinical significance of cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) in OSCC. OSCC specimens were obtained from 60 patients who underwent surgery following 5-fluorouracil-based chemoradiotherapy. Paraffin-embedded sections obtained from biopsy specimens were immunohistochemically analysed. The associations among CAFs, TAMs and various clinicopathological features were examined, and the effects of CAFs and TAMs on the prognosis were evaluated. In the group with a high level of CAFs, the incidence of advanced pT- and pN-stage cases was significantly higher than that in the group with the low level. A high TAMs tumour expression was significantly correlated with a poor response to preoperative chemoradiotherapy. A Kaplan-Meier analysis revealed that higher numbers of CAFs and TAMs were significantly correlated with a poor prognosis. These findings suggest that TAMs are a potential biomarker for predicting the clinical response to 5-FU-based chemoradiotherapy, and the expression status of the CAFs and TAMs may be useful for making treatment decisions to improve the survival of OSCC patients.

Liu F, Kong X, Lv L, Gao J
MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal.
FEBS Lett. 2015; 589(4):500-6 [PubMed] Related Publications
In liver cancer, miR-155 up-regulation can regulate cancer-cell invasion. However, whether miR-155 expression is associated with liver cancer stem cells (CSCs) remains unknown. Here, we show that miR-155 expression is up-regulated in tumor spheres. Knock-down of miR-155 resulted in suppression of tumor sphere formation, through a decrease in the proportion of CD90(+) and CD133(+) CSCs and in the expression of Oct4, whereas miR-155 overexpression had the opposite effect. TP53INP1 was determined to be involved in the CSCs-like properties that were regulated by miR-155. Thus, miR-155 may play an important role in promoting the generation of stem cell-like cells and their self-renewal by targeting the gene TP53INP1.

Massari F, Santoni M, Ciccarese C, et al.
PD-1 blockade therapy in renal cell carcinoma: current studies and future promises.
Cancer Treat Rev. 2015; 41(2):114-21 [PubMed] Related Publications
RCC is considered an immunogenic tumor with a prominent dysfunctional immune cell infiltrate, unable to control tumor growth. Evasion of immune surveillance, a process defined immune-editing, leads to malignant progression. The striking improvement of knowledge in immunology has led to the identification of immune checkpoints (such as CTLA-4 and PD-1), whose blockage enhances the antitumor immunity. The interaction between PD-1, an inducible inhibitory receptor expressed on lymphocytes and DCs, and PD-L1 ligand, expressed by tumor cells, results in a down-regulation of the T-cell response. Therefore, the PD-1/PD-L1 axis inhibition by targeted-antibodies, increasing the T-cell proliferation and cytotoxicity, represents a promising mechanism to stimulate the anti-tumor activity of the immune system, improving the outcomes of cancer patients. Several PD-1 and PD-L1 inhibitors have been evaluated in different tumor types, showing promising results. The interesting correlation between lymphocytes PD-1 expression and RCC advanced stage, grade and prognosis, as well as the selective PD-L1 expression by RCC tumor cells and its potential association with worse clinical outcomes, have led to the development of new anti PD-1/PD-L1 agents, alone or in combination with anti-angiogenic drugs or other immunotherapeutic approaches, for the treatment of RCC. In this review we discuss the role of PD-1/PD-L1 in RCC, focusing on the biological rationale, current clinical studies and promising therapeutic perspectives to target the PD-1 pathway.

Das R, Verma R, Sznol M, et al.
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
J Immunol. 2015; 194(3):950-9 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Combination therapy concurrently targeting PD-1 and CTLA-4 immune checkpoints leads to remarkable antitumor effects. Although both PD-1 and CTLA-4 dampen the T cell activation, the in vivo effects of these drugs in humans remain to be clearly defined. To better understand biologic effects of therapy, we analyzed blood/tumor tissue from 45 patients undergoing single or combination immune checkpoint blockade. We show that blockade of CTLA-4, PD-1, or combination of the two leads to distinct genomic and functional signatures in vivo in purified human T cells and monocytes. Therapy-induced changes are more prominent in T cells than in monocytes and involve largely nonoverlapping changes in coding genes, including alternatively spliced transcripts and noncoding RNAs. Pathway analysis revealed that CTLA-4 blockade induces a proliferative signature predominantly in a subset of transitional memory T cells, whereas PD-1 blockade instead leads to changes in genes implicated in cytolysis and NK cell function. Combination blockade leads to nonoverlapping changes in gene expression, including proliferation-associated and chemokine genes. These therapies also have differential effects on plasma levels of CXCL10, soluble IL-2R, and IL-1α. Importantly, PD-1 receptor occupancy following anti-PD-1 therapy may be incomplete in the tumor T cells even in the setting of complete receptor occupancy in circulating T cells. These data demonstrate that, despite shared property of checkpoint blockade, Abs against PD-1, CTLA-4 alone, or in combination have distinct immunologic effects in vivo. Improved understanding of pharmacodynamic effects of these agents in patients will support rational development of immune-based combinations against cancer.

Akman HB, Selcuklu SD, Donoghue MT, et al.
ALCAM is indirectly modulated by miR-125b in MCF7 cells.
Tumour Biol. 2015; 36(5):3511-20 [PubMed] Related Publications
MicroRNA (miRNA) deregulation is associated with various cancers. Among an expanding list of cancer-related miRNAs, deregulation of miR-125b has been well documented in many cancers including breast. Based on current knowledge, miR-125b is considered to be a tumor suppressor in breast cancers. While important messenger RNA (mRNA) targets have been defined for miR-125b, here, we aimed to further investigate direct/indirect consequences of miR-125b expression in breast cancer cells by using a transcriptome approach. Upon miR-125b expression, a total of 138 cancer-related genes were found to be differentially expressed in breast cancer cells. While only a few of these were predicted to be direct mRNA targets, majority of the gene expression changes were potentially downstream and indirect effects of miR-125b expression. Among these, activated leukocyte antigen molecule (ALCAM) mRNA and protein levels were found to be highly significantly increased upon miR-125b expression. Given the tumor suppressor role of miR-125b in our model system, upon silencing of ALCAM expression, cell proliferation rate re-increased in miR-125b-expressing cells. While ALCAM's possible context-dependent roles are not clear in breast cancer, a diverse expression pattern of ALCAM mRNA was detected in a panel of breast cancer patient samples. Differentially expressed/regulated cancer-related genes upon miR-125b expression along with the significant increase of ALCAM are of future interest to understand how deregulated expression of miR-125b may have a tumor suppressor role in breast and other cancers.

Denkert C, von Minckwitz G, Brase JC, et al.
Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers.
J Clin Oncol. 2015; 33(9):983-91 [PubMed] Related Publications
PURPOSE: Modulation of immunologic interactions in cancer tissue is a promising therapeutic strategy. To investigate the immunogenicity of human epidermal growth factor receptor 2 (HER2) -positive and triple-negative (TN) breast cancers (BCs), we evaluated tumor-infiltrating lymphocytes (TILs) and immunologically relevant genes in the neoadjuvant GeparSixto trial.
PATIENTS AND METHODS: GeparSixto investigated the effect of adding carboplatin (Cb) to an anthracycline-plus-taxane combination (PM) on pathologic complete response (pCR). A total of 580 tumors were evaluated before random assignment for stromal TILs and lymphocyte-predominant BC (LPBC). mRNA expression of immune-activating (CXCL9, CCL5, CD8A, CD80, CXCL13, IGKC, CD21) as well as immunosuppressive factors (IDO1, PD-1, PD-L1, CTLA4, FOXP3) was measured in 481 tumors.
RESULTS: Increased levels of stromal TILs predicted pCR in univariable (P < .001) and multivariable analyses (P < .001). pCR rate was 59.9% in LPBC and 33.8% for non-LPBC (P < .001). pCR rates ≥ 75% were observed in patients with LPBC tumors treated with PMCb, with a significant test for interaction with therapy in the complete (P = .002) and HER2-positive (P = .006), but not the TNBC, cohorts. Hierarchic clustering of mRNA markers revealed three immune subtypes with different pCR rates (P < .001). All 12 immune mRNA markers were predictive for increased pCR. The highest odds ratios (ORs) were observed for PD-L1 (OR, 1.57; 95% CI, 1.34 to 1.86; P < .001) and CCL5 (OR, 1.41; 95% CI, 1.23 to 1.62; P < .001).
CONCLUSION: Immunologic factors were highly significant predictors of therapy response in the GeparSixto trial, particularly in patients treated with Cb. After further standardization, they could be included in histopathologic assessment of BC.

Matsuda Y, Ishiwata T, Yoshimura H, et al.
Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71.
Cancer Lett. 2015; 357(2):602-11 [PubMed] Related Publications
Nestin, a class VI intermediate filament, was first described as a neuronal stem/progenitor cell marker. We previously reported that knockdown of nestin expression in human glioblastoma cells suppresses cell proliferation, migration, and invasion. In the present study, we examined the effect of nestin on stemness, and identified molecules involved in modulating nestin function in glioblastoma cells. Nestin expression was shown to be higher in high-grade gliomas than in low-grade gliomas. Furthermore, compared with control cells, nestin short hairpin RNA (shRNA)-transfected glioblastoma cells exhibited reduced sphere formation, decreased expression of NANOG, N-cadherin, CD133, and Oct-4, and decreased tumor size in vivo. To examine the proteins regulated by nestin in glioblastomas, we carried out two-dimensional electrophoresis using nestin shRNA-transfected glioblastoma cells. As a result, nestin shRNA-transfected glioblastoma cells exhibited a decrease in the level of phosphorylation of heat shock cognate 71 kDa protein (HSC71; gene HSPA8). From immunoprecipitation experiments, we demonstrated the direct binding of nestin, HSC71, and cyclin D1 in vitro. Overexpression of nestin in glioblastoma cells increased cell growth, sphere formation, and cell invasion. Transfection with HSC71 siRNA restored nestin expression and cell behavior; therefore, HSC71 knockdown will interfere with enhanced tumorigenic properties of glioblastoma cells that ectopically overexpress nestin. We have demonstrated that HSC71 and nestin regulate each other's expression levels or patterns, and that cyclin D1 is located downstream of nestin and HSC71. In conclusion, nestin regulates stemness, cell growth, and invasion in glioblastoma cells through the alteration of HSC71. Inhibition of nestin and HSC71 may thus be a useful molecular target in the treatment of glioblastomas.

Almamun M, Levinson BT, Gater ST, et al.
Genome-wide DNA methylation analysis in precursor B-cells.
Epigenetics. 2014; 9(12):1588-95 [PubMed] Related Publications
DNA methylation is responsible for regulating gene expression and cellular differentiation and for maintaining genomic stability during normal human development. Furthermore, it plays a significant role in the regulation of hematopoiesis. In order to elucidate the influence of DNA methylation during B-cell development, genome-wide DNA methylation status of pro-B, pre-BI, pre-BII, and naïve-B-cells isolated from human umbilical cord blood was determined using the methylated CpG island recovery assay followed by next generation sequencing. On average, 182-200 million sequences were generated for each precursor B-cell subset in 10 biological replicates. An overall decrease in methylation was observed during the transition from pro-B to pre-BI, whereas no differential methylation was observed in the pre-BI to pre-BII transition or in the pre-BII to naïve B-cell transition. Most of the methylated regions were located within intergenic and intronic regions not present in a CpG island context. Putative novel enhancers were identified in these regions that were differentially methylated between pro-B and pre-BI cells. The genome-wide methylation profiles are publically available and may be used to gain a better understanding of the involvement of atypical DNA methylation in the pathogenesis of malignancies associated with precursor B-cells.

Andisheh-Tadbir A, Ashraf MJ, Khademi B, Ahmadi S
Clinical implication of CD166 expression in salivary gland tumor.
Tumour Biol. 2015; 36(4):2793-9 [PubMed] Related Publications
CD166 is a glycoprotein of immunoglobulin superfamily of adhesion molecules which is overexpressed in many tumors. However, no published literature was found concerning CD166 expression in salivary gland tumor. The purpose of this study was to examine the CD166 expression in the salivary gland tumor by an immunohistochemical approach, to examine the clinical implication of this marker in the prognosis and diagnosis of the salivary gland tumor. In this study, 45 samples of salivary tumors from Khalili Hospital archive including 15 cases of pleomorphic adenoma, 16 cases of mucoepidermoid carcinoma, 14 cases of adenoid cystic carcinoma, and 15 normal salivary glands were selected for immunohistochemistry (IHC) method staining for CD166. CD166 immunoreactivity in malignant tumors (adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (MEC)) (56.7 ± 14.05) was significantly higher than that of pleomorphic adenoma (PA) (34.3 ± 17.07) (P < 0.000) and higher in the PA than normal salivary gland (13.2 ± 12.1) (P = 0.001). CD166 expression was significantly higher in the high-grade tumors (90.3 ± 11.07) compared to low-grade (65.11 ± 27.08) malignant tumors (P = 0.002). CD166 expression showed a significant association with tumor size and the clinical stage (P < 0.001). In conclusion, an overexpression of CD166 was detected in the benign and malignant salivary gland tumors and its expression in the malignant tumor was associated with the aggressive behavior and tumor progression. For this reason, CD166 may be one of the potential biomarkers for predicting tumor behavior in the prognosis of this disease.

El-Sherbiny YM, Holmes TD, Wetherill LF, et al.
Controlled infection with a therapeutic virus defines the activation kinetics of human natural killer cells in vivo.
Clin Exp Immunol. 2015; 180(1):98-107 [PubMed] Article available free on PMC after 01/04/2016 Related Publications
Human natural killer (NK) cells play an important role in anti-viral immunity. However, studying their activation kinetics during infection is highly problematic. A clinical trial of a therapeutic virus provided an opportunity to study human NK cell activation in vivo in a controlled manner. Ten colorectal cancer patients with liver metastases received between one and five doses of oncolytic reovirus prior to surgical resection of their tumour. NK cell surface expression of the interferon-inducible molecules CD69 and tetherin peaked 24-48 h post-infection, coincident with a peak of interferon-induced gene expression. The interferon response and NK cell activation were transient, declining by 96 h post-infection. Furthermore, neither NK cell activation nor the interferon response were sustained in patients undergoing multiple rounds of virus treatment. These results show that reovirus modulates human NK cell activity in vivo and suggest that this may contribute to any therapeutic effect of this oncolytic virus. Detection of a single, transient peak of activation, despite multiple treatment rounds, has implications for the design of reovirus-based therapy. Furthermore, our results suggest the existence of a post-infection refractory period when the interferon response and NK cell activation are blunted. This refractory period has been observed previously in animal models and may underlie the enhanced susceptibility to secondary infections that is seen following viral infection.

Kong LY, Wei J, Haider AS, et al.
Therapeutic targets in subependymoma.
J Neuroimmunol. 2014; 277(1-2):168-75 [PubMed] Related Publications
Subependymomas are usually treated with surgical resection; however, no standard, defined alternative medical therapy is recommended for patients who are not surgical candidates, owing to a paucity of molecular, immunological, and genetic characterization. To address this, an ex vivo functional analysis of the immune microenvironment in subependymoma was conducted, a subependymoma cytokine/chemokine microarray was constructed for the evaluation of operational immune and molecular pathways, and a subependymoma cell line was derived and used to test a variety of cytotoxic agents that target operational pathways identified in subependymoma. We found that immune effectors are detectable within the microenvironment of subependymoma; however, marked immune suppression is not observed. The subependymoma tissue microarrays demonstrated tumor expression of p53, MDM2, HIF-1α, topoisomerase II-β, p-STAT3, and nucleolin, but not EGFRvIII, EphA2, IL-13RA2, CMV, CTLA-4, FoxP3, PD-1, PD-L1, EGFR, PDGF-α, PDGF-β, PDGFR-α, PDGFR-β, PTEN, IGFBP2, PI3K, MDM4, IDH1, mTOR, or Jak2. A topoisomerase inhibitor (WP744, IC50=0.83 μM) and a p-STAT3/HIF-1α inhibitor (WP1066, IC50=3.15 μM) demonstrated a growth inhibition of the subependymoma cell proliferation. Cumulatively, these data suggest that those agents that interfere with oncogenes operational in subependymoma may have clinical impact.

El-Khattouti A, Sheehan NT, Monico J, et al.
CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment.
Cancer Lett. 2015; 357(1):83-104 [PubMed] Related Publications
According to the cancer stem-like cell (CSC) hypothesis, neoplastic clones are maintained by a small fraction of cells with stem cell properties. Also, melanoma resistance to chemo- and radiotherapy is thought to be attributed to melanoma stem-like cells (MSCs). Caffeic acid phenethyl ester (CAPE) is a bioactive molecule, whose antitumor activity is approved in different tumor types. CAPE induced both apoptosis and E2F1 expression in CD133(-), but not in CD133(+) melanoma subpopulations. The resistance of CD133(+) melanoma subpopulation is attributed to the enhanced drug efflux mediated by ATP-binding cassette sub-family B member 5 (ABCB5), since the knockdown of ABCB5 was found to sensitize CD133(+) cells to CAPE. CAPE-induced apoptosis is mediated by E2F1 as evidenced by the abrogation of apoptosis induced in response to the knockdown of E2F1. The functional analysis of E2F1 in CD133(+) melanoma subpopulation demonstrated the ability of E2F1 gene transfer to trigger apoptosis of CD133(+) cells and to enhance the activation of apoptosis signal-regulating kinase (ASK1), c-Jun N-terminal kinase and p38, and the DNA-binding activities of the transcription factors AP-1 and p53. Also, the induction of E2F1 expression was found to enhance the expression of the pro-apoptotic proteins Bax, Noxa and Puma, and to suppress the anti-apoptotic protein Mcl-1. Using specific pharmacological inhibitors we could demonstrate that E2F1 overcomes the chemo-resistance of MSCs/CD133(+) cells by a mechanism mediated by both mitochondrial dysregulation and ER-stress-dependent pathways. In conclusion, our data addresses the mechanisms of CAPE/E2F1-induced apoptosis of chemo-resistant CD133(+) melanoma subpopulation.

Venza M, Visalli M, Biondo C, et al.
Epigenetic marks responsible for cadmium-induced melanoma cell overgrowth.
Toxicol In Vitro. 2015; 29(1):242-50 [PubMed] Related Publications
Cadmium (Cd) is a human carcinogen that likely acts via epigenetic mechanisms. However, the precise role of Cd in melanoma remains to be defined. The goals of this study are to: (i) examine the effect of Cd on the proliferation rate of cutaneous and uveal melanoma cells; (ii) identify the genes affected by Cd exposure; (iii) understand whether epigenetic changes are involved in the response to Cd. The cell growth capacity increased at 48 h after Cd treatment at doses ranging from 0.5 to 10 μM. The research on the key genes regulating proliferation has shown that aberrant methylation is responsible for silencing of p16(INK4A) and caspase 8 in uveal and cutaneous melanoma cells, respectively. The methylation and expression patterns of p14(ARF), death receptors 4/5, and E-cadherin remained unmodified after Cd treatment in all the cell lines analyzed. Ectopic expression of p16(INK4A) abolished the overgrowth of uveal melanoma cells in response to Cd and the overexpression of caspase 8 drastically increased the apoptotic rate of Cd-treated cutaneous melanoma cells. In conclusion, our data suggest that hypermethylation of p16(INK4A) and caspase 8 represents the most common event linked to Cd-induced stimulation of cell growth and inhibition of cell death pathway in melanoma.

Mou W, Xu Y, Ye Y, et al.
Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment.
Cancer Lett. 2015; 358(2):115-23 [PubMed] Related Publications
Transcriptional factor Sox2 promotes tumor metastasis; however its regulatory effect on tumor-associated macrophages (TAMs, M2 phenotype) has not been defined. This study disclosed concomitant expression of TAMs marker-CD163 with SOX2 in human breast cancer and showed that Sox2 in breast cancer cells promotes recruitment of TAMs with altered expression of multiple chemokines, including MIP-1α, ICAM-1 etc. and activation of Stat3 and NF-κB signalings. In addition, TAMs rescued the compromised lung metastasis induced by Sox2 silencing in breast cancer cells. Together, this study documented that Sox2 plays an important role in recruiting TAMs and promotes tumor metastasis in a TAMs dependent manner.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTLA4, Cancer Genetics Web: http://www.cancer-genetics.org/CTLA4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999