Gene Summary

Gene:CTSD; cathepsin D
Aliases: CPSD, CLN10, HEL-S-130P
Summary:This gene encodes a member of the A1 family of peptidases. The encoded preproprotein is proteolytically processed to generate multiple protein products. These products include the cathepsin D light and heavy chains, which heterodimerize to form the mature enzyme. This enzyme exhibits pepsin-like activity and plays a role in protein turnover and in the proteolytic activation of hormones and growth factors. Mutations in this gene play a causal role in neuronal ceroid lipofuscinosis-10 and may be involved in the pathogenesis of several other diseases, including breast cancer and possibly Alzheimer's disease. [provided by RefSeq, Nov 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cathepsin D
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 09 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CTSD (cancer-related)

Kim CW, Go RE, Lee HM, et al.
Cigarette smoke extracts induced the colon cancer migration via regulating epithelial mesenchymal transition and metastatic genes in human colon cancer cells.
Environ Toxicol. 2017; 32(2):690-704 [PubMed] Related Publications
There was considerable evidence that exposure to cigarette smoke is associated with an increased risk for colon cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and colon cancer remains unclear. Moreover, there were only a few studies on effects of complexing substance contained in cigarette smoke on colon cancer. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell cycle, apoptosis and migration of human metastatic colon cancer cells, SW-620. MTT assay revealed that SW-620 cell proliferation was significantly inhibited following treatments with all CSEs, 3R4F, and two-domestic cigarettes, for 9 days in a concentration-dependent manner. Moreover, CSE treatments decreased cyclin D1 and E1, and increased p21 and p27 proteins by Western blot analysis in SW-620 cells. Additionally, the treatment of the cells with CSE contributed to these effects expressing by apoptosis-related proteins. An increased migration or invasion ability of SW-620 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. In addition, the protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers, N-cadherin, snail, and slug, were up-regulated in a time-dependent manner. A metastatic marker, cathepsin D, was also down-regulated by CSE treatment. Taken together, these results indicate that CSE exposure in colon cancer cells may deregulate the cell growth by altering the expression of cell cycle-related proteins and pro-apoptotic protein, and stimulate cell metastatic ability by altering epithelial-mesenchymal transition (EMT) markers and cathepsin D expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 690-704, 2017.

Bhullar KS, Jha A, Rupasinghe HP
Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells.
Chem Biol Interact. 2015; 242:107-22 [PubMed] Related Publications
Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations.

Kim YS, Choi KC, Hwang KA
Genistein suppressed epithelial-mesenchymal transition and migration efficacies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-β signaling pathway.
Phytomedicine. 2015; 22(11):993-9 [PubMed] Related Publications
BACKGROUND: Epithelial-mesenchymal transition (EMT), which is activated by 17β-estradiol (E2) in estrogen-responsive cancers, is an important process in tumor migration or progression. As typical endocrine disrupting chemicals (EDCs), bisphenol A (BPA) and nonylphenol (NP) have a potential to promote EMT and migration of estrogen-responsive cancers. On the contrary, genistein (GEN) as a phytoestrogen is known to have chemopreventive effects in diverse cancers.
METHODS: In the present study, the effects of BPA and GEN on EMT and the migration of BG-1 ovarian cancer cells and the underlying mechanism were investigated. ICI 182,780, an estrogen receptor (ER) antagonist, was co-treated with E2 or BPA or NP to BG-1 cells to identify the relevance of ER signaling in EMT and migration.
RESULTS: As results, E2 and BPA upregulated the protein expression of vimentin, cathepsin D, and MMP-2, but downregulated the protein expression of E-cadherin via ER signaling pathway, suggesting that E2 and BPA promote EMT and cell migration related gene expressions. However, the increased protein expressions of vimentin, cathepsin D, and MMP-2 by E2, BPA, or NP were reduced by the co-treatment of GEN. In a scratch assay, the migration capability of BG-1 cells was enhanced by E2, BPA, and NP via ER signaling but reversed by the co-treatment of GEN. In the protein expression of SnoN and Smad3, E2, BPA, and NP upregulated SnoN, a negative regulator of TGF-β signaling, and downregulated pSmad3, a transcription factor in the downstream pathway of TGF-β signaling pathway, suggesting that E2, BPA, and NP simultaneously lead to the downregualtion of TGF-β signaling in the process of induction of EMT and migration of BG-1 cells via ER signaling. On the other hand, the co-treatment of GEN reversed the downregulation of TGF-β signaling by estrogenic chemicals.
CONCLUSION: Taken together, GEN suppressed EMT and migration capacities of BG-1 ovarian cancer cells enhanced by E2, BPA, and NP via ER signaling and the downregulation of TGF-β signal.

Go RE, Kim CW, Choi KC
Effect of fenhexamid and cyprodinil on the expression of cell cycle- and metastasis-related genes via an estrogen receptor-dependent pathway in cellular and xenografted ovarian cancer models.
Toxicol Appl Pharmacol. 2015; 289(1):48-57 [PubMed] Related Publications
Fenhexamid and cyprodinil are antifungal agents (pesticides) used for agriculture, and are present at measurable amounts in fruits and vegetables. In the current study, the effects of fenhexamid and cyprodinil on cancer cell proliferation and metastasis were examined. Additionally, the protein expression levels of cyclin D1 and cyclin E as well as cathepsin D were analyzed in BG-1 ovarian cancer cells that express estrogen receptors (ERs). The cells were cultured with 0.1% dimethyl sulfoxide (DMSO; control), 17β-estradiol (E2; 10(-9)M), and fenhexamid or cyprodinil (10(-5)-10(-7)M). Results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that fenhexamid and cyprodinil increased BG-1 cell proliferation about 1.5 to 2 times similar to E2 (5 times) compared to the control. When the cells were co-treated with ICI 182,780 (10(-8)M), an ER antagonist, the proliferation of pesticide-treated BG-1 cells was decreased to the level of the control. A wound healing assay revealed that the pesticides reduced the disrupted area in the BG-1 cell monolayer similar to E2. Protein levels of cyclin D1 and E as well as cathepsin D were increased by fenhexamid and cyprodinil. This effect was reversed by co-treatment with ICI 182,780. In a xenograft mouse model with transplanted BG-1 cells, cyprodinil significantly increased tumor mass formation about 2 times as did E2 (6 times) compared to the vehicle (0.1% DMSO) over an 80-day period. In contrast, fenhexamid did not promote ovarian tumor formation in this mouse model. Cyprodinil also induced cell proliferation along with the expression of proliferating cell nuclear antigen (PCNA) and cathepsin D in tumor tissues similar to E2. Taken together, these results imply that fenhexamid and cyprodinil may have disruptive effects on ER-expressing cancer by altering the cell cycle- and metastasis-related gene expression via an ER-dependent pathway.

Gemoll T, Epping F, Heinrich L, et al.
Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies.
Oncotarget. 2015; 6(18):16517-26 [PubMed] Free Access to Full Article Related Publications
Cancer proteomics provide a powerful approach to identify biomarkers for personalized medicine. Particularly, biomarkers for early detection, prognosis and therapeutic intervention of bone cancers, especially osteosarcomas, are missing. Initially, we compared two-dimensional gel electrophoresis (2-DE)-based protein expression pattern between cell lines of fetal osteoblasts, osteosarcoma and pulmonary metastasis derived from osteosarcoma. Two independent statistical analyses by means of PDQuest® and SameSpot® software revealed a common set of 34 differentially expressed protein spots (p < 0.05). 17 Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in one high-ranked network associated with Gene Expression, Cell Death and Cell-To-Cell Signaling and Interaction. Ran/TC4-binding protein (RANBP1) and Cathepsin D (CTSD) were further validated by Western Blot in cell lines while the latter one showed higher expression differences also in cytospins and in clinical samples using tissue microarrays comprising osteosarcomas, metastases, other bone malignancies, and control tissues. The results show that protein expression patterns distinguish fetal osteoblasts from osteosarcomas, pulmonary metastases, and other bone diseases with relevant sensitivities between 55.56% and 100% at ≥87.50% specificity. Particularly, CTSD was validated in clinical material and could thus serve as a new biomarker for bone malignancies and potentially guide individualized treatment regimes.

Zu S, Ma W, Xiao P, et al.
Evaluation of Docetaxel-Sensitive and Docetaxel-Resistant Proteomes in PC-3 Cells.
Urol Int. 2015; 95(1):114-9 [PubMed] Related Publications
OBJECTIVES: Docetaxel was the first drug with proven survival benefit in men with castration-resistant prostate cancer. Acquired resistance to docetaxel precedes fatality in castration-resistant prostate cancer. The aims of this study were to evaluate docetaxel-sensitive and docetaxel-resistant proteomes in PC-3 cells, and to investigate the molecular mechanism of docetaxel-resistant PC-3 cells.
METHODS: Docetaxel-resistant PC-3 cells were developed by docetaxel dose escalation. The global profiling of the protein expression was investigated in docetaxel-sensitive and docetaxel-resistant proteomes in PC-3 cells using 2-dimensional polyacrylamide gel electrophoresis/matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
RESULTS: Forty-nine differential proteins were found in docetaxel-resistant PC-3 cells in comparison with docetaxel-sensitive PC-3 cells. Expression in 29 proteins was upregulated, whereas expression in 20 proteins was downregulated. ATP synthase and galectin-1 were involved in the formation of tumor vessels; calreticulin, cathepsin D, and cofilin were involved in tumor metastasis, and GRP78 (78-kDa glucose-regulated protein) and microtubule-associated protein-6 were involved in drug resistance of tumor.
CONCLUSION: It is suggested that a proteomic expression difference exists between docetaxel-sensitive and docetaxel-resistant PC-3 cells, which would be helpful for further understanding the molecular mechanisms of docetaxel resistance in PC-3 cells.

Kim SH, Hwang KA, Shim SM, Choi KC
Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway.
Environ Toxicol Pharmacol. 2015; 39(2):568-76 [PubMed] Related Publications
Prostate cancer (PCa) is a global health concern in human males. Recently, it has been known that endocrine-disrupting chemicals (EDCs) may act as an exogenous factor to enhance cancer progression. Triclosan (TCS) and 2,4-dihydroxybenzophenone (BP-1) were reported to bioaccumulate in human bodies through the skin absorption. However, there has been insufficient evidence on the findings that the intervention of EDCs may promote the cancer progression in PCa. In the present study, to verify the risk of TCS and BP-1 to a PCa progression, cancer cell proliferation and migration were investigated in LNCaP PCa cells. TCS and BP-1 increased LNCaP cell proliferative activity and migration as did dihydrotestosterone (DHT). This phenomenon was reversed by the treatment with bicalutamide, a well known AR antagonist, suggesting that TCS and BP-1 acted as a xenoandrogen in LNCaP cells via AR signaling pathway by mimicking the action of DHT. A Western blot assay was performed to identify the alterations in the translational levels of cell growth- and metastasis-related markers, i.e., c-fos, cyclin E, p21, and cathepsin D genes. The expressions of genes related with G1/S transition of cell cycle and metastasis were increased by DHT, TCS, and BP-1, while the expression of p21 protein responsible for cell cycle arrest was reduced by DHT, TCS, and BP-1. Taken together, these results indicated that TCS and BP-1 may enhance the progression of PCa by regulating cell cycle and metastasis-related genes via AR signaling pathway.

Zubor P, Hatok J, Moricova P, et al.
Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.
Mol Med Rep. 2015; 11(2):1421-7 [PubMed] Related Publications
Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (P<0.05), as well as GSN, KIT, KLK5, SERPINB5 and STC2 genes (P<0.01). Insignificant differences (P<0.07) were observed for CCNA1, CLU, DLC1, GABRP and IL6 genes. The ontological gene analyses revealed that the majority of the deregulated genes in the HNEpi samples were part of the functional gene group directly associated with BC origin and prognosis. Functional analysis showed that the most frequent gene deregulations occurred in genes associated with apoptosis and cell cycle regulation in BCTis samples, and with angiogenesis, regulation of the cell cycle and transcriptional activity in HNEpi samples. The molecular profiling of HNEpi breast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

Varley KE, Gertz J, Roberts BS, et al.
Recurrent read-through fusion transcripts in breast cancer.
Breast Cancer Res Treat. 2014; 146(2):287-97 [PubMed] Free Access to Full Article Related Publications
Read-through fusion transcripts that result from the splicing of two adjacent genes in the same coding orientation are a recently discovered type of chimeric RNA. We sought to determine if read-through fusion transcripts exist in breast cancer. We performed paired-end RNA-seq of 168 breast samples, including 28 breast cancer cell lines, 42 triple negative breast cancer primary tumors, 42 estrogen receptor positive (ER+) breast cancer primary tumors, and 56 non-malignant breast tissue samples. We analyzed the sequencing data to identify breast cancer associated read-through fusion transcripts. We discovered two recurrent read-through fusion transcripts that were identified in breast cancer cell lines, confirmed across breast cancer primary tumors, and were not detected in normal tissues (SCNN1A-TNFRSF1A and CTSD-IFITM10). Both fusion transcripts use canonical splice sites to join the last splice donor of the 5' gene to the first splice acceptor of the 3' gene, creating an in-frame fusion transcript. Western blots indicated that the fusion transcripts are translated into fusion proteins in breast cancer cells. Custom small interfering RNAs targeting the CTSD-IFITM10 fusion junction reduced expression of the fusion transcript and reduced breast cancer cell proliferation. Read-through fusion transcripts between adjacent genes with different biochemical functions represent a new type of recurrent molecular defect in breast cancer that warrant further investigation as potential biomarkers and therapeutic targets. Both breast cancer associated fusion transcripts identified in this study involve membrane proteins (SCNN1A-TNFRSF1A and CTSD-IFITM10), which raises the possibility that they could be breast cancer-specific cell surface markers.

Li M, Guo J, Gao W, et al.
Bisphenol AF-induced endogenous transcription is mediated by ERα and ERK1/2 activation in human breast cancer cells.
PLoS One. 2014; 9(4):e94725 [PubMed] Free Access to Full Article Related Publications
Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells.

Saenger Y, Magidson J, Liaw B, et al.
Blood mRNA expression profiling predicts survival in patients treated with tremelimumab.
Clin Cancer Res. 2014; 20(12):3310-8 [PubMed] Related Publications
PURPOSE: Tremelimumab (ticilimumab, Pfizer), is a monoclonal antibody (mAb) targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). Ipilimumab (Yervoy, BMS), another anti-CTLA-4 antibody, is approved by the U.S. Federal Drug Administration (FDA). Biomarkers are needed to identify the subset of patients who will achieve tumor control with CTLA-4 blockade.
EXPERIMENTAL DESIGN: Pretreatment peripheral blood samples from 218 patients with melanoma who were refractory to prior therapy and receiving tremelimumab in a multicenter phase II study were measured for 169 mRNA transcripts using reverse transcription polymerase chain reaction (RT-PCR). A two-class latent model yielded a risk score based on four genes that were highly predictive of survival (P < 0.001). This signature was validated in an independent population of 260 treatment-naïve patients with melanoma enrolled in a multicenter phase III study of tremelimumab.
RESULTS: Median follow-up was 297 days for the training population and 386 days for the test population. Expression levels of the 169 genes were closely correlated across the two populations (r = 0.9939). A four-gene model, including cathepsin D (CTSD), phopholipase A2 group VII (PLA2G7), thioredoxin reductase 1 (TXNRD1), and interleukin 1 receptor-associated kinase 3 (IRAK3), predicted survival in the test population (P = 0.001 by log-rank test). This four-gene model added to the predictive value of clinical predictors (P < 0.0001).
CONCLUSIONS: Expression levels of CTSD, PLA2G7, TXNRD1, and IRAK3 in peripheral blood are predictive of survival in patients with melanoma treated with tremelimumab. Blood mRNA signatures should be further explored to define patient subsets likely to benefit from immunotherapy.

Daniel AR, Gaviglio AL, Knutson TP, et al.
Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes.
Oncogene. 2015; 34(4):506-15 [PubMed] Free Access to Full Article Related Publications
Progesterone and estrogen are important drivers of breast cancer proliferation. Herein, we probed estrogen receptor-α (ER) and progesterone receptor (PR) cross-talk in breast cancer models. Stable expression of PR-B in PR-low/ER+ MCF7 cells increased cellular sensitivity to estradiol and insulin-like growth factor 1 (IGF1), as measured in growth assays performed in the absence of exogenous progestin; similar results were obtained in PR-null/ER+ T47D cells stably expressing PR-B. Genome-wide microarray analyses revealed that unliganded PR-B induced robust expression of a subset of estradiol-responsive ER target genes, including cathepsin-D (CTSD). Estradiol-treated MCF7 cells stably expressing PR-B exhibited enhanced ER Ser167 phosphorylation and recruitment of ER, PR and the proline-, glutamate- and leucine-rich protein 1 (PELP1) to an estrogen response element in the CTSD distal promoter; this complex co-immunoprecipitated with IGF1 receptor (IGFR1) in whole-cell lysates. Importantly, ER/PR/PELP1 complexes were also detected in human breast cancer samples. Inhibition of IGF1R or phosphoinositide 3-kinase blocked PR-B-dependent CTSD mRNA upregulation in response to estradiol. Similarly, inhibition of IGF1R or PR significantly reduced ER recruitment to the CTSD promoter. Stable knockdown of endogenous PR or onapristone treatment of multiple unmodified breast cancer cell lines blocked estradiol-mediated CTSD induction, inhibited growth in soft agar and partially restored tamoxifen sensitivity of resistant cells. Further, combination treatment of breast cancer cells with both onapristone and IGF1R tyrosine kinase inhibitor AEW541 was more effective than either agent alone. In summary, unliganded PR-B enhanced proliferative responses to estradiol and IGF1 via scaffolding of ER-α/PELP1/IGF1R-containing complexes. Our data provide a strong rationale for targeting PR in combination with ER and IGF1R in patients with luminal breast cancer.

Sun Z, Dong J, Zhang S, et al.
Identification of chemoresistance-related cell-surface glycoproteins in leukemia cells and functional validation of candidate glycoproteins.
J Proteome Res. 2014; 13(3):1593-601 [PubMed] Related Publications
Chemoresistance remains the most significant obstacle to successful chemotherapy for leukemia, and its exact mechanism is still unknown. In this work, we used the cell-surface capturing method together with quantitative proteomics to investigate differences in the glycoproteomes of adriamycin-sensitive and adriamycin-resistant leukemia cells. Two quantitative methods, isotopic dimethyl labeling and SWATH, were used to quantify glycoproteins, and 35 glycoproteins were quantified by both methods. High correlation was observed between the glycoproteins quantified by the above two methods, and 15 glycoproteins displayed a consistent significant change trend in both sets of quantitative results. These 15 proteins included classical multidrug resistance-related glycoproteins such as ABCB1 as well as a set of novel glycoproteins that have not previously been reported to be associated with chemoresistance in leukemia cells. Further validation with quantitative real-time PCR and Western blotting confirmed the proteomic screening results. Subsequent functional experiments based on RNA interference technology showed that CTSD, FKBP10, and SLC2A1 are novel genes that participate in the acquisition and maintenance of the adriamycin-resistant phenotype in leukemia cells.

Nait Achour T, Sentis S, Teyssier C, et al.
Transcriptional repression of estrogen receptor α signaling by SENP2 in breast cancer cells.
Mol Endocrinol. 2014; 28(2):183-96 [PubMed] Free Access to Full Article Related Publications
Estrogen receptors (ERs) are ligand-activated transcription factors involved in many physiological and pathological processes, including breast cancer. Their activity is fine-tuned by posttranslational modifications, notably sumoylation. In the present study, we investigated the role of the small ubiquitin-related modifier (SUMO) protease, SUMO1/sentrin/suppressor of Mif 2-specific peptidase 2 (SENP2), in the regulation of ERα activity. We first found SENP2 to significantly repress estradiol-induced transcriptional activity in breast cancer cells (MCF7 and T47D). This effect was observed with a reporter plasmid and on endogenous genes such as TFF1 and CTSD, which were shown to recruit SENP2 in chromatin immunoprecipitation experiments. Using glutathione S-transferase pull-down, coimmunoprecipitation and proximity ligation assays, SENP2 was found to interact with ERα and this interaction to be mediated by the amino-terminal region of the protease and the hinge region of the receptor. Interestingly, we demonstrated that ERα repression by SENP2 is independent of its SUMO protease activity and requires a transcriptional repressive domain located in the amino-terminal end of the protease. Using small interfering RNA assays, we evidenced that this domain recruits the histone deacetylase 3 (HDAC3), to be fully active. Furthermore, using both overexpression and knockdown strategies, we showed that SENP2 robustly represses estrogen-dependent and independent proliferation of MCF7 cells. We provided evidence that this effect requires both the proteolytic and transcriptional activities of SENP2. Altogether, our study unravels a new property for a SUMO protease and identifies SENP2 as a classical transcription coregulator.

Cui Y, Xie S, Luan J, et al.
Quantitative proteomics and protein network analysis of A549 lung cancer cells affected by miR-206.
Biosci Trends. 2013; 7(6):259-63 [PubMed] Related Publications
MiR-206 acts as a potential tumor suppressor during carcinogenesis and a regulatory factor in osteoblasts differentiation, but its modulatory mechanism remains unclear. In this study, we used a quantitative proteomics method, difference gel electrophoresis (DIGE), to profile the protein variation in A549 lung cancer cells with and without miR- 206 transfection. We identified a total of 17 differently expressed proteins including 5 up-regulated and 12 down-regulated proteins affected by miR-206 in A549 cells. We further constructed a protein network linked 17 differently expressed proteins with 106 computationally predicted miR-206 targets, and identified 8 "hub" genes (CALR, CTSD, ENO1, HSPA5, CDC42, HSPD1, POLA1, and SMARCA4) within the network, which may represent important miR-206 functional gene targets. In conclusion, in this study, we identified several candidate functional target genes for miR-206, which is helpful to further explore its mechanisms during carcinogenesis and osteogenesis, and we also proposed a novel proteomic strategy to identify functionally important gene targets for microRNA.

Mikulová V, Cabiňaková M, Janatková I, et al.
Detection of circulating tumor cells during follow-up of patients with early breast cancer: Clinical utility for monitoring of therapy efficacy.
Scand J Clin Lab Invest. 2014; 74(2):132-42 [PubMed] Related Publications
INTRODUCTION: Circulating tumor cells (CTCs) detection prior to and during therapy is considered as an independent and strong prognostic marker. The present study was designed to isolate and characterize CTCs in peripheral blood of an early breast cancer (BC) patient as a biomarker for monitoring treatments efficacy.
MATERIALS AND METHODS: In total, 54 early breast cancer patients undergoing neoadjuvant and/or adjuvant chemotherapy regimens were enrolled into a prospective study. CTC detection in blood was performed by AdnaTest BreastCancer(™) (AdnaGen AG, Germany), which is based on the detection of EpCAM, HER2 and MUC1 specific transcripts in enriched CTC-lysates. Additionally, cDNA from isolated CTCs and PBMC was used for qPCR gene expression analysis of TOP1, TOP2A, CTSD, ST6, CK19 and reference gene actin.
RESULTS: We found that CTCs can be detected in the peripheral blood of approximately 31% of early stage breast cancer patients. The presence of CTCs was detected in 36% ER positive, 32% PR positive and 30% HER2 positive patients. We found no correlation between CTCs and tumor size, tumor grade, histological grade and receptor status. Only 7% of all patients remained CTCs positive after adjuvant therapy. Gene expression analysis revealed a particular heterogeneity of the studied genes.
CONCLUSIONS: In conclusion, CTC detection may be a promising early marker of disease progression potentially enhancing the difficult therapeutic decisions. Further studies should, however, clearly demonstrate its utility for both the prediction of outcome and monitoring the effect of treatment.

Crabtree D, Dodson M, Ouyang X, et al.
Over-expression of an inactive mutant cathepsin D increases endogenous alpha-synuclein and cathepsin B activity in SH-SY5Y cells.
J Neurochem. 2014; 128(6):950-61 [PubMed] Free Access to Full Article Related Publications
Parkinson's disease is a neurodegenerative movement disorder. The histopathology of Parkinson's disease comprises proteinaceous inclusions known as Lewy bodies, which contains aggregated α-synuclein. Cathepsin D (CD) is a lysosomal protease previously demonstrated to cleave α-synuclein and decrease its toxicity in both cell lines and mouse brains in vivo. Here, we show that pharmacological inhibition of CD, or introduction of catalytically inactive mutant CD, resulted in decreased CD activity and increased cathepsin B activity, suggesting a possible compensatory response to inhibition of CD activity. However, this increased cathepsin B activity was not sufficient to maintain α-synuclein degradation, as evidenced by the accumulation of endogenous α-synuclein. Interestingly, the levels of LC3, LAMP1, and LAMP2, proteins involved in autophagy-lysosomal activities, as well as total lysosomal mass as assessed by LysoTracker flow cytometry, were unchanged. Neither autophagic flux nor proteasomal activities differs between cells over-expressing wild-type versus mutant CD. These observations point to a critical regulatory role for that endogenous CD activity in dopaminergic cells in α-synuclein homeostasis which cannot be compensated for by increased Cathepsin B. These data support the potential need to enhance CD function in order to attenuate α-synuclein accumulation as a therapeutic strategy against development of synucleinopathy.

Qiao S, Tao S, Rojo de la Vega M, et al.
The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death.
Autophagy. 2013; 9(12):2087-102 [PubMed] Free Access to Full Article Related Publications
Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.

Shu G, Mi X, Cai J, et al.
Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: the role of hypoxia inducible factor 1 pathway.
Toxicol Lett. 2013; 222(2):91-101 [PubMed] Related Publications
Brucine is an alkaloid derived from the seeds of Strychnos nux-vomica Linn. which have long been used as a traditional medicine for the treatment of hepatocellular carcinoma (HCC) in China. HCC prognosis can be greatly influenced by metastasis. There has thus far been little research into brucine as a source of anti-metastasis activity against HCC. In this study, we revealed that brucine dramatically repressed HepG2 and SMMC-7721 HCC cell migration with few cytotoxic effects. Hypoxia inducible factor 1 (HIF-1) is a key transcription factor mediating cell migration and invasion. Brucine suppressed HIF-1-dependent luciferase activity in HepG2 cells. The transcriptions of four known HIF-1 target genes involved in HCC metastasis, i.e., fibronectin, matrix metallopeptidase 2, lysyl oxidase, and cathepsin D, were also attenuated after brucine treatment. Experiments in vivo showed that an intraperitoneal injection of 5 and 15 mg/kg of brucine resulted in dose-dependent decreases in the lung metastasis of H22 ascitic hepatoma cells. Moreover, a dosage of brucine at 15 mg/kg exhibited very low toxic effects to tumor-bearing mice. Consistently, brucine downregulated expression levels of HIF-1 responsive genes in vivo. Our current study demonstrated the capacity of brucine in suppressing HCC cell migration in vitro and lung metastasis in vivo. The inhibition of the HIF-1 pathway is implicated in the anti-metastasis activity of brucine.

Pernemalm M, De Petris L, Branca RM, et al.
Quantitative proteomics profiling of primary lung adenocarcinoma tumors reveals functional perturbations in tumor metabolism.
J Proteome Res. 2013; 12(9):3934-43 [PubMed] Related Publications
In this study, we have analyzed human primary lung adenocarcinoma tumors using global mass spectrometry to elucidate the biological mechanisms behind relapse post surgery. In total, we identified over 3000 proteins with high confidence. Supervised multivariate analysis was used to select 132 proteins separating the prognostic groups. Based on in-depth bioinformatics analysis, we hypothesized that the tumors with poor prognosis had a higher glycolytic activity and HIF activation. By measuring the bioenergetic cellular index of the tumors, we could detect a higher dependency of glycolysis among the tumors with poor prognosis. Further, we could also detect an up-regulation of HIF1α mRNA expression in tumors with early relapse. Finally, we selected three proteins that were upregulated in the poor prognosis group (cathepsin D, ENO1, and VDAC1) to confirm that the proteins indeed originated from the tumor and not from a stromal or inflammatory component. Overall, these findings show how in-depth analysis of clinical material can lead to an increased understanding of the molecular mechanisms behind tumor progression.

Wu X, Hu A, Zhang M, Chen Z
Effects of Rab27a on proliferation, invasion, and anti-apoptosis in human glioma cell.
Tumour Biol. 2013; 34(4):2195-203 [PubMed] Related Publications
This study aims to investigate the relationship between Rab27a and the characteristics of glioma cell U251 such as proliferation, apoptosis, and invasion and to provide an experimental basis for future therapy in human glioma. Recombinant plasmid of pcDNA3.1-Rab27a was constructed and transfected into U251 cells with the help of Lipofectamine™2000. The expression of Rab27a was detected by Western blot. Cell viability, cell cycle, cell apoptosis, and cell migration were analyzed, respectively, by (3-(4,5)-dimethylthi-azol-2-yl)-2,5-diphenytetrazolium bromide (MTT) assay, flow cytometry, and Transwell invasion chamber methods. Meanwhile, the effect of Rab27a on secretion of cathepsin D in U251 cells was also examined. With the help of luciferase reporter assay system, the relationship between miR-124 and gene Rab27a expression was explored. Western blot showed that the expression of Rab27a was significantly increased in pcDNA3.1-Rab27a transfection group (p < 0.01) and that was significantly decreased in Rab27a-shRNA transfection group (p < 0.01) compared with control group. MTT assay, flow cytometry, and Transwell invasion chamber experiment indicated that cell viability (p < 0.01), proliferation index (p < 0.05), and invasion ability (p < 0.01) were improved significantly in pcDNA3.1-Rab27a transfection group compared with control group and that cell viability (p < 0.01), proliferation index (p < 0.05), and invasion ability (p < 0.01) were reduced markedly in Rab27a-shRNA transfection group compared with control group. The apoptosis analysis by flow cytometry demonstrated that the ratio of apoptosis in pcDNA3.1-Rab27a transfection group was significantly lower than that in control group (p < 0.05) and the ratio was notably higher in Rab27a-shRNAtransfection group than that in the control group. Cathepsin D activity assay indicated that the release of cathepsin D was enhanced in pcDNA3.1-Rab27a transfection group compared to that in the control group (p < 0.05). Rab27a could increase the glioma cell ability, promote proliferation and invasion, and suppress cell apoptosis. The above-stated effects of Rab27a possibly were exerted by increasing the secretion of cathepsin D and regulated by miR-124. In addition, the inhibition of expression of Rab27a perhaps benefited the therapy for glioma patients.

Liu Z, Chen C, Yang H, et al.
Proteomic features of potential tumor suppressor NESG1 in nasopharyngeal carcinoma.
Proteomics. 2012; 12(22):3416-25 [PubMed] Related Publications
We previously defined the recently revised NESG1 gene as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). Here, we further used proteomics technology to globally examine NESG1-controlled proteins in NPC cells. Twenty-six proteins were found to be deregulated by NESG1 using proteomics analysis while enolase 1 (alpha) (ENO1), heat shock protein 90 kDa beta (Grp94), member 1 (HSP90B1), and cathepsin D (CTSD) proteins were differentially expressed by Western blot. Interestingly, a-enolase (ENO1), an overexpressed gene in NPC, was confirmed as a NESG1-regulated protein in NPC cells. Overexpressed ENO1 not only restored cell proliferation and cell-cycle progression, but also antagonized the regulation of NESG1 to cell-cycle regulators p21 and CCNA1 expression as well as induced the expression of C-Myc, pRB, and E2F1 in NESG1-ovexpressed NPC cells. Real-time PCR and immunohistochemistry analysis showed that NESG1 expression is negatively correlated with ENO1 expression in NPC tissues. Our observations suggest that ENO1 downregulation plays an important role in NESG1-induced growth inhibition of NPC cancer cells.

Pruitt FL, He Y, Franco OE, et al.
Cathepsin D acts as an essential mediator to promote malignancy of benign prostatic epithelium.
Prostate. 2013; 73(5):476-88 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Stromal-epithelial interactions are important in both development and prostate cancer. Stromal changes have been shown to be powerful prognostic indicators of prostate cancer progression and of patient death helping to define lethal versus indolent phenotypes. The specific molecular underpinnings of these interactions are incompletely understood. We investigated whether stromal cathepsin D (CathD) overexpression affects prostate tumorigenesis through a paracrine mechanism.
METHODS: Normal prostate fibroblasts (NPF) were retrovirally transduced to overexpress cyclin D1 (CD1) and were designated NPF(CD1) . Cathepsin D expression was knocked down using shRNA in cancer associated fibroblasts (CAF) and NPF(CD1) . We analyzed these stromal cell lines using immunohistochemistry, Western blot, and tissue recombination.
RESULTS: An examination of human prostate tissue revealed significantly increased stromal staining of CathD in malignant prostate tissue. Overexpression of CD1 in normal prostate fibroblasts (NPF(CD1) ) produced a phenotype similar to, but more moderate than, CAF in a tissue recombination model. Knockdown studies revealed that CathD is required for NPF(CD1) motility and invasive growth in vitro. BPH-1 cell proliferation was found to be induced when cultured with NPF(CD1) conditioned medium, this effect was inhibited when CathD was knocked down in NPF(CD1) cells. Overexpression of CathD in prostate stromal cells induced malignancy in adjacent epithelium, and this transformation was inhibited when stromal CathD expression was knocked down in CAF.
CONCLUSIONS: The study presented here demonstrates increased CathD expression is seen in human CAF. The upregulation of CD1 results in concomitant increases in CathD expression. Elevated CathD expression in the stroma contributes to tumor promotion.

Mimae T, Tsuta K, Maeshima AM, et al.
Cathepsin D as a potential prognostic marker for lung adenocarcinoma.
Pathol Res Pract. 2012; 208(9):534-40 [PubMed] Related Publications
We previously identified cathepsin D as a possible marker for lung adenocarcinoma (AD). The purpose of the present study is to evaluate the correlation between cathepsin D expression and clinicopathological findings or prognosis. We conducted immunohistochemistry (IHC) to assess 150 AD tissues. For these 150 tumors, TTF-1 expression, EGFR and KRAS gene mutations, and ALK rearrangements had already been examined. Cathepsin D expression was detected in 44% (66 of 150, IHC score ≥1+) and 27.3% (41 of 150, IHC score ≥2+). Cathepsin D-positive (IHC score ≥2+) tumors were more poorly differentiated than cathepsin D-negative ones, while all lepidic predominant invasive adenocarcinomas showed no cathepsin D expression. Univariate analysis revealed a poor prognosis for cathepsin D-positive lung AD patients with an IHC score ≥2+ (P=0.044). Cathepsin D expression was more frequent in TTF-1-negative than in TTF-1-positive ADs (P=0.034), and more frequent in ADs with EGFR wild genotype than mutant EGFR (P<0.001). Regarding AD patients with ALK rearrangements, 4 were positive for Cathepsin D, while 2 were negative. Cathepsin D expression is indicated to be a possible prognostic marker for lung AD and to correlate with a more poorly differentiated form.

Sudhir PR, Chen CH, Pavana Kumari M, et al.
Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells.
Mol Cell Proteomics. 2012; 11(10):901-15 [PubMed] Free Access to Full Article Related Publications
Mutational activation of KRAS promotes various malignancies, including lung adenocarcinoma. Knowledge of the molecular targets mediating the downstream effects of activated KRAS is limited. Here, we provide the KRAS target proteins and N-glycoproteins using human bronchial epithelial cells with and without the expression of activated KRAS (KRAS(V12)). Using an OFFGEL peptide fractionation and hydrazide method combined with subsequent LTQ-Orbitrap analysis, we identified 5713 proteins and 608 N-glycosites on 317 proteins in human bronchial epithelial cells. Label-free quantitation of 3058 proteins (≥2 peptides; coefficient of variation (CV) ≤ 20%) and 297 N-glycoproteins (CV ≤ 20%) revealed the differential regulation of 23 proteins and 14 N-glycoproteins caused by activated KRAS, including 84% novel ones. An informatics-assisted IPA-Biomarker® filter analysis prioritized some of the differentially regulated proteins (ALDH3A1, CA2, CTSD, DST, EPHA2, and VIM) and N-glycoproteins (ALCAM, ITGA3, and TIMP-1) as cancer biomarkers. Further, integrated in silico analysis of microarray repository data of lung adenocarcinoma clinical samples and cell lines containing KRAS mutations showed positive mRNA fold changes (p < 0.05) for 61% of the KRAS-regulated proteins, including biomarker proteins, CA2 and CTSD. The most significant discovery of the integrated validation is the down-regulation of FABP5 and PDCD4. A few validated proteins, including tumor suppressor PDCD4, were further confirmed as KRAS targets by shRNA-based knockdown experiments. Finally, the studies on KRAS-regulated N-glycoproteins revealed structural alterations in the core N-glycans of SEMA4B in KRAS-activated human bronchial epithelial cells and functional role of N-glycosylation of TIMP-1 in the regulation of lung adenocarcinoma A549 cell invasion. Together, our study represents the largest proteome and N-glycoproteome data sets for HBECs, which we used to identify several novel potential targets of activated KRAS that may provide insights into KRAS-induced adenocarcinoma and have implications for both lung cancer therapy and diagnosis.

Tang S, Huang W, Zhong M, et al.
Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines.
J Proteomics. 2012; 75(8):2352-60 [PubMed] Related Publications
Multidrug resistance (MDR) to anticancer drugs is a major obstacle to successful chemotherapy of tumors. Understanding the molecular basis to chemoresistance is likely to provide better treatment. Cell lines resistant to cis-diamminedichloroplatinum (CNE2/cDDP) were established from human nasopharyngeal carcinoma (NPC) cell lines CNE2. Comparative proteomics involving 2-dimensional gel electrophoresis (2-DE) and ESI-Q-TOF-MS were performed on protein extracted from CNE2 and CNE2/cDDP cell lines to screen drug resistance-related proteins. Keratin 1 (KRT1), cathepsin D (CTSD) and annexin a5 (ANXA5) were identified as three proteins showing higher expression in CNE2/cDDP compared to CNE2. Furthermore, suppression of KRT1 expression by siRNA resulted in decreased MDR in siRNA-CNE2/cDDP cells. And upregulation of KRT1 could result in increased of drug resistance in NPC cell lines. Taken together, KRT1 protein and its activity levels were higher in cDDP-resistant NPC cell lines compared to their parental cell lines. These data clearly linked KRT1 and cDDP resistance mechanisms. KRT1 could serve as a biomarker for chemotherapy sensitivity of NPC.

Carew JS, Espitia CM, Esquivel JA, et al.
Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis.
J Biol Chem. 2011; 286(8):6602-13 [PubMed] Free Access to Full Article Related Publications
Cellular stress induced by nutrient deprivation, hypoxia, and exposure to many chemotherapeutic agents activates an evolutionarily conserved cell survival pathway termed autophagy. This pathway enables cancer cells to undergo self-digestion to generate ATP and other essential biosynthetic molecules to temporarily avoid cell death. Therefore, disruption of autophagy may sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis. Chloroquine and its analog hydroxychloroquine are the only clinically relevant autophagy inhibitors. Because both of these agents induce ocular toxicity, novel inhibitors of autophagy with a better therapeutic index are needed. Here we demonstrate that the small molecule lucanthone inhibits autophagy, induces lysosomal membrane permeabilization, and possesses significantly more potent activity in breast cancer models compared with chloroquine. Exposure to lucanthone resulted in processing and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes, but impaired autophagic degradation as revealed by transmission electron microscopy and the accumulation of p62/SQSTM1. Microarray analysis, qRT-PCR, and immunoblotting determined that lucanthone stimulated a large induction in cathepsin D, which correlated with cell death. Accordingly, knockdown of cathepsin D reduced lucanthone-mediated apoptosis. Subsequent studies using p53(+/+) and p53(-/-) HCT116 cells established that lucanthone induced cathepsin D expression and reduced cancer cell viability independently of p53 status. In addition, lucanthone enhanced the anticancer activity of the histone deacetylase inhibitor vorinostat. Collectively, our results demonstrate that lucanthone is a novel autophagic inhibitor that induces apoptosis via cathepsin D accumulation and enhances vorinostat-mediated cell death in breast cancer models.

Johnsen SA, Güngör C, Prenzel T, et al.
Regulation of estrogen-dependent transcription by the LIM cofactors CLIM and RLIM in breast cancer.
Cancer Res. 2009; 69(1):128-36 [PubMed] Free Access to Full Article Related Publications
Mammary oncogenesis is profoundly influenced by signaling pathways controlled by estrogen receptor alpha (ERalpha). Although it is known that ERalpha exerts its oncogenic effect by stimulating the proliferation of many human breast cancers through the activation of target genes, our knowledge of the underlying transcriptional mechanisms remains limited. Our published work has shown that the in vivo activity of LIM homeodomain transcription factors (LIM-HD) is critically regulated by cofactors of LIM-HD proteins (CLIM) and the ubiquitin ligase RING finger LIM domain-interacting protein (RLIM). Here, we identify CLIM and RLIM as novel ERalpha cofactors that colocalize and interact with ERalpha in primary human breast tumors. We show that both cofactors associate with estrogen-responsive promoters and regulate the expression of endogenous ERalpha target genes in breast cancer cells. Surprisingly, our results indicate opposing functions of LIM cofactors for ERalpha and LIM-HDs: whereas CLIM enhances transcriptional activity of LIM-HDs, it inhibits transcriptional activation mediated by ERalpha on most target genes in vivo. In turn, the ubiquitin ligase RLIM inhibits transcriptional activity of LIM-HDs but enhances transcriptional activation of endogenous ERalpha target genes. Results from a human breast cancer tissue microarray of 1,335 patients revealed a highly significant correlation of elevated CLIM levels to ER/progesterone receptor positivity and poor differentiation of tumors. Combined, these results indicate that LIM cofactors CLIM and RLIM regulate the biological activity of ERalpha during the development of human breast cancer.

Sagulenko V, Muth D, Sagulenko E, et al.
Cathepsin D protects human neuroblastoma cells from doxorubicin-induced cell death.
Carcinogenesis. 2008; 29(10):1869-77 [PubMed] Related Publications
High incidence of chemotherapy resistance is the primary cause of treatment failure in a subset of neuroblastomas with amplified MYCN. We have reported previously that ectopic MYCN expression promotes proliferation of neuroblastoma Tet21N cells and simultaneously sensitizes them to the drug-induced apoptosis. In search for genes that are involved in MYCN-dependent regulation of drug resistance, we used a function-based gene cloning approach and identified CTSD encoding for a lysosomal aspartyl protease cathepsin D. Downregulation of cathepsin D expression by RNA interference or inhibition of its enzymatic activity increased sensitivity of MYCN-expressing Tet21N cells to doxorubicin. Overexpression of cathepsin D in Tet21N cells attenuated doxorubicin-induced apoptosis. It was accompanied by activation of protein kinase B (Akt) and persistent antiapoptotic activity of Bcl-2. In primary neuroblastomas, high CTSD messenger RNA (mRNA) levels were associated with amplified MYCN, a strong predictive marker of adverse outcome. Chromatin immunoprecipitation and luciferase promoter assays revealed that MYCN protein binds to the CTSD promoter and activates its transcription, suggesting a direct link between deregulated MYCN and CTSD mRNA expression. We further show that neuroblastoma cells can secrete mitogenic procathepsin D and that MYCN expression and especially doxorubicin treatment promote procathepsin D secretion. Extracellular exogenous cathepsin D induces Akt-1 phosphorylation and doxorubicin resistance in sensitive cells. These results demonstrate an important role of cathepsin D in antiapoptotic signaling in neuroblastoma cells and suggest a novel mechanism for the development of chemotherapy resistance in neuroblastoma.

Le Dily F, Métivier R, Guéguen MM, et al.
COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells.
Breast Cancer Res Treat. 2008; 110(1):69-83 [PubMed] Related Publications
We previously showed that COUP-TFI interacts with the Estrogen Receptor alpha (ER alpha) to recruit Extracellular signal Regulated Kinases (ERKs) in an Estradiol (E2)-independent manner, resulting in an enhancement of ER alpha transcriptional activity. However, the involvement of COUP-TFI in physiologically relevant functions of ER alpha, such as the mitogenic activity that E2 has on breast cancer cells, remains poorly understood. Here, we first showed that the amounts of COUP-TFI protein are higher in dedifferentiated mammary cell lines (MDA-MB-231) and tumor breast cells as compared to the differentiated MCF-7 cell line and normal breast cells. To evaluate the functional relevance of the COUP-TFI/ER alpha interplay in mammary cells, we generated MCF-7 cells that stably over-express COUP-TFI. We found that the over-expression of COUP-TFI enhances motility and invasiveness of MCF-7 cells. COUP-TFI also promotes the proliferation of MCF-7 cells through ER alpha-dependent mechanisms that target cell cycle progression and cell survival. To further investigate the mechanisms underlying these effects of COUP-TFI, we evaluated the expression of known E2-target genes in breast cancer, and found that COUP-TFI differentially regulated genes involved in cell proliferation, apoptosis, and migration/invasion. Notably, Cathepsin D (CTSD) transcript and protein levels were significantly higher in presence and absence of E2 in MCF-7 over-expressing COUP-TFI. Chromatin Immunoprecipitation assays showed that ER alpha, phospho-RNA Polymerase II, as well as p68 RNA Helicase, a phospho-Serine 118 dependent co-activator of ER alpha, were preferentially recruited onto the CTSD gene proximal promoter in COUP-TFI over-expressing cells. These results suggest that COUP-TFI selectively regulates the expression of endogenous E2-target genes and consequently modifies ER alpha positive mammary cells response to E2.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTSD, Cancer Genetics Web: http://www.cancer-genetics.org/CTSD.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999