IGF2R

Gene Summary

Gene:IGF2R; insulin like growth factor 2 receptor
Aliases: MPR1, MPRI, CD222, CIMPR, M6P-R, MPR300, CI-M6PR, MPR 300, M6P/IGF2R
Location:6q25.3
Summary:This gene encodes a receptor for both insulin-like growth factor 2 and mannose 6-phosphate. The binding sites for each ligand are located on different segments of the protein. This receptor has various functions, including in the intracellular trafficking of lysosomal enzymes, the activation of transforming growth factor beta, and the degradation of insulin-like growth factor 2. Mutation or loss of heterozygosity of this gene has been association with risk of hepatocellular carcinoma. The orthologous mouse gene is imprinted and shows exclusive expression from the maternal allele; however, imprinting of the human gene may be polymorphic, as only a minority of individuals showed biased expression from the maternal allele (PMID:8267611). [provided by RefSeq, Nov 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cation-independent mannose-6-phosphate receptor
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Tumor Stem Cell Assay
  • Neoplasm Proteins
  • Receptors, Colony-Stimulating Factor
  • Loss of Heterozygosity
  • Cancer Gene Expression Regulation
  • Transcription
  • Precancerous Conditions
  • Transforming Growth Factor beta Receptors
  • Trans-Activators
  • IGF2
  • Cancer DNA
  • Genotype
  • Microsatellite Repeats
  • Skin Cancer
  • TNF
  • Statistics as Topic
  • Structure-Activity Relationship
  • Breast Cancer
  • Sodium Dodecyl Sulfate
  • Liver Cancer
  • Wilms Tumour
  • Species Specificity
  • Single Nucleotide Polymorphism
  • Messenger RNA
  • Transforming Growth Factor beta
  • IGF1R
  • Genetic Predisposition
  • IGF2R
  • G-Protein-Coupled Receptors
  • Chromosome 6
  • Mutation
  • Sulfites
  • BCL2 protein
  • Base Sequence
  • Tumor Suppressor Gene
  • Polymerase Chain Reaction
  • Tamoxifen
  • Proto-Oncogene Proteins
  • DNA-Binding Proteins
  • Hepatocellular Carcinoma
  • Protein-Serine-Threonine Kinases
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IGF2R (cancer-related)

Verbeek RE, Siersema PD, Vleggaar FP, et al.
Toll-like Receptor 2 Signalling and the Lysosomal Machinery in Barrett's Esophagus.
J Gastrointestin Liver Dis. 2016; 25(3):273-82 [PubMed] Related Publications
BACKGROUND AND AIMS: Inflammation plays an important role in the development of esophageal adenocarcinoma and its metaplastic precursor lesion, Barrett's esophagus. Toll-like receptor (TLR) 2 signalling and lysosomal function have been linked to inflammation-associated carcinogenesis. We examined the expression of TLR2 in the esophagus and the effect of long-term TLR2 activation on morphological changes and expression of factors involved in lysosomal function in a Barrett's esophagus epithelium cell line.
METHODS: TLR2 expression in normal squamous esophagus, reflux esophagitis, Barrett's esophagus and esophageal adenocarcinoma biopsies was assessed with Q-RT-PCR, in situ hybridization and immunohistochemistry. Barrett's esophagus epithelium cells (BAR-T) were incubated with acid and bile salts in the presence or absence of the TLR2 agonist Pam3CSK4 for a period up to 4 weeks. Morphological changes were assessed with electron microscopy, while Q-RT-PCR was used to determine the expression of lysosomal enzymes (Cathepsin B and C) and factors involved in endocytosis (LAMP-1 and M6PR) and autophagy (LC3 and Rab7).
RESULTS: TLR2 was expressed in normal squamous esophagus, reflux esophagitis, Barrett's esophagus but was most prominent in esophageal adenocarcinoma. Long-term TLR2 activation in acid and bile salts exposed BAR-T cells resulted in more and larger lysosomes, more mitochondria and increased expression of LAMP-1, M6PR, Cathepsin B and C when compared to BAR-T cells incubated with acid and bile salts but no TLR2 agonist. Factors associated with autophagy (LC3 and Rab7) expression remained largely unchanged.
CONCLUSION: Activation of TLR2 in acid and bile salts exposed Barrett epithelium cells resulted in an increased number of mitochondria and lysosomes and increased expression of lysosomal enzymes and factors involved in endocytosis.

Yermachenko A, Dvornyk V
UGT2B4 previously implicated in the risk of breast cancer is associated with menarche timing in Ukrainian females.
Gene. 2016; 590(1):85-9 [PubMed] Related Publications
Age at menarche (AAM) is a multifactorial trait that is regulated by dozens environmental and genetic factors. Recent meta-analysis of GWAS showed significant association of 106 loci with AAM. These polymorphisms need replicating in different ethnic populations in order to confirm their association with menarche timing. This study was aimed to replicate 53 polymorphisms that were previously associated with AAM. DNA samples were collected from 416 Ukrainian young females for further genotyping. After data quality control 47 polymorphisms remained for the association analysis using the linear regression model. SNP rs13111134 located in UGT2B4 showed the most significant association with AAM (0.431years per allele A, padj=0.044 after the Bonferroni correction). Polymorphisms rs7589318 in POMC, rs11724758 in FABP2, rs7753051 in IGF2R, rs2288696 in FGFR1 and rs12444979 in GPRC5B may also contribute to menarche timing. However, none of these associations remained significant after the Bonferroni correction for multiple testing. The obtained results provide evidence that UGT2B4, which was previously associated with predisposition to breast cancer, may play a role in the onset of menarche.

Jahn SW, Kashofer K, Thüringer A, et al.
Mutation Profiling of Usual Ductal Hyperplasia of the Breast Reveals Activating Mutations Predominantly at Different Levels of the PI3K/AKT/mTOR Pathway.
Am J Pathol. 2016; 186(1):15-23 [PubMed] Related Publications
Usual ductal hyperplasia (UDH) of the breast is generally regarded as a nonneoplastic proliferation, albeit loss of heterozygosity has long been reported in a part of these lesions. To gain deeper insights into the molecular drivers of these lesions, an extended mutation profiling was performed. The coding regions of 409 cancer-related genes were investigated by next-generation sequencing in 16 cases of UDH, nine unassociated with neoplasia (classic) and seven arising within papillomas. Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) activation was investigated by phosphorylated AKT, mTOR, and S6 immunohistochemistry. Of 16 lesions, 10 (63%) were mutated; 56% of classic lesions were unassociated with neoplasia, and 71% of lesions arose in papillomas. Fourteen missense mutations were detected: PIK3CA [6 (43%) of 14], AKT1 [2 (14%) of 14], as well as GNAS, MTOR, PIK3R1, LPHN3, LRP1B, and IGF2R [each 1 (7%) of 14]. Phosphorylated mTOR was seen in 83% and phosphorylated S6 in 86% of evaluable lesions (phospho-AKT staining was technically uninterpretable). In conclusion, UDH displays mutations of the phosphatidylinositol 3-kinase/AKT/mTOR axis at different levels, with PIK3R1, MTOR, and GNAS mutations not previously described. Specifically, oncogenic G-protein activation represents a yet unrecognized route to proliferation in UDH. On the basis of evidence of activating mutations, loss of heterozygosity, and a mass forming proliferation, we propose that UDH is most appropriately viewed as an early neoplastic intraductal proliferation.

Haddad SA, Lunetta KL, Ruiz-Narváez EA, et al.
Hormone-related pathways and risk of breast cancer subtypes in African American women.
Breast Cancer Res Treat. 2015; 154(1):145-54 [PubMed] Free Access to Full Article Related Publications
We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single-SNP tests were run for the top genes. There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤ 0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤ 0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤ 0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r (2) < 0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- disease. We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing.

Mohlin S, Hamidian A, von Stedingk K, et al.
PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma.
Cancer Res. 2015; 75(21):4617-28 [PubMed] Related Publications
Hypoxia-inducible factor (HIF) is a master regulator of cellular responses to oxygen deprival with a critical role in mediating the angiogenic switch in solid tumors. Differential expression of the HIF subunits HIF1α and HIF2α occurs in many human tumor types, suggesting selective implications to biologic context. For example, high expression of HIF2α that occurs in neuroblastoma is associated with stem cell-like features, disseminated disease, and poor clinical outcomes, suggesting pivotal significance for HIF2 control in neuroblastoma biology. In this study, we provide novel insights into how HIF2α expression is transcriptionally controlled by hypoxia and how this control is abrogated by inhibition of insulin-like growth factor-1R/INSR-driven phosphoinositide 3-kinase (PI3K) signaling. Reducing PI3K activity was sufficient to decrease HIF2α mRNA and protein expression in a manner with smaller and less vascularized tumors in vivo. PI3K-regulated HIF2A mRNA expression was independent of Akt or mTORC1 signaling but relied upon mTORC2 signaling. HIF2A mRNA was induced by hypoxia in neuroblastoma cells isolated from metastatic patient-derived tumor xenografts, where HIF2A levels could be reduced by treatment with PI3K and mTORC2 inhibitors. Our results suggest that targeting PI3K and mTORC2 in aggressive neuroblastomas with an immature phenotype may improve therapeutic efficacy.

Kashyap MK
Role of insulin-like growth factor-binding proteins in the pathophysiology and tumorigenesis of gastroesophageal cancers.
Tumour Biol. 2015; 36(11):8247-57 [PubMed] Related Publications
The insulin family of proteins include insulin-like growth factor binding proteins (IGFBPs) that are classified into two groups based on their differential affinities to IGFs: IGF high-affinity binding proteins (IGFBP1-6) and IGF low-affinity IGFBP-related proteins (IGFBP-rP1-10). IGFBPs interact with many proteins, including their canonical ligands insulin-like growth factor 1 (IGF-I) and IGF-II. Together with insulin-like growth factor 1 (IGF1) receptor (IGF1R), IGF2R, and ligands (IGF1 and IGF2), IGFBPs participate in a complex signaling axis called IGF-IGFR-IGFBP. Numerous studies have demonstrated that the IGF-IGFR-IGFBP axis is relevant in gastrointestinal (GI) and other cancers. The presence of different IGFBPs have been reported in gastrointestinal cancers, including esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAD or EAC), and gastric adenocarcinoma (GAD or GAC). A literature-based survey clearly indicates that an urgent need exists for a focused review of the role of IGFBPs in gastrointestinal cancers. The aim of this review is to present the biochemical and molecular characteristics of IGFBPs with an emphasis specifically on the role of these proteins in the pathophysiology and tumorigenesis of gastroesophageal cancers.

Wang Y, Buggia-Prévot V, Zavorka ME, et al.
Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability.
Mol Cell Biol. 2015; 35(14):2368-84 [PubMed] Free Access to Full Article Related Publications
Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability.

Vaillant O, El Cheikh K, Warther D, et al.
Mannose-6-phosphate receptor: a target for theranostics of prostate cancer.
Angew Chem Int Ed Engl. 2015; 54(20):5952-6 [PubMed] Related Publications
The development of personalized and non-invasive cancer therapies based on new targets combined with nanodevices is a major challenge in nanomedicine. In this work, the over-expression of a membrane lectin, the cation-independent mannose 6-phosphate receptor (M6PR), was specifically demonstrated in prostate cancer cell lines and tissues. To efficiently target this lectin a mannose-6-phosphate analogue was synthesized in six steps and grafted onto the surface of functionalized mesoporous silica nanoparticles (MSNs). These MSNs were used for in vitro and ex vivo photodynamic therapy to treat prostate cancer cell lines and primary cell cultures prepared from patient biopsies. The results demonstrated the efficiency of M6PR targeting for prostate cancer theranostic.

Tian Z, Yao G, Song H, et al.
IGF2R expression is associated with the chemotherapy response and prognosis of patients with advanced NSCLC.
Cell Physiol Biochem. 2014; 34(5):1578-88 [PubMed] Related Publications
BACKGROUND: Insulin-like growth factor (IGF) pathway has been suggested as a new molecular target for the treatment of cancer including Non-small cell lung cancer (NSCLC). We postulated that IGF-2 receptor (IGF2R) may be associated with treatment response and prognosis of NSCLC patients receiving chemotherapy.
METHODS: A total of 464 patients with inoperable advanced stage of NSCLC were enrolled. All patients received platinum-based chemotherapy. Meanwhile, the IGF2R expression in tumor samples was detected by Immunohistochemical analysis. The IGF2R expression was inhibited in several human NSCLC cell lines (H292, A549, NCI-H460, Calu-3 and NCI-H23) after small interfering RNA (siRNA) transfection and the cellular biology behavior were evaluated.
RESULTS: Of all NSCLC patients, 204 had high IGF2R expression and 260 had low IGF2R expression. The low IGF2R expression was significantly associated with the smoking status, higher tumor stage, and poorer differentiation status of these patients. Notably, we found that the low IGF2R expression was closely associated with the chemotherapy response in NSCLC patients. Patients with low IGF2R expressions had a poorer prognosis than those with high IGF2R expressions. IGF2R inhibition by si-RNA technique in NSCLC cell lines increased the proliferation, migration and invasion abilities, but reduced the apoptosis rate. IGF2R silencing significantly enhanced the chemo-resistance of NSCLC cell lines to cisplatin treatment.
CONCLUSION: The IGF2R expression in tumor is associated with the chemotherapy response and prognosis of Patients with advanced NSCLC.

Xie HY, Xing CY, Wei BJ, et al.
Association of IGF1R polymorphisms with the development of HBV-related hepatocellular carcinoma.
Tissue Antigens. 2014; 84(3):264-70 [PubMed] Related Publications
Although the involvement of insulin-like signaling in cancer has been well documented in various types of cancers, the association between the genetic variants in the insulin-like signaling and the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains unclear. In this study, a total of 498 individuals including 173 HBV related cirrhosis patients, 171 HBV-related HCC patients, and 154 healthy controls were enrolled. Sixteen single nucleotide polymorphisms (SNPs) in IGF1, IGF2, IGF1R and IGF2R have been genotyped by employing SNaPshot assays. We found A/A genotype at rs3743251 of IGF1R was negatively associated with HBV related HCC [odds ratio (OR) = 0.38, 95% confidence interval (CI) = 0.20-0.72, P = 0.037]; A/G genotype decreased the risk of portal vein thrombosis (OR = 0.38, 95%CI = 0.18-0.82, P = 0.01). These results indicate that rs3743251 polymorphism in IGF1R is associated with the susceptibility of HBV-related HCC.

Rashad NM, El-Shal AS, Abd Elbary EH, et al.
Impact of insulin-like growth factor 2, insulin-like growth factor receptor 2, insulin receptor substrate 2 genes polymorphisms on susceptibility and clinicopathological features of hepatocellular carcinoma.
Cytokine. 2014; 68(1):50-8 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. Insulin-like growth factor-2 (IGF-2) is an important autocrine and paracrine growth factor which may induce cell proliferation and inhibit cell apoptosis leading to the transformation of normal cells into malignant cells. This study aimed to evaluate the possible roles of IGF-2, insulin-like growth factor-2 receptor (IGF-2R), and insulin receptor substrate (IRS)-2 genes polymorphisms in susceptibility and clinicopathological features of HCC in Egyptian population.
MATERIALS AND METHODS: Four hundred and twenty-six HCC patients and 334 controls were enrolled in the study. Polymorphisms of IGF-2+3580, IGF-2+3123, IGF-2R 1619, and IRS-2 1057 gene were detected using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Serum IGF-2 were determined using ELISA.
RESULTS: Serum IGF-2 levels were significantly lower in HCC patients than in healthy controls. IGF-2+3580 AA genotype, IGF-2+3123 GG genotype or G allele, IRS-2 1057 DD genotype and D allele were significantly associated with HCC risk. The combination of IGF-2+3580 AA homozygosity and IGF-2R 1619 GG homozygosity presented a significant protective effect against HCC (OR=0.16,95% CI=0. 08-0.34, P=0. 005). Serum IGF-2 concentrations were significantly increased in HCC patients with the IGF-2+3580 AA genotype. We also observed that increased alpha-fetoprotein (AFP), Child-Pugh grade, tumor size, and number of malignant lesions were accompanied by a significant increase of serum IGF-2 mean values of in HCC patients.
CONCLUSION: IGF-2, IGF-2R, and IRS-2 genes polymorphisms and their combinations are associated with risk of HCC.

Ochs-Balcom HM, Vaughn CB, Nie J, et al.
Racial differences in the association of insulin-like growth factor pathway and colorectal adenoma risk.
Cancer Causes Control. 2014; 25(2):161-70 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Insulin resistance is believed to play an important role in the link between energy imbalance and colon carcinogenesis. Emerging evidence suggests that there are substantial racial differences in genetic and anthropometric influences on insulin-like growth factors (IGFs); however, few studies have examined racial differences in the associations of IGFs and colorectal adenoma, precursor lesions of colon cancer.
METHODS: We examined the association of circulating levels of IGF-1, IGFBP-3 and IGFBP-1, and SNPs in the IGF-1 receptor (IGF1R), IGF-2 receptor (IGF2R), and insulin receptor genes with risk of adenomas in a sample of 410 incident adenoma cases and 1,070 controls from the Case Transdisciplinary Research on Energetics and Cancer (TREC) Colon Adenomas Study.
RESULTS: Caucasians have higher IGF-1 levels compared to African Americans; mean IGF-1 levels are 119.0 ng/ml (SD = 40.7) and 109.8 ng/ml (SD = 40.8), respectively, among cases (p = 0.02). Mean IGF-1 levels are also higher in Caucasian controls (122.9 ng/ml, SD = 41.2) versus African American controls (106.9, SD = 41.2), p = 0.001. We observed similar differences in IGFBP3 levels by race. Logistic regression models revealed a statistically significant association of IGF-1 with colorectal adenoma in African Americans only, with adjusted odds ratios (ORs) of 1.68 (95 % CI 1.06-2.68) and 1.68 (95 % CI 1.05-2.71), respectively, for the second and third tertiles as compared to the first tertile. One SNP (rs496601) in IGF1R was associated with adenomas in Caucasians only; the per allele adjusted OR is 0.73 (95 % CI 0.57-0.93). Similarly, one IGF2R SNP (rs3777404) was statistically significant in Caucasians; adjusted per allele OR is 1.53 (95 % CI 1.10-2.14).
CONCLUSION: Our results suggest racial differences in the associations of IGF pathway biomarkers and inherited genetic variance in the IGF pathway with risk of adenomas that warrant further study.

Kubisch R, Fröhlich T, Arnold GJ, et al.
V-ATPase inhibition by archazolid leads to lysosomal dysfunction resulting in impaired cathepsin B activation in vivo.
Int J Cancer. 2014; 134(10):2478-88 [PubMed] Related Publications
The myxobacterial agent archazolid inhibits the vacuolar proton pump V-ATPase. V-ATPases are ubiquitously expressed ATP-dependent proton pumps, which are known to regulate the pH in endomembrane systems and thus play a crucial role in endo- and exocytotic processes of the cell. As cancer cells depend on a highly active secretion of proteolytic proteins in order to invade tissue and form metastases, inhibition of V-ATPase is proposed to affect the secretion profile of cancer cells and thus potentially abrogate their metastatic properties. Archazolid is a novel V-ATPase inhibitor. Here, we show that the secretion pattern of archazolid treated cancer cells includes various prometastatic lysosomal proteins like cathepsin A, B, C, D and Z. In particular, archazolid induced the secretion of the proforms of cathepsin B and D. Archazolid treatment abrogates the cathepsin B maturation process leading to reduced intracellular mature cathepsin B protein abundance and finally decreased cathepsin B activity, by inhibiting mannose-6-phoshate receptor-dependent trafficking. Importantly, in vivo reduced cathepsin B protein as well as a decreased proteolytic cathepsin B activity was detected in tumor tissue of archazolid-treated mice. Our results show that inhibition of V-ATPase by archazolid reduces the activity of prometastatic proteases like cathepsin B in vitro and in vivo.

Caixeiro NJ, Martin JL, Scott CD
Silencing the mannose 6-phosphate/IGF-II receptor differentially affects tumorigenic properties of normal breast epithelial cells.
Int J Cancer. 2013; 133(11):2542-50 [PubMed] Related Publications
Although loss of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR) in breast cancer is believed to play a role in tumorigenesis, it has not been demonstrated that M6P/IGF-IIR loss is sufficient to confer a malignant phenotype in an untransformed cell. We investigated the impact of M6P/IGF-IIR silencing using phenotypically normal (MCF-10A) and oncogenically transformed (MCF-10T, the c-Ha-ras transformed derivative of MCF-10A) human breast epithelial cell lines as model systems. In both cell lines, silencing of M6P/IGF-IIR increased cell proliferation and motility, with the effects being more pronounced in MCF-10A cells. Although anchorage-independent growth was increased by M6P/IGF-IIR silencing in MCF-10T cells, MCF-10A cells did not acquire the ability to grow in soft agar. Conversely, reduced M6P/IGF-IIR expression increased the invasive potential of MCF-10A cells, but did not enhance the already high rate of invasion of MCF-10T cells. M6P/IGF-IIR silencing had no effect on basal or IGF-II-stimulated IGF-I receptor (IGF-IR) or AKT phosphorylation in either cell line, but both were abrogated by IGF-IR kinase inhibition, which also reduced the stimulatory effect of M6P/IGF-IIR silencing on proliferation under basal and IGF-II-stimulated conditions in both cell lines. However, cell motility was neither stimulated by IGF-II nor reduced by IGF-IR inhibition, suggesting that potentiation of specific tumorigenic features in response to M6P/IGF-IIR silencing involves IGF-II- dependent and -independent mechanisms. Collectively, these data suggest that M6P/IGF-IIR silencing alone is insufficient to confer a tumorigenic phenotype, but can enhance tumorigenicity in an already transformed cell.

Shiraha H, Yamamoto K, Namba M
Human hepatocyte carcinogenesis (review).
Int J Oncol. 2013; 42(4):1133-8 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma is the third most frequent cause of cancer-related death worldwide; and its incidence rate is increasing. Clinical and molecular medical analyses have revealed substantial information on hepatocarcinogenesis. Hepatocarcinogenesis is a stepwise process during which multiple genes are altered. Genetic changes and their biological consequences in human HCC can be divided into at least 4 groups: i) tumor suppressor genes (p53, retinoblastoma, phosphatase tensin homolog and runt-related transcription factor 3), ii) oncogenes (myc, K-ras, BRAF), iii) reactivation of developmental pathways (Wnt, hedgehog), and iv) growth factors and their receptors (transforming growth factor-α, insulin-like growth factor-2 receptor). An experimental model of human hepatocarcinogenesis such as in vitro neoplastic transformation of human hepatocytes has not been successfully achieved yet, but several immortalized human hepatocyte cell lines have been established. These immortalized human hepatocytes will become useful tools for the elucidation of hepatocarcinogenesis, especially for the initial step of multistep hepatocarcinogenesis.

Mountzios G, Kostopoulos I, Kotoula V, et al.
Insulin-like growth factor 1 receptor (IGF1R) expression and survival in operable squamous-cell laryngeal cancer.
PLoS One. 2013; 8(1):e54048 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Prognosis of patients with operable laryngeal cancer is highly variable and therefore potent prognostic biomarkers are warranted. The insulin-like growth factor receptor (IGFR) signaling pathway plays a critical role in laryngeal carcinogenesis and progression.
PATIENTS AND METHODS: We identified all patients with localized TNM stage I-III laryngeal cancer managed with potentially curative surgery between 1985 and 2008. Immunohistochemical (IHC) expression of IGF1R-alpha, IGF1R-beta and IGF2R was evaluated using the immunoreactive score (IRS) and mRNA levels of important effectors of the IGFR pathway were assessed, including IGF1R, IGF-binding protein 3 (IGFBP3), suppressor of cytokine signaling 2 (SOCS2) and members of the MAP-kinase (MAP2K1, MAPK9) and phosphatidyl-inositol-3 kinase (PIK3CA, PIK3R1) families. Cox-regression models were applied to assess the predictive value of biomarkers on disease-free survival (DFS) and overall survival (OS).
RESULTS: Among 289 eligible patients, 95.2% were current or ex smokers, 75.4% were alcohol abusers, 15.6% had node-positive disease and 32.2% had received post-operative irradiation. After a median follow-up of 74.5 months, median DFS was 94.5 months and median OS was 106.3 months. Using the median IRS as the pre-defined cut-off, patients whose tumors had increased IGF1R-alpha cytoplasm or membrane expression experienced marginally shorter DFS and significantly shorter OS compared to those whose tumors had low IGF1R-alpha expression (91.1 vs 106.2 months, p = 0.0538 and 100.3 vs 118.6 months, p = 0.0157, respectively). Increased mRNA levels of MAPK9 were associated with prolonged DFS (p = 0.0655) and OS (p = 0.0344). In multivariate analysis, IGF1R-alpha overexpression was associated with a 46.6% increase in the probability for relapse (p = 0.0374). Independent predictors for poor OS included node-positive disease (HR = 2.569, p<0.0001), subglottic/transglottic localization (HR = 1.756, p = 0.0438) and IGF1R-alpha protein overexpression (HR = 1.475, p = 0.0504).
CONCLUSION: IGF1R-alpha protein overexpression may serve as an independent predictor of relapse and survival in operable laryngeal cancer. Prospective evaluation of the IGF1R-alpha prognostic utility is warranted.

van Dorp W, van den Heuvel-Eibrink MM, Stolk L, et al.
Genetic variation may modify ovarian reserve in female childhood cancer survivors.
Hum Reprod. 2013; 28(4):1069-76 [PubMed] Related Publications
STUDY QUESTION: Are genetic polymorphisms, previously identified as being associated with age at menopause in the healthy population, associated with ovarian reserve and predicted age at menopause in adult long-term survivors of childhood cancer?
SUMMARY ANSWER: The CT genotype of rs1172822 in the BRSK1 gene is associated with lower serum anti-Müllerian hormone (AMH) levels and a younger predicted age at menopause in adult survivors of childhood cancer.
WHAT IS KNOWN ALREADY: Gonadotoxicity is a well-known late side effect of chemotherapy and radiotherapy in adult survivors of childhood cancer. In the healthy population, several genetic polymorphisms are associated with age at natural menopause. Currently, data on the impact of previously identified variants in gene loci associated with ovarian reserve in adult long-term survivors of childhood cancer are lacking.
STUDY DESIGN, SIZE, DURATION: We performed a pilot study in a single-centre cohort of adult female Caucasian childhood cancer survivors (n = 176).
PARTICIPANTS/MATERIALS, SETTING, METHODS: We determined serum AMH levels (a marker of ovarian reserve) in adult survivors of childhood cancer (n = 176) and studied single nucleotide polymorphisms (SNPs) previously reported to be associated with age at natural menopause: BRSK1 (rs1172822), ARHGEF7 (rs7333181), MCM8 (rs236114), PCSK1 (rs271924), IGF2R (rs9457827) and TNF (rs909253). Association analysis was performed using the additive genetic model. Linear regression was conducted to assess the effect of significant polymorphisms in two previously published menopause prediction models.
MAIN RESULTS AND THE ROLE OF CHANCE: The CT genotype of rs1172822 in the BRSK1 (BR serine/threonine kinase 1) gene was negatively associated with serum AMH levels in our cohort (odds ratio: 3.15, 95% confidence interval: 1.35-7.32, P = 0.008) and significantly associated with the predicted age at menopause (P = 0.04). The other five SNPs were not associated with serum AMH levels.
LIMITATIONS, REASONS FOR CAUTION: This is a pilot study showing preliminary data which must be confirmed. To confirm our findings and enlarge the project, a nationwide genome-wide association (GWA) project on the ovarian reserve in female survivors of childhood cancer should be performed, including a replication cohort.
WIDER IMPLICATIONS OF THE FINDINGS: Our findings support the hypothesis that previously identified genetic polymorphisms associated with age at menopause in healthy women may have an effect on the onset of menopause in female survivors of childhood cancer. Our study highlights a new aspect of the influences on the ovarian reserve after childhood cancer, which should be investigated further in a nationwide GWA study. Eventually, this information can help us to improve counselling on fertility preservation prior to cancer treatment based on genetic factors in individual patients.
STUDY FUNDING AND CONFLICT OF INTEREST: W.D. is supported by the Paediatric Oncology Centre Society for Research (KOCR), Rotterdam, The Netherlands. J.S.E.L. has received fees and grant support from the following companies (in alphabetic order): Ferring, Genovum, Merck-Serono, Organon, Schering Plough and Serono. All other authors have nothing to disclose.

Probst OC, Karayel E, Schida N, et al.
The mannose 6-phosphate-binding sites of M6P/IGF2R determine its capacity to suppress matrix invasion by squamous cell carcinoma cells.
Biochem J. 2013; 451(1):91-9 [PubMed] Free Access to Full Article Related Publications
The M6P (mannose 6-phosphate)/IGF2R (insulin-like growth factor II receptor) interacts with a variety of factors that impinge on tumour invasion and metastasis. It has been shown that expression of wild-type M6P/IGF2R reduces the tumorigenic and invasive properties of receptor-deficient SCC-VII squamous cell carcinoma cells. We have now used mutant forms of M6P/IGF2R to assess the relevance of the different ligand-binding sites of the receptor for its biological activities in this cellular system. The results of the present study demonstrate that M6P/IGF2R does not require a functional binding site for insulin-like growth factor II for inhibition of anchorage-independent growth and matrix invasion by SCC-VII cells. In contrast, the simultaneous mutation of both M6P-binding sites is sufficient to impair all cellular functions of the receptor tested. These findings highlight that the interaction between M6P/IGF2R and M6P-modified ligands is not only important for intracellular accumulation of lysosomal enzymes and formation of dense lysosomes, but is also crucial for the ability of the receptor to suppress SCC-VII growth and invasion. The present study also shows that some of the biological activities of M6P/IGF2R in SCC-VII cells strongly depend on a functional M6P-binding site within domain 3, thus providing further evidence for the non-redundant cellular functions of the individual carbohydrate-binding domains of the receptor.

Haouzi D, Assou S, Monzo C, et al.
Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome.
Hum Reprod. 2012; 27(12):3523-30 [PubMed] Related Publications
STUDY QUESTION: Oocyte developmental competence is altered in patients with polycystic ovary syndrome (PCOS); is gene expression in cumulus cells (CCs) from mature metaphase II oocytes of patients with PCOS altered as well?
SUMMARY ANSWER: Compared with CCs from non-PCOS patients, the gene expression profile of CCs isolated from mature oocytes of patients with PCOS present alterations that could explain the abnormal folliculogenesis and reduced oocyte competence in such patients.
WHAT IS KNOWN ALREADY: Abnormal mRNA expression of several members of the insulin-like growth factor (IGF) family in CCs from PCOS patients was previously reported. Moreover, the whole transcriptome has been investigated in cultured CCs from PCOS patients.
STUDY DESIGN, SIZE AND DURATION: This retrospective study included six PCOS patients diagnosed following the Rotterdam Criteria and six non-PCOS patients who all underwent ICSI for male infertility in the assisted reproduction technique (ART) Department of Montpellier University Hospital, between 2009 and 2011.
PARTICIPANTS/MATERIALS, SETTING AND METHODS: CCs from PCOS and non-PCOS patients who underwent controlled ovarian stimulation (COS) were isolated mechanically before ICSI. Gene expression profiles were analysed using the microarray technology and the Significance Analysis of Microarray was applied to compare the expression profiles of CCs from PCOS and non-PCOS patients.
MAIN RESULTS: The gene expression profile of CCs from patients with PCOS was significantly different from that of CCs from non-PCOS patients. Specifically, CCs from women with PCOS were characterized by abnormal expression of many growth factors, including members of the epidermal growth factor-like (EGFR, EREG and AREG) and IGF-like families (IGF1R, IGF2R, IGF2BP2 and IGFBP2), that are known to play a role in oocyte competence. In addition, mRNA transcripts of factors involved in steroid metabolism, such as CYP11A1, CYP1B1, CYP19A1 and CYP2B7P1, were deregulated in PCOS CCs, and this could explain the abnormal steroidogenesis observed in these women. Functional annotation of the differentially expressed genes suggests that defects in the transforming growth factor β and estrogen receptors signalling cascades may contribute to the reduced oocyte developmental competence in patients with PCOS.
LIMITATIONS AND REASONS FOR CAUTION: Owing to the strict selection criteria (similar age, weight and reasons for ART), this study included a small sample size (six cases and six controls), and thus, further investigations using a large cohort of patients are needed to confirm these results.
WIDER IMPLICATIONS OF THE FINDINGS: This study opens a new perspective for understanding the pathogenesis of PCOS.
STUDY FUNDING/COMPETING INTERESTS: This work was partially supported by a grant from the Ferring Pharmaceutical. The authors of the study have no competing interests to report.
TRIAL REGISTRATION NUMBER: Not applicable.

Kaur S, Archer KJ, Devi MG, et al.
Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis.
J Clin Endocrinol Metab. 2012; 97(10):E2016-21 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Polycystic ovary syndrome (PCOS) is a heterogeneous, genetically complex, endocrine disorder of uncertain etiology in women.
OBJECTIVE: Our aim was to compare the gene expression profiles in stimulated granulosa cells of PCOS women with and without insulin resistance vs. matched controls.
RESEARCH DESIGN AND METHODS: This study included 12 normal ovulatory women (controls), 12 women with PCOS without evidence for insulin resistance (PCOS non-IR), and 16 women with insulin resistance (PCOS-IR) undergoing in vitro fertilization. Granulosa cell gene expression profiling was accomplished using Affymetrix Human Genome-U133 arrays. Differentially expressed genes were classified according to gene ontology using ingenuity pathway analysis tools. Microarray results for selected genes were confirmed by real-time quantitative PCR.
RESULTS: A total of 211 genes were differentially expressed in PCOS non-IR and PCOS-IR granulosa cells (fold change≥1.5; P≤0.001) vs. matched controls. Diabetes mellitus and inflammation genes were significantly increased in PCOS-IR patients. Real-time quantitative PCR confirmed higher expression of NCF2 (2.13-fold), TCF7L2 (1.92-fold), and SERPINA1 (5.35-fold). Increased expression of inflammation genes ITGAX (3.68-fold) and TAB2 (1.86-fold) was confirmed in PCOS non-IR. Different cardiometabolic disease genes were differentially expressed in the two groups. Decreased expression of CAV1 (-3.58-fold) in PCOS non-IR and SPARC (-1.88-fold) in PCOS-IR was confirmed. Differential expression of genes involved in TGF-β signaling (IGF2R, increased; and HAS2, decreased), and oxidative stress (TXNIP, increased) was confirmed in both groups.
CONCLUSIONS: Microarray analysis demonstrated differential expression of genes linked to diabetes mellitus, inflammation, cardiovascular diseases, and infertility in the granulosa cells of PCOS women with and without insulin resistance. Because these dysregulated genes are also involved in oxidative stress, lipid metabolism, and insulin signaling, we hypothesize that these genes may be involved in follicular growth arrest and metabolic disorders associated with the different phenotypes of PCOS.

Chokkalingam AP, Metayer C, Scelo G, et al.
Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia.
Cancer Causes Control. 2012; 23(9):1577-85 [PubMed] Free Access to Full Article Related Publications
Accumulating evidence suggests that childhood acute lymphoblastic leukemia (ALL) may be initiated in utero or early in the postnatal period. High birth weight (or rapid fetal growth) is associated with risk of ALL, but the mechanisms are not understood. In a population-based epidemiologic study of childhood ALL, we utilized a haplotype-based approach to assess the role of eight genes involved in fetal growth and body size regulation in 377 childhood ALL cases and 448 controls. We found significant haplotype associations with risk of childhood ALL for IGF1 among non-Hispanics and Hispanics together (p = 0.002), for IGF2 among Hispanics (p = 0.040), and for IGF2R among Hispanics and non-Hispanics (p = 0.051 and 0.009, respectively). No haplotype associations were observed for IGF1R or the studied genes involved in body size regulation, including LEP, LEPR, GHRL, and NPY. Our study is the first to identify an association between the genes involved in the IGF axis and risk of childhood ALL. These findings for childhood ALL emphasize the importance of fetal growth, when lymphoid progenitor cells are not yet fully differentiated and therefore more susceptible to malignant transformation. Additional studies are needed to confirm these findings and identify specific causal variants.

Kuhlmann JD, Schwarzenbach H, Wimberger P, et al.
LOH at 6q and 10q in fractionated circulating DNA of ovarian cancer patients is predictive for tumor cell spread and overall survival.
BMC Cancer. 2012; 12:325 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: We recently showed that LOH proximal to M6P/IGF2R locus (D6S1581) in primary ovarian tumors is predictive for the presence of disseminated tumor cells (DTC) in the bone marrow (BM). For therapy-monitoring, it would be highly desirable to establish a blood-based biomarker. Therefore, we quantified circulating DNA (cirDNA) in sera of 63 ovarian cancer patients before surgery and after chemotherapy, measured incidence of LOH at four cancer-relevant chromosomal loci, correlated LOH with tumor cell spread to the BM and evaluated prognostic significance of LOH.
METHODS: cirDNA was fractionated into high- and low molecular-weight fraction (HMWF, LMWF) for LOH-profiling, utilizing PCR-based fluorescence microsatellite analysis. BM aspirates were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3.
RESULTS: cirDNA levels in the HMWF before surgery were predictive for residual tumor load (p = 0.017). After chemotherapy, we observed a significant decline of cirDNA in the LMWF (p = 0.0001) but not in the HMWF. LOH was prevalently detected in the LMWF with an overall frequency of 67%, only moderately ablating after chemotherapy (45%). Before surgery, LOH in the LMWF at marker D10S1765 and D13S218 significantly correlated with tumor grading and FIGO stage (p = 0.033, p = 0.004, respectively). In both combined fractions, LOH at D6S1581 additionally associated with overall survival (OS) (p = 0.030). Moreover, solely LOH at D10S1765 in LMWF after therapy correlated with DTC in BM after therapy (p = 0.017).
CONCLUSION: We demonstrate the applicability and necessity of DNA-fractionation prior to analyzing circulating LOH and identify LOH at D10S1765 and D6S1581 as novel blood-based biomarkers for ovarian cancer, being relevant for therapy-monitoring.

Kreiling JL, Montgomery MA, Wheeler JR, et al.
Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer.
FEBS J. 2012; 279(15):2695-713 [PubMed] Free Access to Full Article Related Publications
Oligomerization of the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.

Takahashi Y, Mimori K, Yamamoto K, et al.
Genomic copy number of a carcinogenic single nucleotide polymorphism at 8q24 in non-risk allele colorectal cancer associated with insulin growth factor 2 receptor expression.
J Gastroenterol Hepatol. 2012; 27 Suppl 3:95-9 [PubMed] Related Publications
BACKGROUND AND AIM: The incidence of both diabetes mellitus and hyperlipidemia is increasing and they are risk factors for colorectal cancer (CRC). On the other hand, the carcinogenic significance of the single nucleotide polymorphism (SNP), rs6983267 at 8q24, in CRC has been reported. The association between the SNP genotype and genes associated with diabetes or hyperlipidemia was investigated in cases of CRC.
METHODS: In 107 cases of CRC diagnosed in eight institutes from 2003 to 2008, array-CGH and cDNA microarray was performed and the data analyzed from two groups subdivided according to SNP genotype.
RESULTS: In the array-CGH data, we selected 38 genes related to diabetes or fat metabolism, and of these 10 had a correlation coefficient between the genome copy number at 8q24 locus and that of each gene. Of the 10 genes, insulin growth factor 2 receptor (IGF2R) was the only one with an expression level significantly associated with the 8q24 genotype. IGF2R expression was significantly lower in non-risk allele than in risk allele cases (P = 0.012). There was neither a diabetes- nor a fat metabolism-related gene that was significantly associated with CRC cases with the risk allele at 8q24.
CONCLUSIONS: SNP at 8q24 makes diabetes a risk factor of CRC via IGF2R, especially in genetically non-risk allele cases. We speculate that the risk allele of 8q24 might be risky enough that diabetes is not necessary to worsen the risk for CRC.

Hartmann EM, Beà S, Navarro A, et al.
Increased tumor cell proliferation in mantle cell lymphoma is associated with elevated insulin-like growth factor 2 mRNA-binding protein 3 expression.
Mod Pathol. 2012; 25(9):1227-35 [PubMed] Related Publications
Mantle cell lymphoma is an aggressive, non-curable B-cell lymphoma, characterized by the translocation t(11;14)(q13;q32) involving CCND1 and a high number of additional genetic alterations. Chromosomal gains of 7p are frequent in mantle cell lymphoma, with insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3 aka IMP3) being the most upregulated gene in this region. IGF2BP3 is a member of the IGF II mRNA-BP family, and increased IGF2BP3 expression is associated with an aggressive behavior in many malignant tumors. We here analyze selected genes related to IGF signaling in gene expression and genomic array data of 8 mantle cell lymphoma cell lines and 12 primary mantle cell lymphomas and study IGF2BP3 protein expression in 172 well-characterized primary mantle cell lymphomas by immunohistochemistry. The majority of mantle cell lymphoma cell lines and primary cases showed elevated IGF2BP3 mRNA expression and a subset also expressed the IGF1 and IGF2 receptors. On the protein level, 66 of 172 primary mantle cell lymphomas showed IGF2BP3 expression in >50% of tumor cells, and strong IGF2BP3 protein expression was highly associated with increased proliferation as measured by the Ki-67 index, but not with overall survival of mantle cell lymphoma patients. Only a subset of mantle cell lymphomas with marked IGF2BP3 expression had an underlying chromosomal gain in 7p, suggesting that additional mechanisms are involved in the upregulation of IGF2BP3 in mantle cell lymphoma. In seven paired mantle cell lymphoma samples, IGF2BP3 protein expression remained constant between primary diagnosis and relapse. Increased IGF2BP3 expression and, potentially, enhanced IGF signaling may contribute proproliferative stimuli in the evolution of mantle cell lymphoma tumor cells.

Hoyo C, Murphy SK, Schildkraut JM, et al.
IGF2R genetic variants, circulating IGF2 concentrations and colon cancer risk in African Americans and Whites.
Dis Markers. 2012; 32(2):133-41 [PubMed] Free Access to Full Article Related Publications
The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9-5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2.

Chen Y, Shao H, Li H, et al.
[Relationship of insulin-like growth factor receptor single nucleotide polymorphism (SNP) with platinum-based chemotherapy outcomes in advanced non-small cell lung cancer].
Zhongguo Fei Ai Za Zhi. 2012; 15(2):65-71 [PubMed] Related Publications
BACKGROUND AND OBJECTIVE: It has been proven that the insulin-like growth factor 1 receptor (IGF-1R) gene is an important regulator of many aspects of growth, differentiation, and development. The insulin-like growth factor 2 receptor (IGF-2R) gene is a negative mediator for carcinogenesis. The aim of this study is to investigate the relationship of IGF-1R+1013(G/A) and IGF-2R+1619(G/A) single nucleotide polymorphism (SNP) with platinum-based chemotherapy outcomes in advanced non-small cell lung cancer (NSCLC).
METHODS: A total of 132 patients with NSCLC were routinely treated with platinum-based chemotherapy, and their clinical responses were evaluated after four cycles of chemotherapy. IGF-1R+1013(G/A) and IGF-2R+1619(G/A) were genotyped using polymerase chain reaction-restrictive fragment length polymorphism. The relationship between IGF-1R+1013(G/A) and IGF-2R+1619(G/A) genotypes and the clinical benefit rate, as well as the median survival time (MST), was analyzed.
RESULTS: No significant association was found between IGF-1R+1013(G/A) and IGF-2R+1619(G/A) polymorphisms with clinical benefit (P>0.05). Further, we found that the two SNPs could not work together (P=0.975). The MST of patients with IGF-1R+1013(G/A) genotypes with A allele (GA+AA) was significantly shorter than that of GG genotype carriers (P=0.017). There was no significant difference in MST in patients with IGF-2R+1619(G/A) A allele (GA+AA) carrier and GG genotype carrier (P=0.575). The two SNPs showed a synergistic effect on MST. Patients who carried a mutant allele A of IGF-1R+1013(G/A) and a mutant allele A of IGF-2R+1619(G/A) had a MST of 12 months, which was significantly shorter than that of patients with other genotypes (P<0.05). Estimation by the Cox proportional hazards model showed that IGF-1R+1013(G/A) polymorphism is an independent prognostic factor (P=0.020), and IGF-1R+1013(G/A) polymorphism in combination with IGF-2R +1619(G/A) polymorphism is an independent prognostic factor in advanced NSCLC (P=0.025).
CONCLUSIONS: IGF-1R+1013(G/A) polymorphism alone or in combination with IGF-2R +1619(G/A) polymorphism was associated with the overall survival period in patients with advanced NSCLC after treatment with platin-based chemotherapy, which might be a prognostic factor in platin-treated patients with advanced NSCLC.

Dong X, Li Y, Tang H, et al.
Insulin-like growth factor axis gene polymorphisms modify risk of pancreatic cancer.
Cancer Epidemiol. 2012; 36(2):206-11 [PubMed] Related Publications
OBJECTIVE: Insulin-like growth factor (IGF)-axis genes plays a critical role in cancer development and progression via their impact on the RAS/MAPK/ERK and PI3K/AKT/mTOR signaling pathways. We hypothesized that IGF-axis genetic variants modify individual susceptibility to pancreatic cancer.
METHODS: We retrospectively genotyped 41 single-nucleotide polymorphisms of 10 IGF-axis genes (IGF1, IGF2, IGF1R, IGF2R, IGFBP1, IGFBP3, IGFBP5, IRS1, IRS2, and IRS4) in 706 pancreatic cancer patients and 706 cancer-free controls using Sequenom and TaqMan technology. The association between genotype and pancreatic cancer risk was evaluated using multivariate logistic regression. A P value ≤.007 at a false discovery rate of 10% was set as the significance level.
RESULTS: We observed that the IGF1 *10212C>A and Ex4+2776G>A and IGF1R IVS2-70184A>G and IVS2+46329T>C variant genotypes were significantly associated with decreased pancreatic cancer risk (odds ratio [OR] range, 0.60-0.75) and that IGFBP1 Ex4+111A>G (I253M) was significantly associated with increased pancreatic cancer risk (OR=1.46) after adjusted for other risk factors and multiple comparisons (P≤.007). IGF2R and IGFBP3 variant haplotypes were associated with increased and decreased pancreatic cancer risk, respectively (P<.001). We also observed a weak interaction of the IGF1R IVS2+46329T>C and IGF2R Ex45+11C>T (L2222L) genotypes with diabetes (P(interaction)=.05) and interaction of IGF2R and IRS1 genotypes with alcohol consumption (P(interaction)=.03 and .019, respectively) on increased pancreatic cancer risk.
CONCLUSION: These findings support our hypothesis that polymorphic variants of IGF-axis genes act alone or jointly with other risk factors to affect susceptibility to pancreatic cancer.

Kuhlmann JD, Schwarzenbach H, Otterbach F, et al.
Loss of heterozygosity proximal to the M6P/IGF2R locus is predictive for the presence of disseminated tumor cells in the bone marrow of ovarian cancer patients before and after chemotherapy.
Genes Chromosomes Cancer. 2011; 50(8):598-605 [PubMed] Related Publications
Disseminated tumor cells (DTC) in the bone marrow (BM) are present in about 35% of ovarian cancers before surgery and after chemotherapy and are associated with worse prognosis. A molecular biomarker in the primary tumor predicting tumor cell spread would be highly desirable. The purpose of the study was to investigate loss of heterozygosity (LOH) in primary ovarian tumors at four ovarian cancer-relevant chromosomal loci involved in apoptosis, platinum sensitivity, or DNA-repair, to assess the prognostic value of LOH and to correlate LOH with DTC occurrence before surgery and after chemotherapy. Primary tumor DNA of 88 patients was analyzed for LOH at four polymorphic microsatellite markers using PCR-based fluorescence microsatellite analysis. BM aspirates were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. LOH at the entire marker set correlated with tumor grading (P = 0.0001) and histology (P = 0.004). LOH at marker D10S1765 correlated with FIGO stage (P = 0.046) and grading (P = 0.05), whereas LOH at D17S855 significantly associated with grading (P = 0.023) and histology (P = 0.012), respectively. DTC were detected in 49% of patients before surgery and in 50% of patients after chemotherapy. Interestingly, LOH proximal to D6S1581 significantly correlated with DTC presence before surgery (P = 0.05) and after chemotherapy (P = 0.022). Conclusively, our data suggest that allelic loss at D6S1581 (proximal to M6P/IGF2R locus) serves as a molecular biomarker for the presence of DTC in the BM before and after chemotherapy.

Yoon AJ, Zavras AI, Chen MK, et al.
Association between Gly1619ARG polymorphism of IGF2R domain 11 (rs629849) and advanced stage of oral cancer.
Med Oncol. 2012; 29(2):682-5 [PubMed] Related Publications
Insulin-like growth factor II receptor (IGF2R) degrades mitogen and hence is associated with tumor suppressor function. The aim of this study was to assess whether genetic variation in the mitogen-binding domain of IGF2R, Gly1619Arg, disrupts normal function of IGF2R and contributes to further progression and distant metastasis of localized oral squamous cell carcinoma (OSCC). Gly1619Arg polymorphism of IGF2R domain 11 (rs629849) was assessed in blood samples of 113 individuals with histology-confirmed OSCC, and IGF2R genotypes were correlated with the stage of tumor (localized; TMN stages I-II versus advanced; TMN stages III-IV). After controlling for demographic covariates and known risk factors for oral cancer, such as tobacco, alcohol, and areca nut use, threefold increased risk of advanced stage of OSCC was noted in those subjects who had one or two copies of the IGF2R-A-allele when compared with the GG genotype. In contrast, when compared with the carriers of the A-allele, the GG genotype demonstrated to be protective against advanced disease (adjusted odds ratios of 0.32). IGF2R genetic polymorphism may be associated with decreased function of IGF2 receptor there by contributing to the advancement and distant metastasis of localized oral cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IGF2R, Cancer Genetics Web: http://www.cancer-genetics.org/IGF2R.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999